Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 493
Filtrar
1.
Cell ; 186(5): 999-1012.e20, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36764292

RESUMEN

Adenosine-to-inosine RNA editing has been proposed to be involved in a bacterial anti-phage defense system called RADAR. RADAR contains an adenosine triphosphatase (RdrA) and an adenosine deaminase (RdrB). Here, we report cryo-EM structures of RdrA, RdrB, and currently identified RdrA-RdrB complexes in the presence or absence of RNA and ATP. RdrB assembles into a dodecameric cage with catalytic pockets facing outward, while RdrA adopts both autoinhibited tetradecameric and activation-competent heptameric rings. Structural and functional data suggest a model in which RNA is loaded through the bottom section of the RdrA ring and translocated along its inner channel, a process likely coupled with ATP-binding status. Intriguingly, up to twelve RdrA rings can dock one RdrB cage with precise alignments between deaminase catalytic pockets and RNA-translocation channels, indicative of enzymatic coupling of RNA translocation and deamination. Our data uncover an interesting mechanism of enzymatic coupling and anti-phage defense through supramolecular assemblies.


Asunto(s)
Adenosina Trifosfato , ARN , Adenosina Desaminasa/genética
2.
Immunity ; 54(9): 1976-1988.e7, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34525338

RESUMEN

Mutations in the adenosine-to-inosine RNA-editing enzyme ADAR1 p150, including point mutations in the Z-RNA recognition domain Zα, are associated with Aicardi-Goutières syndrome (AGS). Here, we examined the in vivo relevance of ADAR1 binding of Z-RNA. Mutation of W197 in Zα, which abolished Z-RNA binding, reduced RNA editing. Adar1W197A/W197A mice displayed severe growth retardation after birth, broad expression of interferon-stimulated genes (ISGs), and abnormal development of multiple organs. Notably, malformation of the brain was accompanied by white matter vacuolation and gliosis, reminiscent of AGS-associated encephalopathy. Concurrent deletion of the double-stranded RNA sensor MDA5 ameliorated these abnormalities. ADAR1 (W197A) expression increased in a feedback manner downstream of type I interferons, resulting in increased RNA editing at a subset of, but not all, ADAR1 target sites. This increased expression did not ameliorate inflammation in Adar1W197A/W197A mice. Thus, editing of select endogenous RNAs by ADAR1 is essential for preventing inappropriate MDA5-mediated inflammation, with relevance to the pathogenesis of AGS.


Asunto(s)
Adenosina Desaminasa/genética , Enfermedades Autoinmunes del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/genética , Edición de ARN/genética , ARN Bicatenario/genética , Adenosina Desaminasa/metabolismo , Animales , Enfermedades Autoinmunes del Sistema Nervioso/fisiopatología , Modelos Animales de Enfermedad , Helicasa Inducida por Interferón IFIH1/metabolismo , Ratones , Mutación , Malformaciones del Sistema Nervioso/fisiopatología , ARN Bicatenario/metabolismo
3.
Mol Cell ; 81(20): 4116-4136, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34480848

RESUMEN

Enzyme-mediated chemical modifications of nucleic acids are indispensable regulators of gene expression. Our understanding of the biochemistry and biological significance of these modifications has largely been driven by an ever-evolving landscape of technologies that enable accurate detection, mapping, and manipulation of these marks. Here we provide a summary of recent technical advances in the study of nucleic acid modifications with a focus on techniques that allow accurate detection and mapping of these modifications. For each modification discussed (N6-methyladenosine, 5-methylcytidine, inosine, pseudouridine, and N4-acetylcytidine), we begin by introducing the "gold standard" technique for its mapping and detection, followed by a discussion of techniques developed to address any shortcomings of the gold standard. By highlighting the commonalities and differences of these techniques, we hope to provide a perspective on the current state of the field and to lay out a guideline for development of future technologies.


Asunto(s)
Metilación de ADN , ADN/metabolismo , Técnicas Genéticas , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , ARN/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Animales , Citidina/análogos & derivados , Citidina/metabolismo , ADN/genética , Epigénesis Genética , Humanos , Inosina/metabolismo , Seudouridina/metabolismo , ARN/genética , ARN Mensajero/genética
4.
Mol Cell ; 81(11): 2374-2387.e3, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33905683

RESUMEN

Adenosine-to-inosine editing is catalyzed by ADAR1 at thousands of sites transcriptome-wide. Despite intense interest in ADAR1 from physiological, bioengineering, and therapeutic perspectives, the rules of ADAR1 substrate selection are poorly understood. Here, we used large-scale systematic probing of ∼2,000 synthetic constructs to explore the structure and sequence context determining editability. We uncover two structural layers determining the formation and propagation of A-to-I editing, independent of sequence. First, editing is robustly induced at fixed intervals of 35 bp upstream and 30 bp downstream of structural disruptions. Second, editing is symmetrically introduced on opposite sites on a double-stranded structure. Our findings suggest a recursive model for RNA editing, whereby the structural alteration induced by the editing at one site iteratively gives rise to the formation of an additional editing site at a fixed periodicity, serving as a basis for the propagation of editing along and across both strands of double-stranded RNA structures.


Asunto(s)
Adenosina Desaminasa/genética , Adenosina/metabolismo , Inosina/metabolismo , Edición de ARN , ARN Bicatenario/genética , Proteínas de Unión al ARN/genética , Células A549 , Adenosina/genética , Adenosina Desaminasa/metabolismo , Animales , Emparejamiento Base , Células HEK293 , Humanos , Inosina/genética , Células MCF-7 , Ratones , Células 3T3 NIH , Conformación de Ácido Nucleico , ARN Bicatenario/química , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/metabolismo
5.
RNA ; 30(5): 521-529, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38531651

RESUMEN

In this article, I recount my memories of key experiments that led to my entry into the RNA editing/modification field. I highlight initial observations made by the pioneers in the ADAR field, and how they fit into our current understanding of this family of enzymes. I discuss early mysteries that have now been solved, as well as those that still linger. Finally, I discuss important, outstanding questions and acknowledge my hope for the future of the RNA editing/modification field.


Asunto(s)
Adenosina Desaminasa , ARN , ARN/genética , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Edición de ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Inosina/metabolismo , ARN Bicatenario
6.
RNA ; 30(5): 512-520, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38531652

RESUMEN

Inosine (I), resulting from the deamination of adenosine (A), is a prominent modification in the human transcriptome. The enzymes responsible for the conversion of adenosine to inosine in human mRNAs are the ADARs (adenosine deaminases acting on RNA). Inosine modification introduces a layer of complexity to mRNA processing and function, as it can impact various aspects of RNA biology, including mRNA stability, splicing, translation, and protein binding. The relevance of this process is emphasized in the growing number of human disorders associated with dysregulated A-to-I editing pathways. Here, we describe the impact of the A-to-I conversion on the structure and stability of duplex RNA and on the consequences of this modification at different locations in mRNAs. Furthermore, we highlight specific open questions regarding the interplay between inosine formation in duplex RNA and the innate immune response.


Asunto(s)
Edición de ARN , ARN , Humanos , ARN Mensajero/metabolismo , ARN/genética , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Inosina/metabolismo , Adenosina/genética , Adenosina/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35017296

RESUMEN

The 2'-5'-oligoadenylate synthetases (OAS) are innate immune sensors of cytosolic double-stranded RNA (dsRNA) that play a critical role in limiting viral infection. How these proteins are able to avoid aberrant activation by cellular RNAs is not fully understood, but adenosine-to-inosine (A-to-I) editing has been proposed to limit accumulation of endogenous RNAs that might otherwise cause stimulation of the OAS/RNase L pathway. Here, we aim to uncover whether and how such sequence modifications can restrict the ability of short, defined dsRNAs to activate the single-domain form of OAS, OAS1. Unexpectedly, we find that all tested inosine-containing dsRNAs have an increased capacity to activate OAS1, whether in a destabilizing (I•U) or standard Watson-Crick-like base pairing (I-C) context. Additional variants with strongly destabilizing A•C mismatches or stabilizing G-C pairs also exhibit increased capacity to activate OAS1, eliminating helical stability as a factor in the relative ability of the dsRNAs to activate OAS1. Using thermal difference spectra and molecular dynamics simulations, we identify both increased helical dynamics and specific local changes in helical structure as important factors in the capacity of short dsRNAs to activate OAS1. These helical features may facilitate more ready adoption of the distorted OAS1-bound conformation or stabilize important structures to predispose the dsRNA for optimal binding and activation of OAS1. These studies thus reveal the molecular basis for the greater capacity of some short dsRNAs to activate OAS1 in a sequence-independent manner.


Asunto(s)
2',5'-Oligoadenilato Sintetasa/química , 2',5'-Oligoadenilato Sintetasa/metabolismo , Disparidad de Par Base , ARN Bicatenario/metabolismo , Secuencia de Bases , Endorribonucleasas/metabolismo , Activación Enzimática , Humanos , Inosina/metabolismo , Simulación de Dinámica Molecular , Estructura Secundaria de Proteína , Edición de ARN , Estabilidad del ARN , Relación Estructura-Actividad , Temperatura
8.
Virol J ; 21(1): 6, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178191

RESUMEN

BACKGROUND: In cellular organisms, inosine triphosphate pyrophosphatases (ITPases) prevent the incorporation of mutagenic deaminated purines into nucleic acids. These enzymes have also been detected in the genomes of several plant RNA viruses infecting two euphorbia species. In particular, two ipomoviruses produce replicase-associated ITPases to cope with high concentration of non-canonical nucleotides found in cassava tissues. METHOD: Using high-throughput RNA sequencing on the wild euphorbia species Mercurialis perennis, two new members of the families Potyviridae and Secoviridae were identified. Both viruses encode for a putative ITPase, and were found in mixed infection with a new partitivirid. Following biological and genomic characterization of these viruses, the origin and function of the phytoviral ITPases were investigated. RESULTS: While the potyvirid was shown to be pathogenic, the secovirid and partitivirid could not be transmitted. The secovirid was found belonging to a proposed new Comovirinae genus tentatively named "Mercomovirus", which also accommodates other viruses identified through transcriptome mining, and for which an asymptomatic pollen-associated lifestyle is suspected. Homology and phylogenetic analyses inferred that the ITPases encoded by the potyvirid and secovirid were likely acquired through independent horizontal gene transfer events, forming lineages distinct from the enzymes found in cassava ipomoviruses. Possible origins from cellular organisms are discussed for these proteins. In parallel, the endogenous ITPase of M. perennis was predicted to encode for a C-terminal nuclear localization signal, which appears to be conserved among the ITPases of euphorbias but absent in other plant families. This subcellular localization is in line with the idea that nucleic acids remain protected in the nucleus, while deaminated nucleotides accumulate in the cytoplasm where they act as antiviral molecules. CONCLUSION: Three new RNA viruses infecting M. perennis are described, two of which encoding for ITPases. These enzymes have distinct origins, and are likely required by viruses to circumvent high level of cytoplasmic non-canonical nucleotides. This putative plant defense mechanism has emerged early in the evolution of euphorbias, and seems to specifically target certain groups of RNA viruses infecting perennial hosts.


Asunto(s)
Coinfección , Euphorbia , Ácidos Nucleicos , Virus de Plantas , Potyviridae , Virus ARN , Inosina Trifosfatasa , Filogenia , Virus ARN/genética , Nucleótidos/genética , Potyviridae/genética , Virus de Plantas/genética , Plantas/genética , ARN Viral/genética , Genoma Viral
9.
Purinergic Signal ; 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38367178

RESUMEN

Neuroplasticity refers to the nervous system's ability to adapt and reorganize its cell structures and neuronal networks in response to internal and external stimuli. In adults, this process involves neurogenesis, synaptogenesis, and synaptic and neurochemical plasticity. Several studies have reported the significant impact of the purinergic system on neuroplasticity modulation. And, there is considerable evidence supporting the role of purine nucleosides, such as adenosine, inosine, and guanosine, in this process. This review presents extensive research on how these nucleosides enhance the neuroplasticity of the adult central nervous system, particularly in response to damage. The mechanisms through which these nucleosides exert their effects involve complex interactions with various receptors and signaling pathways. Adenosine's influence on neurogenesis involves interactions with adenosine receptors, specifically A1R and A2AR. A1R activation appears to inhibit neuronal differentiation and promote astrogliogenesis, while A2AR activation supports neurogenesis, neuritogenesis, and synaptic plasticity. Inosine and guanosine positively impact cell proliferation, neurogenesis, and neuritogenesis. Inosine seems to modulate extracellular adenosine levels, and guanosine might act through interactions between purinergic and glutamatergic systems. Additionally, the review discusses the potential therapeutic implications of purinergic signaling in neurodegenerative and neuropsychiatric diseases, emphasizing the importance of these nucleosides in the neuroplasticity of brain function and recovery.

10.
Fish Shellfish Immunol ; 151: 109743, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38964433

RESUMEN

Adenosine Deaminases Acting on RNA (ADARs) are evolutionarily conserved enzymes known to convert adenosine to inosine in double-stranded RNAs and participate in host-virus interactions. Conducting a meta-analysis of available transcriptome data, we identified and characterised eight ADAR transcripts in Chlamys farreri, a farmed marine scallop susceptible to Acute viral necrosis virus (AVNV) infections and mortality outbreaks. Accordingly, we identified six ADAR genes in the Zhikong scallop genome, revised previous gene annotations, and traced alternative splicing variants. In detail, each ADAR gene encodes a unique combination of functional domains, always including the Adenosine deaminase domain, RNA binding domains and, in one case, two copies of a Z-DNA binding domain. After phylogenetic analysis, five C. farreri ADARs clustered in the ADAR1 clade along with sequences from diverse animal phyla. Gene expression analysis indicated CF051320 as the most expressed ADAR, especially in the eye and male gonad. The other four ADAR1 genes and one ADAR2 gene exhibited variable expression levels, with CF105370 and CF051320 significantly increasing during early scallop development. ADAR-mediated single-base editing, evaluated across adult C. farreri tissues and developmental stages, was mainly detectable in intergenic regions (83 % and 85 %, respectively). Overall, the expression patterns of the six ADAR genes together with the editing and hyper-editing values computed on scallops RNA-seq samples support the adaptive value of ADAR1-mediated editing, particularly in the pre-settling larval stages.


Asunto(s)
Adenosina Desaminasa , Pectinidae , Filogenia , Edición de ARN , Animales , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Pectinidae/genética , Pectinidae/inmunología , Inmunidad Innata/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/inmunología , Secuencia de Aminoácidos , Transcriptoma , Alineación de Secuencia/veterinaria
11.
RNA Biol ; 21(1): 1-8, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38368619

RESUMEN

The identification of mechanisms capable of modifying genetic information by the addition of covalent RNA modifications distinguishes a level of complexity in gene expression which challenges key long-standing concepts of RNA biology. One of the current challenges of molecular biology is to properly understand the molecular functions of these RNA modifications, with more than 170 different ones having been identified so far. However, it has not been possible to map specific RNA modifications at a single-cell resolution until very recently. This review will highlight the technological advances in single-cell methodologies aimed at assessing and testing the biological function of certain RNA modifications, focusing on m6A. These advances have allowed for the development of novel strategies that enable the study of the 'epitranscriptome'. Nevertheless, despite all these improvements, many challenges and difficulties still need fixing for these techniques to work efficiently.


Asunto(s)
Biología Molecular , ARN , ARN/genética , ARN/metabolismo , Análisis de la Célula Individual , Procesamiento Postranscripcional del ARN , Transcriptoma
12.
Bioessays ; 44(2): e2100174, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34873719

RESUMEN

RNA modifications have recently emerged as an important regulatory layer of gene expression. The most prevalent and reversible modification on messenger RNA (mRNA), N6-methyladenosine, regulates most steps of RNA metabolism and its dysregulation has been associated with numerous diseases. Other modifications such as 5-methylcytosine and N1-methyladenosine have also been detected on mRNA but their abundance is lower and still debated. Adenosine to inosine RNA editing is widespread on coding and non-coding RNA and can alter mRNA decoding as well as protect against autoimmune diseases. 2'-O-methylation of the ribose and pseudouridine are widespread on ribosomal and transfer RNA and contribute to proper RNA folding and stability. While the understanding of the individual role of RNA modifications has now reached an unprecedented stage, still little is known about their interplay in the control of gene expression. In this review we discuss the examples where such interplay has been observed and speculate that with the progress of mapping technologies more of those will rapidly accumulate.


Asunto(s)
5-Metilcitosina , ARN , Adenosina/metabolismo , ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo
13.
Bull Exp Biol Med ; 176(5): 572-575, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38730104

RESUMEN

A comparative assessment of radioprotective properties of inosine nucleoside (riboxin) and recognized radioprotector indralin was carried out. We analyzed survival of male ICR CD-1 mice weighting 32.2±0.2 g exposed to external X-ray radiation at doses 6.5 and 6.75 Gy and receiving indralin at a dose of 100 or 150 µg/g body weight or riboxin (inosine) at a dose of 100 or 200 µg/g body weight before irradiation. The survival analysis was carried out by the Kaplan-Meier method. The significance was assessed by using the log-rank-test. Inosine showed a significant difference from the irradiated control only at a dose of 100 µg/g body weight at a radiation dose of 6.75 Gy. The survival of animals treated with indralin was significantly higher in comparison with not only the irradiated control group, but also with the groups receiving inosine.


Asunto(s)
Inosina , Protectores contra Radiación , Animales , Inosina/farmacología , Protectores contra Radiación/farmacología , Masculino , Ratones , Ratones Endogámicos ICR , Rayos X , Fenoles
14.
Crit Rev Biochem Mol Biol ; 56(1): 54-87, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33356612

RESUMEN

Adenosine deaminases that act on RNA (ADARs) are present in all animals and function to both bind double-stranded RNA (dsRNA) and catalyze the deamination of adenosine (A) to inosine (I). As inosine is a biological mimic of guanosine, deamination by ADARs changes the genetic information in the RNA sequence and is commonly referred to as RNA editing. Millions of A-to-I editing events have been reported for metazoan transcriptomes, indicating that RNA editing is a widespread mechanism used to generate molecular and phenotypic diversity. Loss of ADARs results in lethality in mice and behavioral phenotypes in worm and fly model systems. Furthermore, alterations in RNA editing occur in over 35 human pathologies, including several neurological disorders, metabolic diseases, and cancers. In this review, a basic introduction to ADAR structure and target recognition will be provided before summarizing how ADARs affect the fate of cellular RNAs and how researchers are using this knowledge to engineer ADARs for personalized medicine. In addition, we will highlight the important roles of ADARs and RNA editing in innate immunity and cancer biology.


Asunto(s)
Adenosina Desaminasa/metabolismo , Carcinogénesis/metabolismo , Inmunidad Innata , Neoplasias/metabolismo , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/metabolismo , Adenosina/metabolismo , Adenosina Desaminasa/química , Adenosina Desaminasa/genética , Animales , Desaminación , Humanos , Inosina/metabolismo , Edición de ARN , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética
15.
J Biol Chem ; 298(1): 101441, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34813793

RESUMEN

Inosine monophosphate dehydrogenase (IMPDH) is a key regulatory enzyme in the de novo synthesis of the purine base guanine. Dominant mutations in human IMPDH1 cause photoreceptor degeneration for reasons that are unknown. Here, we sought to provide some foundational information on Impdh1a in the zebrafish retina. We found that in zebrafish, gene subfunctionalization due to ancestral duplication resulted in a predominant retinal variant expressed exclusively in rod and cone photoreceptors. This variant is structurally and functionally similar to the human IMPDH1 retinal variant and shares a reduced sensitivity to GTP-mediated inhibition. We also demonstrated that Impdh1a forms prominent protein filaments in vitro and in vivo in both rod and cone photoreceptor cell bodies, synapses, and to a lesser degree, in outer segments. These filaments changed length and cellular distribution throughout the day consistent with diurnal changes in both mRNA and protein levels. The loss of Impdh1a resulted in a substantial reduction of guanine levels, although cellular morphology and cGMP levels remained normal. Our findings demonstrate a significant role for IMPDH1 in photoreceptor guanine production and provide fundamental new information on the details of this protein in the zebrafish retina.


Asunto(s)
Guanina , IMP Deshidrogenasa , Células Fotorreceptoras Retinianas Conos , Animales , Guanina/metabolismo , IMP Deshidrogenasa/metabolismo , Isoenzimas/metabolismo , Retina/citología , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/citología , Células Fotorreceptoras Retinianas Conos/enzimología , Células Fotorreceptoras Retinianas Conos/metabolismo , Pez Cebra
16.
Am J Physiol Endocrinol Metab ; 324(1): E1-E8, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36416582

RESUMEN

This article briefly reviews cancer immunity and the role of gut microbiota in carcinogenesis, followed by an understanding of mechanisms by which inosine is involved in cancer immunometabolism. The immune system plays a paradoxical role in cancer treatment. Antitumor immunity depends on the T-cell priming against tumor antigens, whereas inflammatory mediators trigger the protumor signaling in the tumor microenvironment. Studies link the microbiome with metabolism and immunity-two main factors implicated in carcinogenesis. Gut microbiota has been shown to affect both antitumor immunity and protumor immune signaling. There is mounting evidence that the human microbiome can play a role in the immunotherapeutic effects, both response and resistance. Inosine-5'-monophosphate dehydrogenase (IMPDH) is a highly conservative enzyme widely expressed in mammals. Cell signaling pathways use molecular inosine, a crucial secondary metabolite in purine metabolism and a molecular messenger. Recent research has identified inosine as a critical regulator of immune checkpoint inhibition (ICI) therapeutic response in various tumor types. Some bacterial species were found to produce inosine or its metabolite hypoxanthine and induce T-helper 1 differentiation and effector functions via the inosine-A2AR-cAMP-PKA pathway upon ICI therapy. Also, inosine acts as a substitute carbon source for T-cell metabolism in glucose-restricted environments, i.e., the tumor microenvironment, assisting T-cell proliferation and differentiation while enhancing sensitivity to ICI, reinforcing the notion that inosine metabolism might contribute to antitumor immunity. Also, inosine is a potent agonist of the adenosine receptor, A2AR, and A2AR signaling can affect T-cell responses and antitumor immunity, making the inosine-A2AR pathway blockage a candidate for cancer treatment. Further research is required to investigate inosine as a cancer immunometabolism therapy.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias , Animales , Humanos , Neoplasias/terapia , Linfocitos T , Inosina/metabolismo , Inosina/farmacología , Carcinogénesis , Mamíferos/metabolismo , Microambiente Tumoral
17.
New Phytol ; 237(5): 1759-1775, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36464781

RESUMEN

In plants, inosine is enzymatically introduced in some tRNAs, but not in other RNAs or DNA. Nonetheless, our data show that RNA and DNA from Arabidopsis thaliana contain (deoxy)inosine, probably derived from nonenzymatic adenosine deamination in nucleic acids and usage of (deoxy)inosine triphosphate (dITP and ITP) during nucleic acid synthesis. We combined biochemical approaches, LC-MS, as well as RNA-Seq to characterize a plant INOSINE TRIPHOSPHATE PYROPHOSPHATASE (ITPA) from A. thaliana, which is conserved in many organisms, and investigated the sources of deaminated purine nucleotides in plants. Inosine triphosphate pyrophosphatase dephosphorylates deaminated nucleoside di- and triphosphates to the respective monophosphates. ITPA loss-of-function causes inosine di- and triphosphate accumulation in vivo and an elevated inosine and deoxyinosine content in RNA and DNA, respectively, as well as salicylic acid (SA) accumulation, early senescence, and upregulation of transcripts associated with immunity and senescence. Cadmium-induced oxidative stress and biochemical inhibition of the INOSINE MONOPHOSPHATE DEHYDROGENASE leads to more IDP and ITP in the wild-type (WT), and this effect is enhanced in itpa mutants, suggesting that ITP originates from ATP deamination and IMP phosphorylation. Inosine triphosphate pyrophosphatase is part of a molecular protection system in plants, preventing the accumulation of (d)ITP and its usage for nucleic acid synthesis.


Asunto(s)
Inosina Trifosfato , Nucleótidos de Purina , Pirofosfatasas , Adenosina Trifosfato , ADN , Inosina Trifosfato/genética , Ácidos Nucleicos , Pirofosfatasas/genética , ARN
18.
Arch Biochem Biophys ; 744: 109700, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37506994

RESUMEN

The inosine triphosphate pyrophosphatase (ITPA) enzyme plays a critical cellular role by removing noncanonical nucleoside triphosphates from nucleotide pools. One of the first pathological ITPA mutants identified is R178C (rs746930990), which causes a fatal infantile encephalopathy, termed developmental and epileptic encephalopathy 35 (DEE 35). The accumulation of noncanonical nucleotides such as inosine triphosphate (ITP), is suspected to affect RNA and/or interfere with normal nucleotide function, leading to development of DEE 35. Molecular dynamics simulations have shown that the very rare R178C mutation does not significantly perturb the overall structure of the protein, but results in a high level of structural flexibility and disrupts active-site hydrogen bond networks, while preliminary biochemical data indicate that ITP hydrolyzing activity is significantly reduced for the R178C mutant. Here we report Michaelis-Menten enzyme kinetics data for the R178C ITPA mutant and three other position 178 ITPA mutants. These data confirm that position 178 is essential for ITPA activity and even conservative mutation at this site (R178K) results in significantly reduced enzyme activity. Our data support that disruption of the active-site hydrogen bond network is a major cause of diminished ITP hydrolyzing activity for the R178C mutation. These results suggest an avenue for developing therapies to address DEE 35.


Asunto(s)
Inosina , Pirofosfatasas , Pirofosfatasas/metabolismo , Inosina Trifosfato/metabolismo , Arginina , Nucleótidos/metabolismo
19.
Muscle Nerve ; 67(5): 378-386, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36840949

RESUMEN

INTRODUCTION/AIMS: Higher urate levels are associated with improved ALS survival in retrospective studies, however whether raising urate levels confers a survival advantage is unknown. In the Safety of Urate Elevation in Amyotrophic Lateral Sclerosis (SURE-ALS) trial, inosine raised serum urate and was safe and well-tolerated. The SURE-ALS2 trial was designed to assess longer term safety. Functional outcomes and a smartphone application were also explored. METHODS: Participants were randomized 2:1 to inosine (n = 14) or placebo (n = 9) for 20 weeks, titrated to serum urate of 7-8 mg/dL. Primary outcomes were safety and tolerability. Functional outcomes were measured with the Amyotrophic Lateral Sclerosis Functional Rating Scale Revised (ALSFRS-R). Mobility and ALSFRS-R were also assessed by a smartphone application. RESULTS: During inosine treatment, mean urate ranged 5.68-6.82 mg/dL. Treatment-emergent adverse event (TEAE) incidence was similar between groups (p > .10). Renal TEAEs occurred in three (21%) and hypertension in one (7%) of participants randomized to inosine. Inosine was tolerated in 71% of participants versus placebo 67%. Two participants (14%) in the inosine group experienced TEAEs deemed related to treatment (nephrolithiasis); one was a severe adverse event. Mean ALSFRS-R decline did not differ between groups (p = .69). Change in measured home time was similar between groups. Digital and in-clinic ALSFRS-R correlated well. DISCUSSION: Inosine met pre-specified criteria for safety and tolerability. A functional benefit was not demonstrated in this trial designed for safety and tolerability. Findings suggested potential utility for a smartphone application in ALS clinical and research settings.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Ácido Úrico , Estudios Retrospectivos , Inosina/uso terapéutico , Método Doble Ciego
20.
Purinergic Signal ; 19(1): 315-327, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36121551

RESUMEN

Growing evidence reveals that microorganisms in the gut are linked to metabolic health and disease risk in human beings to a considerable extent. The focus of research at this stage must tend to focus on cause-and-effect studies. In addition to being a component of DNA and RNA, purine metabolites can be involved in purine signalling in the body as chemical messengers. Abnormalities in purinergic signalling may lead to neuropathy, rheumatic immune diseases, inflammation, tumors, and a wide range of other diseases. It has proved that gut microbes are involved in purinergic signalling. The relationship between these gut-derived purinergic signalling molecules and host metabolism may be one of the important clues to our understanding of the mechanisms by which the microbiota affects host metabolism.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Inflamación , Transducción de Señal
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda