Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
J Hepatol ; 80(4): 564-575, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38154741

RESUMEN

BACKGROUND & AIMS: CD4 T cells shape the neutralizing antibody (nAb) response and facilitate viral clearance in various infections. Knowledge of their phenotype, specificity and dynamics in hepatitis E virus (HEV) infection is limited. HEV is enterically transmitted as a naked virus (nHEV) but acquires a host-derived quasi-envelope (eHEV) when budding from cells. While nHEV is composed of the open reading frame (ORF)-2-derived capsid, eHEV particles also contain ORF3-derived proteins. We aimed to longitudinally characterize the HEV-specific CD4 T cells targeting ORF1, 2 and 3 and antibodies against nHEV or eHEV in immunocompetent individuals with acute and resolved HEV infection. METHODS: HEV-specific CD4 T cells were analyzed by intracellular cytokine staining after stimulation with in silico-predicted ORF1- and ORF2-derived epitopes and overlapping peptides spanning the ORF3 region. Ex vivo multiparametric characterization of capsid-specific CD4 T cells was performed using customized MHC class II tetramers. Total and neutralizing antibodies targeting nHEV or eHEV particles were determined. RESULTS: HEV-specific CD4 T-cell frequencies and antibody titers are highest in individuals with acute infection and decline in a time-dependent process with an antigen hierarchy. HEV-specific CD4 T cells strongly target the ORF2-derived capsid and ORF3-specific CD4 T cells are hardly detectable. NAbs targeting nHEV are found in high titers while eHEV particles are less efficiently neutralized. Capsid-specific CD4 T cells undergo memory formation and stepwise contraction, accompanied by dynamic phenotypical and transcriptional changes over time. CONCLUSION: The viral capsid is the main target of HEV-specific CD4 T cells and antibodies in acute-resolving infection, correlating with efficient neutralization of nHEV. Capsid-specific immunity rapidly emerges followed by a stepwise contraction several years after infection. IMPACT AND IMPLICATIONS: The interplay of CD4 T cells and neutralizing antibody responses is critical in the host defense against viral infections, yet little is known about their characteristics in hepatitis E virus (HEV) infection. We conducted a longitudinal study of immunocompetent individuals with acute and resolved HEV infection to understand the characteristics of HEV-specific CD4 T cells and neutralizing antibodies targeting different viral proteins and particles. We found that HEV-specific CD4 T cells mainly target capsid-derived epitopes. This correlates with efficient neutralization of naked virions while quasi-enveloped particles are less susceptible to neutralization. As individuals with pre-existing liver disease and immunocompromised individuals are at risk for fulminant or chronic courses of HEV infection, these individuals might benefit from the development of vaccination strategies which require a detailed knowledge of the composition and longevity of HEV-specific CD4 T-cell and antibody immunity.


Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Humanos , Linfocitos T CD4-Positivos , Cápside/metabolismo , Estudios Longitudinales , Virus de la Hepatitis E/genética , Proteínas de la Cápside/metabolismo , Epítopos , Anticuerpos Neutralizantes
2.
Cytometry A ; 105(4): 288-296, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38149360

RESUMEN

Techniques currently used for the study of antigen-specific T-cell responses are either poorly informative or require a heavy workload. Consequently, many perspectives associated with the broader study of such approaches remain mostly unexplored in translational research. However, these could benefit many fields including but not limited to infectious diseases, oncology, and vaccination. Herein, the main objective of this work was to develop a standardized flow cytometry-based approach that would combine ease of use together with a relevant study of antigen-specific T-cell responses so that they could be more often included in clinical research. To this extent, a streamlined approach relying on 1/ the use of whole blood instead of peripheral blood mononuclear cells and 2/ solely based on the expression of extracellular activation-induced markers (AIMs), called whole blood AIM (WAIM), was developed and further compared to more conventional techniques such as enzyme-linked immunospot (ELISpot) and flow cytometry-based intracellular cytokine staining (ICS). Based on a cohort of 20 individuals receiving the COVID-19 mRNA vaccine and focusing on SARS-CoV-2 and cytomegalovirus (CMV)-derived antigen T-cell-specific responses, a significant level of correlation between the three techniques was found. Based on the use of whole blood and on the expression of extracellular activation-induced markers (CD154, CD137, and CD107a), the WAIM technique appears to be very simple to implement and yet allows interesting patient stratification capabilities as the chosen combination of extracellular markers exhibited higher orthogonality than cytokines that are commonly considered in ICS (IFN-γ, TNF-α, and IL-2).


Asunto(s)
Vacunas contra la COVID-19 , Linfocitos T , Humanos , Interferón gamma/metabolismo , Leucocitos Mononucleares/metabolismo , Antígenos , Citocinas
3.
J Med Virol ; 95(4): e28733, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37185851

RESUMEN

The best method for monitoring cytomegalovirus (CMV)-specific cell-mediated immunity (CMV-CMI) among high-risk kidney transplant (KT) recipients remains uncertain. We assessed CMV-CMI by intracellular cytokine staining (ICS) by flow cytometry and a commercial interferon (IFN)-γ release assay (QuantiFERON®-CMV [QTF-CMV]) at posttransplant months 3, 4, and 5 in 53 CMV-seropositive KT recipients that had received induction therapy with antithymocyte globulin (ATG) and a 3-month course of valganciclovir prophylaxis. The discriminative capacity (areas under receiver operating characteristics curve [auROCs]) and diagnostic accuracy to predict immune protection against CMV infection from the discontinuation of prophylaxis to month 12 were compared between both methods. There was significant although moderate correlations between CMV-specific IFN-γ-producing CD8+ T-cell counts enumerated by ICS and IFN-γ levels by QTF-CMV at months 3 (rho: 0.493; p = 0.005) and 4 (rho: 0.440; p = 0.077). The auROCs for CMV-specific CD4+ and CD8+ T-cells by ICS were nonsignificantly higher than that of QTF-CMV (0.696 and 0.733 vs. 0.678; p = 0.900 and 0.692, respectively). The optimal cut-off of ≥0.395 CMV-specific CD8+ T-cells yielded a sensitivity of 86.4%, specificity of 54.6%, positive predictive value of 79.2% and negative predictive value of 66.7% to predict protection. The corresponding estimates for QTF-CMV (IFN-γ levels ≥0.2 IU/mL) were 78.9%, 37.5%, 75.0%, and 42.9%, respectively. The enumeration of CMV-specific IFN-γ-producing CD8+ T-cells at the time of cessation of prophylaxis performed slightly better than the QTF-CMV assay to predict immune protection in seropositive KT recipients previously treated with ATG.


Asunto(s)
Infecciones por Citomegalovirus , Trasplante de Riñón , Humanos , Citomegalovirus , Trasplante de Riñón/efectos adversos , Citocinas , Linfocitos T CD8-positivos , Infecciones por Citomegalovirus/diagnóstico , Infecciones por Citomegalovirus/prevención & control , Inmunidad Celular , Receptores de Trasplantes , Ensayo de Inmunoadsorción Enzimática
4.
J Infect Dis ; 226(2): 246-257, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35758878

RESUMEN

BACKGROUND: The ALVAC/gp120 + MF59 vaccines in the HIV Vaccine Trials Network (HVTN) 702 efficacy trial did not prevent human immunodeficiency virus-1 (HIV-1) acquisition. Vaccine-matched immunological endpoints that were correlates of HIV-1 acquisition risk in RV144 were measured in HVTN 702 and evaluated as correlates of HIV-1 acquisition. METHODS: Among 1893 HVTN 702 female vaccinees, 60 HIV-1-seropositive cases and 60 matched seronegative noncases were sampled. HIV-specific CD4+ T-cell and binding antibody responses were measured 2 weeks after fourth and fifth immunizations. Cox proportional hazards models assessed prespecified responses as predictors of HIV-1 acquisition. RESULTS: The HVTN 702 Env-specific CD4+ T-cell response rate was significantly higher than in RV144 (63% vs 40%, P = .03) with significantly lower IgG binding antibody response rate and magnitude to 1086.C V1V2 (67% vs 100%, P < .001; Pmag < .001). Although no significant univariate associations were observed between any T-cell or binding antibody response and HIV-1 acquisition, significant interactions were observed (multiplicity-adjusted P ≤.03). Among vaccinees with high IgG A244 V1V2 binding antibody responses, vaccine-matched CD4+ T-cell endpoints associated with decreased HIV-1 acquisition (estimated hazard ratios = 0.40-0.49 per 1-SD increase in CD4+ T-cell endpoint). CONCLUSIONS: HVTN 702 and RV144 had distinct immunogenicity profiles. However, both identified significant correlations (univariate or interaction) for IgG V1V2 and polyfunctional CD4+ T cells with HIV-1 acquisition. Clinical Trials Registration . NCT02968849.


Asunto(s)
Vacunas contra el SIDA , Infecciones por VIH , Seropositividad para VIH , VIH-1 , Femenino , Anticuerpos Anti-VIH , Proteína gp120 de Envoltorio del VIH , Infecciones por VIH/prevención & control , Humanos , Inmunoglobulina G , Masculino , Sudáfrica
5.
Cell Immunol ; 371: 104455, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34864514

RESUMEN

Cytomegalovirus (CMV) viral load after liver transplantation (LT) is controlled by cell mediated immune responses (CMI). Quantification of CMV-specific T-cells may identify patients who control CMV spontaneously and avoid expensive and potentially toxic antiviral therapies. Prospective post-LT clinical, virological and immunological monitoring was carried out up to 1-year post-LT in a cohort of adult recipients. The CMV-specific T-cell response was characterized using flow cytometry intracellular cytokine staining in 49 LT recipients-R (79.6% R+, 20.4% R-). CMV infection occurred in 24 patients (18 D+/R+ and 6 D+/R-). Only patients with undetectable polyfunctional CMV-specific CD4+ T-cells developed CMV infection. Predictive models showed that polyfunctional CMV-specific CD4+ T-cells pre-existing before LT are protective for CMV reactivation posttransplantation. Quantitation of CD4+ T-cell responses to CMV may be a useful marker for spontaneous control of viral replication to tailor antiviral prophylaxis after LT.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Citomegalovirus/inmunología , Inmunidad Celular/inmunología , Trasplante de Hígado/efectos adversos , Infecciones por Citomegalovirus/inmunología , Femenino , Humanos , Huésped Inmunocomprometido/inmunología , Terapia de Inmunosupresión/efectos adversos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Carga Viral , Activación Viral/inmunología , Replicación Viral/inmunología
6.
J Allergy Clin Immunol ; 147(2): 470-483, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32709424

RESUMEN

Anaphylaxis is a life-threatening allergic reaction caused by cross-linking of high-affinity IgE antibodies on the surface of mast cells and basophils. Understanding the cellular mechanisms that lead to high-affinity IgE production is required to develop better therapeutics for preventing this severe reaction. A recently discovered population of T follicular helper Tfh13 cells regulates the production of high-affinity IgE in mouse models of allergy and can also be found in patients with allergies with IgE antibodies against food or aeroallergens. Here we describe optimized protocols for identifying Tfh13 cells in both mice and humans.


Asunto(s)
Separación Celular/métodos , Citometría de Flujo/métodos , Células T Auxiliares Foliculares , Subgrupos de Linfocitos T , Animales , Humanos , Ratones
7.
Cytometry A ; 99(1): 107-116, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33090656

RESUMEN

Results from the first gating proficiency panel of intracellular cytokine staining (ICS) highlighted the value of using a consensus gating approach to reduce the variability across laboratories in reported %CD8+ or %CD4+ cytokine-positive cells. Based on the data analysis from the first proficiency panel, harmonization guidelines for a consensus gating protocol were proposed. To validate the recommendations from the first panel and to examine factors that were not included in the first panel, a second ICS gating proficiency panel was organized. All participants analyzed the same set of Flow Cytometry Standard (FCS) files using their own gating protocol. An optional learning module was provided to demonstrate how to apply the previously established gating recommendations and harmonization guidelines to actual ICS data files. Eighty-three participants took part in this proficiency panel. The results from this proficiency panel confirmed the harmonization guidelines from the first panel. These recommendations addressed the (1) placement of the cytokine-positive gate, (2) identification of CD4+ CD8+ double-positive T cells, (3) placement of lymphocyte gate, (4) inclusion of dim cells, (5) gate uniformity, and (6) proper adjustment of the biexponential scaling. In addition, based on the results of this proficiency gating panel, two new recommendations were added to expand the harmonization guidelines: (1) inclusion of dump channel marker to gate all live and dump negative cells and (2) backgating to confirm the correct placement of gates across all populations. © 2020 International Society for Advancement of Cytometry.


Asunto(s)
Citocinas , Neoplasias , Citometría de Flujo , Humanos , Inmunoterapia , Neoplasias/terapia , Reproducibilidad de los Resultados , Coloración y Etiquetado
8.
Cytometry A ; 95(11): 1129-1134, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31334913

RESUMEN

We developed this comprehensive 28-color flow cytometry panel with the aim to measure a variety of T cell effector functions in combination with T cell differentiation markers (CCR7, CD27, CD28, CD45RO, CD95) in γδ T cells and CD4+ and CD8+ αß T cells (Table 1). The effector functions measured in this panel include activation and co-stimulatory molecules (CD69, CD137, and CD154), cytokines (IL-2, IL-13, IL-17A, IL-21, IL-22, TNF, and IFNγ), the chemokine IL-8, cytotoxic molecules (perforin and granzyme B), and the degranulation marker CD107a. In addition, Ki67 enables the identification and analysis of recently activated T cells. To characterize regulatory T cells (Tregs ), we included CD25, CD39, and the canonical Tregs transcription factor FoxP3. We developed and optimized this panel for cryopreserved human peripheral blood mononuclear cells (PBMC) and stimulation with phorbol 12-myristate 13-acetate (PMA) and ionomycin. However, we successfully tested other types of stimulation such as staphylococcus enterotoxin B (SEB) or a mix of immunodominant peptides (CEF peptide pool) from cytomegalovirus (CMV), Epstein-Barr virus (EBV) and influenza. Published 2019. This article is a U.S. Government work and is in the public domain in the USA.


Asunto(s)
Citometría de Flujo , Linfocitos T Reguladores/metabolismo , Linfocitos T/metabolismo , Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos T/metabolismo , Antígenos CD28/metabolismo , Ligando de CD40/metabolismo , Citocinas/metabolismo , Factores de Transcripción Forkhead/metabolismo , Granzimas/metabolismo , Humanos , Inmunofenotipificación , Interleucina-8/metabolismo , Antígeno Ki-67/metabolismo , Lectinas Tipo C/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Activación de Linfocitos , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Perforina/metabolismo , Receptores CCR7/metabolismo , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Receptor fas/metabolismo
9.
J Virol ; 91(20)2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28724769

RESUMEN

Baboons naturally infected with simian T lymphotropic virus (STLV) are a potentially useful model system for the study of vaccination against human T lymphotropic virus (HTLV). Here we expanded the number of available full-length baboon STLV-1 sequences from one to three and related the T cell responses that recognize the immunodominant Tax protein to the tax sequences present in two individual baboons. Continuously growing T cell lines were established from two baboons, animals 12141 and 12752. Next-generation sequencing (NGS) of complete STLV genome sequences from these T cell lines revealed them to be closely related but distinct from each other and from the baboon STLV-1 sequence in the NCBI sequence database. Overlapping peptides corresponding to each unique Tax sequence and to the reference baboon Tax sequence were used to analyze recognition by T cells from each baboon using intracellular cytokine staining (ICS). Individual baboons expressed more gamma interferon and tumor necrosis factor alpha in response to Tax peptides corresponding to their own STLV-1 sequence than in response to Tax peptides corresponding to the reference baboon STLV-1 sequence. Thus, our analyses revealed distinct but closely related STLV-1 genome sequences in two baboons, extremely low heterogeneity of STLV sequences within each baboon, no evidence for superinfection within each baboon, and a ready ability of T cells in each baboon to recognize circulating Tax sequences. While amino acid substitutions that result in escape from CD8+ T cell recognition were not observed, premature stop codons were observed in 7% and 56% of tax sequences from peripheral blood mononuclear cells from animals 12141 and 12752, respectively.IMPORTANCE It has been estimated that approximately 100,000 people suffer serious morbidity and 10,000 people die each year from the consequences associated with human T lymphotropic virus (HTLV) infection. There are no antiviral drugs and no preventive vaccine. A preventive vaccine would significantly impact the global burden associated with HTLV infections. Here we provide fundamental information on the simian T lymphotropic virus (STLV) naturally transmitted in a colony of captive baboons. The limited viral sequence heterogeneity in individual baboons, the identity of the viral gene product that is the major target of cellular immune responses, the persistence of viral amino acid sequences that are the major targets of cellular immune responses, and the emergence in vivo of truncated variants in the major target of cellular immune responses all parallel what are seen with HTLV infection of humans. These results justify the use of STLV-infected baboons as a model system for vaccine development efforts.


Asunto(s)
Productos del Gen tax/química , Productos del Gen tax/genética , Infecciones por HTLV-I/virología , Virus Linfotrópico T Tipo 1 de los Simios/aislamiento & purificación , Linfocitos T/inmunología , Sustitución de Aminoácidos , Animales , ADN Viral/genética , Productos del Gen tax/inmunología , Genoma Viral , Infecciones por HTLV-I/inmunología , Infecciones por HTLV-I/transmisión , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunidad Celular , Interferón gamma/biosíntesis , Interferón gamma/inmunología , Papio anubis , Filogenia , Reacción en Cadena de la Polimerasa , Virus Linfotrópico T Tipo 1 de los Simios/inmunología , Linfocitos T/virología , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/inmunología
10.
J Infect Dis ; 215(9): 1376-1385, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28199679

RESUMEN

Background: It is important to identify vaccine-induced immune responses that predict the preventative efficacy of a human immunodeficiency virus (HIV)-1 vaccine. We assessed T-cell response markers as correlates of risk in the HIV Vaccine Trials Network (HVTN) 505 HIV-1 vaccine efficacy trial. Methods: 2504 participants were randomized to DNA/rAd5 vaccine or placebo, administered at weeks 0, 4, 8, and 24. Peripheral blood mononuclear cells were obtained at week 26 from all 25 primary endpoint vaccine cases and 125 matched vaccine controls, and stimulated with vaccine-insert-matched peptides. Primary variables were total HIV-1-specific CD4+ T-cell magnitude and Env-specific CD4+ polyfunctionality. Four secondary variables were also assessed. Immune responses were evaluated as predictors of HIV-1 infection among vaccinees using Cox proportional hazards models. Machine learning analyses identified immune response combinations best predicting HIV-1 infection. Results: We observed an unexpectedly strong inverse correlation between Env-specific CD8+ immune response magnitude and HIV-1 infection risk (hazard ratio [HR] = 0.18 per SD increment; P = .04) and between Env-specific CD8+ polyfunctionality and infection risk (HR = 0.34 per SD increment; P < .01). Conclusions: Further research is needed to determine if these immune responses are predictors of vaccine efficacy or markers of natural resistance to HIV-1 infection.


Asunto(s)
Vacunas contra el SIDA/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Infecciones por VIH/inmunología , Vacunas contra el SIDA/administración & dosificación , Adenoviridae/genética , Análisis de Varianza , Biología Computacional , Citocinas/inmunología , Vectores Genéticos , Infecciones por VIH/prevención & control , Humanos , Aprendizaje Automático , Riesgo
11.
Cytometry A ; 87(7): 675-82, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25908275

RESUMEN

An important aspect of immune monitoring for vaccine development, clinical trials, and research is the detection, measurement, and comparison of antigen-specific T-cells from subject samples under different conditions. Antigen-specific T-cells compose a very small fraction of total T-cells. Developments in cytometry technology over the past five years have enabled the measurement of single-cells in a multivariate and high-throughput manner. This growth in both dimensionality and quantity of data continues to pose a challenge for effective identification and visualization of rare cell subsets, such as antigen-specific T-cells. Dimension reduction and feature extraction play pivotal role in both identifying and visualizing cell populations of interest in large, multi-dimensional cytometry datasets. However, the automated identification and visualization of rare, high-dimensional cell subsets remains challenging. Here we demonstrate how a systematic and integrated approach combining targeted feature extraction with dimension reduction can be used to identify and visualize biological differences in rare, antigen-specific cell populations. By using OpenCyto to perform semi-automated gating and features extraction of flow cytometry data, followed by dimensionality reduction with t-SNE we are able to identify polyfunctional subpopulations of antigen-specific T-cells and visualize treatment-specific differences between them.


Asunto(s)
Antígenos/inmunología , Citocinas/análisis , Epítopos/inmunología , Citometría de Flujo/métodos , Linfocitos T/inmunología , Adolescente , Algoritmos , Biología Computacional/métodos , Humanos , Leucocitos Mononucleares , Coloración y Etiquetado , Linfocitos T/clasificación
12.
J Infect Dis ; 210(3): 400-4, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24532602

RESUMEN

Studies of T-cell immunity to human cytomegalovirus (CMV) primarily reflect anti-CMV pp65 or immediate early antigen 1 (IE-1) activity. We assessed responses of T cells from human immunodeficiency virus (HIV)-negative and HIV-infected men to peptide pools spanning 19 CMV open reading frames selected because they previously correlated with total CMV-specific T-cell responses in healthy donors. Cells producing cytokines in response to pp65 or IE-1 together composed <12% and <40% of the total CD4(+) and CD8(+) T-cell responses to CMV, respectively. These proportions were generally similar regardless of HIV serostatus. Thus, analyses of total CMV-specific T-cell responses should extend beyond pp65 and IE-1 regardless of HIV serostatus.


Asunto(s)
Linfocitos T CD4-Positivos/fisiología , Linfocitos T CD8-positivos/fisiología , Infecciones por Citomegalovirus/inmunología , Infecciones por VIH/complicaciones , Infecciones por VIH/inmunología , Adulto , Homosexualidad Masculina , Humanos , Masculino
13.
Cytometry A ; 85(3): 268-76, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24464647

RESUMEN

Methods to detect intracellular kinase signaling intermediates by flow cytometry have been recently developed. Termed "phospho-flow," these methods employ fluorescence-conjugated monoclonal antibodies that recognize phosphorylated epitopes of intracellular kinases, and may be combined with surface phenotypic markers to observe changes in kinase pathways by cellular subset. Effector functions, like cytokine production, are processes intrinsically linked to intracellular signaling and kinase activity within each cell. Methodologies that would simultaneously detect changes to signaling pathways as well as effector responses at the single-cell level would allow for mapping of the functional consequences induced by signaling pathway modifications. However, there are challenges to developing such a combined protocol, relating to the different kinetics of rapid signaling events and the more prolonged time required to induce and observe cytokine responses. In this report, we describe the development of an assay that accommodates differences in protocol conditions and response kinetics, merging phospho-flow cytometry, and intracellular cytokine staining methods into a single experimental protocol. We examined intracellular ERK1/2 phosphorylation and IFN-γ production by CD4+ and CD8+ T cells upon polyclonal stimulation with PMA and ionomycin, while monitoring expression of the cytolytic molecule perforin and the T cell activation marker CD38. We present a method that allows observation of kinase phosphorylation and cytokine production within the same cell after stimuli, while maintaining a stable cellular phenotype. Monitoring of signaling and effector functions in distinct immune subsets provides a platform to investigate and relate intracellular kinase signaling activity to immune cell effector function and phenotype in disease states.


Asunto(s)
Citocinas/biosíntesis , Citometría de Flujo , Ionomicina/farmacología , Activación de Linfocitos/inmunología , Transducción de Señal/efectos de los fármacos , Subgrupos de Linfocitos T/efectos de los fármacos , Acetato de Tetradecanoilforbol/farmacología , Anticuerpos Monoclonales/inmunología , Citocinas/inmunología , Citometría de Flujo/métodos , Humanos , Fosforilación , Fosfotransferasas/metabolismo , Transducción de Señal/inmunología , Subgrupos de Linfocitos T/inmunología
14.
Methods Mol Biol ; 2742: 91-98, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38165617

RESUMEN

Intracellular cytokine staining is a versatile technique used to analyze cytokine production in individual cells by flow cytometry. This methodology has the specific advantage of enabling the simultaneous assessment of multiple phenotypic, differentiation, and functional parameters pertaining to responding T cells. This methodology applied after short-term culture of cells, followed by fixation and permeabilization make this technique ideal for the assessment of T-cell immune responses induced by different challenges. Here we describe an intracellular staining method followed by flow cytometry after cell stimulation with immune-relevant antigens for Lyme disease.


Asunto(s)
Citocinas , Linfocitos T , Citometría de Flujo/métodos , Antígenos , Coloración y Etiquetado
15.
Methods Mol Biol ; 2782: 175-188, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38622402

RESUMEN

The encounter of T cells with the antigen through the interaction of T cell receptors with peptides and major histocompatibility complex (MHC) molecules on the surface of antigen-presenting cells (APCs) can generate effector response and memory T cells. Memory T cells developed following infections or vaccination may persist, leading to the generation of a specific immune response upon reexposure to the same pathogen through rapid clonal proliferation and activation of effector functions. T cell memory subsets can be identified based on the expression of several membrane markers such as CCR7, CD27, and CD45RA. Using fluorescent antibodies against these markers and a flow cytometer, it is possible to perform immunophenotyping via the analysis of cell surface expression of proteins by different subpopulations such as the subsets of naïve, effector, and memory T cells as well as via the analysis of functional markers that further characterize each sample. Intracellular cytokine staining allows for the evaluation of intracellular proteins expressed in T cells in response to antigenic stimulation. This chapter presents the phenotypic and functional characterization of memory T cells after antigenic stimulation, detailing the procedures for identifying intracellular and surface protein markers. Herein, we review and present a reproducible standardized protocol using antibodies for specific markers and applying flow cytometry.


Asunto(s)
Linfocitos T CD8-positivos , Subgrupos de Linfocitos T , Antígenos Comunes de Leucocito/análisis , Citocinas , Biomarcadores , Linfocitos T CD4-Positivos , Memoria Inmunológica , Inmunofenotipificación
16.
Methods Mol Biol ; 2644: 331-346, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37142932

RESUMEN

Immune cell therapies, such as adoptive T cell therapies, are an innovative and powerful treatment option for previously non-treatable diseases. Although immune cell therapies are thought to be very specific, there is still the danger of developing severe to life-threatening side effects due to the unspecific distribution of the cells throughout the body (on-target/off-tumor effects). A possible solution for the reduction of these side effects and the improvement of tumor infiltration is the specific targeting of the effector cells (e.g., T cells) to the desired destination (e.g., tumor region). This can be achieved by the magnetization of cells with superparamagnetic iron oxide nanoparticles (SPIONs) for spatial guidance via external magnetic fields. A prerequisite for the use of SPION-loaded T cells in adoptive T cell therapies is that cell viability and functionality after nanoparticle loading are preserved. Here, we demonstrate a protocol to analyze cell viability and functionality such as activation, proliferation, cytokine release, and differentiation at a single cell level using flow cytometry.


Asunto(s)
Nanopartículas de Magnetita , Nanopartículas , Linfocitos T , Supervivencia Celular , Citocinas , Línea Celular Tumoral , Campos Magnéticos
17.
Front Immunol ; 14: 1101366, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36814927

RESUMEN

Introduction: The characterization of B. pertussis (Bp) antigen-specific CD4+ T cell cytokine responses should be included in the evaluation of immunogenicity of pertussis vaccines but is often hindered by the lack of standardized robust assays. Methods: To overcome this limitation, we developed a two-step assay comprising a short-term stimulation of fresh whole blood with Bp antigens and cryopreservation of the stimulated cells, followed later on by batch-wise intracellular cytokine analysis by flow cytometry. Blood samples collected from recently acellular (aP) vaccine boosted subjects with a whole-cell- or aP-primed background was incubated for 24 hrs with Pertussis toxin, Filamentous hemagglutinin or a Bp lysate (400µl per stimulation). Antigen-specific IFN-γ-, IL-4/IL-5/IL-13-, IL-17A/IL-17F- and/or IL-22-producing CD4+ T cells were quantified by flow cytometry to reveal Th1, Th2, and Th17-type responses, respectively. The frequencies of IFN-γ-producing CD8+ T cells were also analyzed. Results: We demonstrate high reproducibility of the Bp-specific whole blood intracellular staining assay. The results obtained after cryopreservation of the stimulated and fixed cells were very well correlated to those obtained without cryopreservation, an approach used in our previously published assay. Optimization resulted in high sensitivity thanks to very low non-specific backgrounds, with reliable detection of Bp antigen-specific Th1, Th2 and Th17-type CD4+ T cells, in the lowest range frequency of 0.01-0.03%. Bp antigen-specific IFN-γ+ CD8+ T lymphocytes were also detected. This test is easy to perform, analyse and interpret with the establishment of strict criteria defining Bp antigen responses. Discussion: Thus, this assay appears as a promising test for evaluation of Bp antigen-specific CD4+ T cells induced by current and next generation pertussis vaccines.


Asunto(s)
Bordetella pertussis , Tos Ferina , Humanos , Linfocitos T CD8-positivos , Células TH1 , Citometría de Flujo/métodos , Reproducibilidad de los Resultados , Vacuna contra la Tos Ferina , Citocinas
18.
J Immunotoxicol ; 20(1): 2176952, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36788724

RESUMEN

Cytotoxic T-lymphocytes (CTL) are a subset of T-cells that play a critical role in protecting against intracellular infections and cancer, and have the ability to identify and kill infected or transformed cells expressing non-self peptides associated with major histocompatibility (MHC) Class I molecules. Conversely, aberrant CTL activity can contribute to immune-related pathology under conditions of overwhelming infection or autoimmunity. Disease-modifying therapeutics can have unintended effects on CTL, and a growing number of therapeutics are intended to either suppress or enhance CTL or their functions. The susceptibility of CTL to unintended effects from common therapeutic modalities underscores the need for a better understanding of the impact that such therapies have on CTL function and the associated safety implications. While there are reliable ways of quantifying CTL, notably via flow cytometric analysis of specific CTL markers, it has been a greater challenge to implement fit-for-purpose methods measuring CTL function in the context of safety studies of therapeutics. This review focuses on methods for measuring CTL responses in the context of drug safety and pharmacology testing, with the goals of informing the reader about current approaches, evaluating their pros and cons, and providing perspectives on the utility of these approaches for safety evaluation.


Asunto(s)
Neoplasias , Linfocitos T Citotóxicos , Animales , Primates , Neoplasias/terapia , Citotoxicidad Inmunológica
19.
Front Immunol ; 14: 1100594, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36860850

RESUMEN

Introduction: While antibodies raised by SARS-CoV-2 mRNA vaccines have had compromised efficacy to prevent breakthrough infections due to both limited durability and spike sequence variation, the vaccines have remained highly protective against severe illness. This protection is mediated through cellular immunity, particularly CD8+ T cells, and lasts at least a few months. Although several studies have documented rapidly waning levels of vaccine-elicited antibodies, the kinetics of T cell responses have not been well defined. Methods: Interferon (IFN)-γ enzyme-linked immunosorbent spot (ELISpot) assay and intracellular cytokine staining (ICS) were utilized to assess cellular immune responses (in isolated CD8+ T cells or whole peripheral blood mononuclear cells, PBMCs) to pooled peptides spanning spike. ELISA was performed to quantitate serum antibodies against the spike receptor binding domain (RBD). Results: In two persons receiving primary vaccination, tightly serially evaluated frequencies of anti-spike CD8+ T cells using ELISpot assays revealed strikingly short-lived responses, peaking after about 10 days and becoming undetectable by about 20 days after each dose. This pattern was also observed in cross-sectional analyses of persons after the first and second doses during primary vaccination with mRNA vaccines. In contrast, cross-sectional analysis of COVID-19-recovered persons using the same assay showed persisting responses in most persons through 45 days after symptom onset. Cross-sectional analysis using IFN-γ ICS of PBMCs from persons 13 to 235 days after mRNA vaccination also demonstrated undetectable CD8+ T cells against spike soon after vaccination, and extended the observation to include CD4+ T cells. However, ICS analyses of the same PBMCs after culturing with the mRNA-1273 vaccine in vitro showed CD4+ and CD8+ T cell responses that were readily detectable in most persons out to 235 days after vaccination. Discussion: Overall, we find that detection of spike-targeted responses from mRNA vaccines using typical IFN-γ assays is remarkably transient, which may be a function of the mRNA vaccine platform and an intrinsic property of the spike protein as an immune target. However, robust memory, as demonstrated by capacity for rapid expansion of T cells responding to spike, is maintained at least several months after vaccination. This is consistent with the clinical observation of vaccine protection from severe illness lasting months. The level of such memory responsiveness required for clinical protection remains to be defined.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Vacuna nCoV-2019 mRNA-1273 , Estudios Transversales , Leucocitos Mononucleares , COVID-19/prevención & control , Vacunación , Citocinas , Anticuerpos Antivirales , Ensayo de Immunospot Ligado a Enzimas
20.
JHEP Rep ; 5(2): 100603, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36714793

RESUMEN

Background & Aims: Induction of potent, HBV-specific immune responses is crucial to control and finally cure HBV. The therapeutic hepatitis B vaccine TherVacB combines protein priming with a Modified Vaccinia virus Ankara (MVA)-vector boost to break immune tolerance in chronic HBV infection. Particulate protein and vector vaccine components, however, require a constant cooling chain for storage and transport, posing logistic and financial challenges to vaccine applications. We aimed to identify an optimal formulation to maintain stability and immunogenicity of the protein and vector components of the vaccine using a systematic approach. Methods: We used stabilizing amino acid (SAA)-based formulations to stabilize HBsAg and HBV core particles (HBcAg), and the MVA-vector. We then investigated the effect of lyophilization and short- and long-term high-temperature storage on their integrity. Immunogenicity and safety of the formulated vaccine was validated in HBV-naïve and adeno-associated virus (AAV)-HBV-infected mice. Results: In vitro analysis proved the vaccine's stability against thermal stress during lyophilization and the long-term stability of SAA-formulated HBsAg, HBcAg and MVA during thermal stress at 40 °C for 3 months and at 25 °C for 12 months. Vaccination of HBV-naïve and AAV-HBV-infected mice demonstrated that the stabilized vaccine was well tolerated and able to brake immune tolerance established in AAV-HBV mice as efficiently as vaccine components constantly stored at 4 °C/-80 °C. Even after long-term exposure to elevated temperatures, stabilized TherVacB induced high titre HBV-specific antibodies and strong CD8+ T-cell responses, resulting in anti-HBs seroconversion and strong suppression of the virus in HBV-replicating mice. Conclusion: SAA-formulation resulted in highly functional and thermostable HBsAg, HBcAg and MVA vaccine components. This will facilitate global vaccine application without the need for cooling chains and is important for the development of prophylactic as well as therapeutic vaccines supporting vaccination campaigns worldwide. Impact and implications: Therapeutic vaccination is a promising therapeutic option for chronic hepatitis B that may enable its cure. However, its application requires functional cooling chains during transport and storage that can hardly be guaranteed in many countries with high demand. In this study, the authors developed thermostable vaccine components that are well tolerated and that induce immune responses and control the virus in preclinical mouse models, even after long-term exposure to high surrounding temperatures. This will lower costs and ease application of a therapeutic vaccine and thus be beneficial for the many people affected by hepatitis B around the world.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda