Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Mol Ther ; 28(4): 1068-1077, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32101701

RESUMEN

Checkpoint-inhibiting antibodies elicit impressive clinical responses, but still face several issues. The current study evaluated whether DNA-based delivery can broaden the application of checkpoint inhibitors, specifically by pursuing cost-efficient in vivo production, facilitating combination therapies, and exploring administration routes that lower immune-related toxicity risks. We therefore optimized plasmid-encoded anti-CTLA-4 and anti-PD-1 antibodies, and studied their pharmacokinetics and pharmacodynamics when delivered alone and in combination via intramuscular or intratumoral electroporation in mice. Intramuscular electrotransfer of these DNA-based antibodies induced complete regressions in a subcutaneous MC38 tumor model, with plasma concentrations up to 4 and 14 µg/mL for anti-CTLA-4 and anti-PD-1 antibodies, respectively, and antibody detection for at least 6 months. Intratumoral antibody gene electrotransfer gave similar anti-tumor responses as the intramuscular approach. Antibody plasma levels, however, were up to 70-fold lower and substantially more transient, potentially improving biosafety of the expressed checkpoint inhibitors. Intratumoral delivery also generated a systemic anti-tumor response, illustrated by moderate abscopal effects and prolonged protection of cured mice against a tumor rechallenge. In conclusion, intramuscular and intratumoral DNA-based delivery of checkpoint inhibitors both enabled long-term anti-tumor responses despite distinct systemic antibody exposure, highlighting the potential of the tumor as delivery site for DNA-based therapeutics.


Asunto(s)
Anticuerpos Monoclonales/genética , Neoplasias del Colon/terapia , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Plásmidos/administración & dosificación , Animales , Antígeno CTLA-4/inmunología , Línea Celular Tumoral , Neoplasias del Colon/inmunología , Sinergismo Farmacológico , Femenino , Inhibidores de Puntos de Control Inmunológico/farmacología , Inyecciones Intralesiones , Inyecciones Intramusculares , Ratones , Plásmidos/genética , Receptor de Muerte Celular Programada 1/inmunología , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Pharmaceutics ; 15(4)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37111645

RESUMEN

DNA-based antibody therapy seeks to administer the encoding nucleotide sequence rather than the antibody protein. To further improve the in vivo monoclonal antibody (mAb) expression, a better understanding of what happens after the administration of the encoding plasmid DNA (pDNA) is required. This study reports the quantitative evaluation and localization of the administered pDNA over time and its association with corresponding mRNA levels and systemic protein concentrations. pDNA encoding the murine anti-HER2 4D5 mAb was administered to BALB/c mice via intramuscular injection followed by electroporation. Muscle biopsies and blood samples were taken at different time points (up to 3 months). In muscle, pDNA levels decreased 90% between 24 h and one week post treatment (p < 0.0001). In contrast, mRNA levels remained stable over time. The 4D5 antibody plasma concentrations reached peak levels at week two followed by a slow decrease (50% after 12 weeks, p < 0.0001). Evaluation of pDNA localization revealed that extranuclear pDNA was cleared fast, whereas the nuclear fraction remained relatively stable. This is in line with the observed mRNA and protein levels over time and indicates that only a minor fraction of the administered pDNA is ultimately responsible for the observed systemic mAb levels. In conclusion, this study demonstrates that durable expression is dependent on the nuclear uptake of the pDNA. Therefore, efforts to increase the protein levels upon pDNA-based gene therapy should focus on strategies to increase both cellular entry and migration of the pDNA into the nucleus. The currently applied methodology can be used to guide the design and evaluation of novel plasmid-based vectors or alternative delivery methods in order to achieve a robust and prolonged protein expression.

3.
Hum Gene Ther ; 32(19-20): 1200-1209, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34482757

RESUMEN

DNA-encoded delivery of antibodies presents a labor- and cost-effective alternative to conventional antibody therapeutics. This study aims to improve the potency and safety of this approach by evaluating various plasmid backbones and expression cassettes. In vitro, antibody levels consistently improved with decreasing sizes of backbone, ranging from conventional to minimal. In vivo, following intramuscular electrotransfer in mice, the correlation was less consistent. While the largest conventional plasmid (10.2 kb) gave the lowest monoclonal antibody (mAb) levels, a regular conventional plasmid (8.6 kb) demonstrated similar levels as a minimal Nanoplasmid (6.8 kb). A reduction in size beyond a standard conventional backbone thus did not improve mAb levels in vivo. Cassette modifications, such as swapping antibody chain order or use of two versus a single encoding plasmid, significantly increased antibody expression in vitro, but failed to translate in vivo. Conversely, a significant improvement in vivo but not in vitro was found with a set of muscle-specific promoters, of which a newly engineered variant gave roughly 1.5- to 2-fold higher plasma antibody concentrations than the ubiquitous CAG promoter. In conclusion, despite the limited translation between in vitro and in vivo, we identified various clinically relevant improvements to our DNA-based antibody platform, both in potency and biosafety.


Asunto(s)
Técnicas de Transferencia de Gen , Terapia Genética , Animales , ADN , Electroporación , Ratones , Plásmidos/genética , Regiones Promotoras Genéticas
4.
Vaccines (Basel) ; 8(1)2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31947643

RESUMEN

The importance of a balanced TH1/TH2 humoral immune response against the HIV-1 envelope protein (Env) for antibody-mediated HIV-1 control is increasingly recognized. However, there is no defined vaccination strategy to raise it. Since immune checkpoints are involved in the induction of adoptive immunity and their inhibitors (monoclonal antibodies) are licensed for cancer therapy, we investigated the effect of checkpoint blockade after HIV-1 genetic vaccination on enhancement and modulation of antiviral antibody responses. By intraperitoneal administration of checkpoint antibodies in mice we observed an induction of anti-drug antibodies which may interfere with immunomodulation by checkpoint inhibitors. Therefore, we blocked immune checkpoints locally by co-electroporation of DNA vaccines encoding the active soluble ectodomains of programmed cell death protein-1 (PD-1) or its ligand (PD-L1), respectively. Plasmid-encoded immune checkpoints did not elicit a detectable antibody response, suggesting no interference with their immunomodulatory effects. Co-electroporation of a HIV-1 DNA vaccine formulation with soluble PD-L1 ectodomain increased HIV-1 Env-specific TH1 CD4 T cell and IgG2a antibody responses. The overall antibody response was hereby shifted towards a more TH1/TH2 balanced subtype pattern. These findings indicate that co-electroporation of soluble checkpoint ectodomains together with DNA-based vaccines has modulatory effects on vaccine-induced immune responses that could improve vaccine efficacies.

5.
Vaccines (Basel) ; 8(4)2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33019546

RESUMEN

Due to the low efficacy and the need for seasonal adaptation of currently licensed influenza A vaccines, the importance of alternative vaccination strategies is increasingly recognized. Considering that DNA vaccines can be rapidly manufactured and readily adapted with novel antigen sequences, genetic vaccination is a promising immunization platform. However, the applicability of different genetic adjuvants to this approach still represents a complex challenge. Immune checkpoints are a class of molecules involved in adaptive immune responses and germinal center reactions. In this study, we immunized mice by intramuscular electroporation with a DNA-vaccine encoding hemagglutinin (HA) and nucleoprotein (NP) of the influenza A virus. The DNA-vaccine was applied either alone or in combination with genetic adjuvants encoding the soluble ectodomains of programmed cell death protein-1 (sPD-1) or its ligand (sPD-L1). Co-administration of genetic checkpoint adjuvants did not significantly alter immune responses against NP. In contrast, sPD-1 co-electroporation elevated HA-specific CD4+ T cell responses, decreased regulatory CD4+ T cell pools, and modulated the IgG2a-biased HA antibody pattern towards an isotype-balanced IgG response with a trend to higher influenza neutralization in vitro. Taken together, our data demonstrate that a genetic DNA-adjuvant encoding soluble ectodomains of sPD-1 was able to modulate immune responses induced by a co-administered influenza DNA vaccine.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda