Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Neurosurg Focus ; 54(6): E6, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37283401

RESUMEN

OBJECTIVE: Language-related networks have been recognized in functional maintenance, which has also been considered the mechanism of plasticity and reorganization in patients with cerebral malignant tumors. However, the role of interhemispheric connections (ICs) in language restoration remains unclear at the network level. Navigated transcranial magnetic stimulation (nTMS) and diffusion tensor imaging fiber tracking data were used to identify language-eloquent regions and their corresponding subcortical structures, respectively. METHODS: Preoperative image-based IC networks and nTMS mapping data from 30 patients without preoperative and postoperative aphasia as the nonaphasia group, 30 patients with preoperative and postoperative aphasia as the glioma-induced aphasia (GIA) group, and 30 patients without preoperative aphasia but who developed aphasia after the operation as the surgery-related aphasia group were investigated using fully connected layer-based deep learning (FC-DL) analysis to weight ICs. RESULTS: GIA patients had more weighted ICs than the patients in the other groups. Weighted ICs between the left precuneus and right paracentral lobule, and between the left and right cuneus, were significantly different among these three groups. The FC-DL approach for modeling functional and structural connectivity was also tested for its potential to predict postoperative language levels, and both the achieved sensitivity and specificity were greater than 70%. Weighted IC was reorganized more in GIA patients to compensate for language loss. CONCLUSIONS: The authors' method offers a new perspective to investigate brain structural organization and predict functional prognosis.


Asunto(s)
Afasia , Neoplasias Encefálicas , Aprendizaje Profundo , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Imagen de Difusión Tensora/métodos , Mapeo Encefálico/métodos , Glioma/cirugía , Estimulación Magnética Transcraneal/métodos , Lenguaje , Pronóstico , Afasia/diagnóstico por imagen , Afasia/etiología
2.
Neuroimage ; 195: 243-251, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30953832

RESUMEN

In autism spectrum disorder (ASD), disrupted functional and structural connectivity in the social brain has been suggested as the core biological mechanism underlying the social recognition deficits of this neurodevelopmental disorder. In this study, we aimed to identify genetic and neurostructural abnormalities at birth in a non-human primate model of ASD, the common marmoset with maternal exposure to valproic acid (VPA), which has been reported to display social recognition deficit in adulthood. Using a comprehensive gene expression analysis, we found that 20 genes were significantly downregulated in VPA-exposed neonates. Of these, Frizzled3 (FZD3) and PIK3CA were identified in an axon guidance signaling pathway. FZD3 is essential for the normal development of the anterior commissure (AC) and corpus callosum (CC); hence, we performed diffusion tensor magnetic resonance imaging with a 7-Tesla scanner to measure the midsagittal sizes of these structures. We found that the AC size in VPA-exposed neonates was significantly smaller than that in age-matched controls, while the CC size did not differ. These results suggest that downregulation of the genes related to axon guidance and decreased AC size in neonatal primates may be linked to social brain dysfunctions that can happen later in life.


Asunto(s)
Comisura Anterior Cerebral/patología , Trastorno del Espectro Autista/patología , Orientación del Axón/fisiología , Animales , Animales Recién Nacidos , Trastorno del Espectro Autista/inducido químicamente , Trastorno del Espectro Autista/metabolismo , Orientación del Axón/efectos de los fármacos , Callithrix , Fosfatidilinositol 3-Quinasa Clase I/biosíntesis , Modelos Animales de Enfermedad , Receptores Frizzled/biosíntesis , GABAérgicos/toxicidad , Transcriptoma/efectos de los fármacos , Ácido Valproico/toxicidad
3.
Eur Radiol ; 27(1): 325-335, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27048533

RESUMEN

OBJECTIVE: This study aimed to explore the interhemispheric intrinsic connectivity in traumatic axonal injury (TAI) patients. METHODS: Twenty-one patients with TAI (14 males, seven females; mean age, 38.71 ± 15.25 years) and 22 well-matched healthy controls (16 males, six females; mean age, 38.50 ± 13.82 years) were recruited, and from them we obtained resting-state fMRI data. Interhemispheric coordination was examined using voxel-mirrored homotopic connectivity (VMHC) and seed-based functional connectivity analysis was performed. RESULTS: We observed significantly decreased VMHC in a number of regions in TAI patients, including the prefrontal, temporal, occipital, parietal, and posterior cingulate cortices, thalami and cerebellar posterior lobes. Subsequent seed-based functional connectivity analysis revealed widely disrupted functional connectivity between the regions of local homotopic connectivity deficits and other areas of the brain, particularly the areas subserving the default, salience, integrative, and executive systems. The lower VMHC of the inferior frontal gyrus and basal ganglia, thalamus, and caudate were significant correlated with the Beck Depression Inventory score, Clinical Dementia Rating score, and Mini-Mental State Examination score, respectively. CONCLUSION: TAI is associated with regionally decreased interhemispheric interactions and extensively disrupted seed-based functional connectivity, generating further evidence of diffuse disconnection being associated with clinical symptoms in TAI patients. KEY POINTS: • Traumatic axonal injury is associated with decreased interhemispheric connectivity • Traumatic axonal injury couples with widely disrupted functional connectivity • These alterations support the default, salience, integrative, and executive functions.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Lesión Axonal Difusa/diagnóstico por imagen , Lesión Axonal Difusa/fisiopatología , Imagen por Resonancia Magnética/métodos , Adulto , Femenino , Humanos , Masculino
4.
Trends Neurosci ; 47(6): 395-397, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38658244

RESUMEN

A recent study by Wang and colleagues disentangled a transcallosal inhibitory circuit in mouse anterior cingulate cortex (ACC), which modulates excitatory ipsilateral tonus and contralateral inhibition by exciting contralateral parvalbumin-positive (PV+) interneurons. The authors conclude that the identified circuit mediates interhemispheric balance for visuospatial attention and provides top-down modulation of visual cortices.


Asunto(s)
Cuerpo Calloso , Giro del Cíngulo , Trastornos de la Percepción , Animales , Giro del Cíngulo/fisiología , Ratones , Cuerpo Calloso/fisiología , Trastornos de la Percepción/fisiopatología , Inhibición Neural/fisiología
5.
Front Neurosci ; 16: 1011699, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213731

RESUMEN

Bilateral brain stimulation is an important modality used to investigate brain circuits and treat neurological conditions. Recently, low-intensity pulsed ultrasound (LIPUS) received significant attention as a novel non-invasive neurostimulation technique with high spatial specificity. Despite the growing interest, the typical ultrasound brain stimulation study, especially for small animals, is limited to a single target of sonication. The constraint is associated with the complexity and the cost of the hardware system required to achieve multi-regional sonication. This work presented the development of a low-cost LIPUS system with a pair of single-element ultrasound transducers to address the above problem. The system was built with a multicore processor with an RF amplifier circuit. In addition, LIPUS device was incorporated with a wireless module (bluetooth low energy) and powered by a single 3.7 V battery. As a result, we achieved an ultrasound transmission with a central frequency of 380 kHz and a peak-to-peak pressure of 480 kPa from each ultrasound transducer. The developed system was further applied to anesthetized rats to investigate the difference between uni- and bilateral stimulation. A significant difference in cortical power density extracted from electroencephalogram signals was observed between uni- and bilateral LIPUS stimulation. The developed device provides an affordable solution to investigate the effects of LIPUS on functional interhemispheric connection.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda