Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Fish Shellfish Immunol ; 45(2): 231-8, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25913576

RESUMEN

Calmodulin (CaM) is an essential second messenger protein that transduces calcium signals by binding calcium ions (Ca(2+)) and modulating its interactions with various target proteins. In contrast to vertebrates, where CaM is well established as a cofactor for Ca(2+)-dependent physiological and cellular functions including host defense, there is a paucity of understanding on CaM in invertebrates (such as echinoderms) in response to immune challenge or microbial infections. In this study, we obtained and described the gene sequence of CaM from the tropical sea cucumber Stichopus monotuberculatus, a promising yet poorly characterized aquacultural species. mRNA expression of StmCaM could be detected in the intestine and coelomic fluid after Vibrio alginolyticus injection. Transcriptional and translational expression of StmCaM was inducible in nature, as evidenced by the expression patterns in primary coelomocytes following Vibrio challenge. This response could be mimicked by the Vibrio cells membrane components or lipopolysaccharides (LPS), and blocked by co-treatment of the LPS-neutralizing agent polymyxin B (PMB). Furthermore, inhibition of CaM activity by incubation with its inhibitor trifluoroperazine dihydrochloride (TFP) blunted the production of Vibrio-induced nitric oxide (NO) and augmented the survival of invading Vibrio in coelomocytes. Collectively, our study here supplied the first evidence for echinoderm CaM participation in innate immunity, and provided a functional link between CaM expression and antibacterial NO production in sea cucumber.


Asunto(s)
Calmodulina/genética , Inmunidad Innata , Stichopus/genética , Stichopus/inmunología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Calmodulina/metabolismo , Clonación Molecular , ADN Complementario/genética , ADN Complementario/metabolismo , Datos de Secuencia Molecular , Óxido Nítrico/metabolismo , Especificidad de Órganos , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Alineación de Secuencia , Stichopus/metabolismo , Vibrio alginolyticus/fisiología
2.
Int J Biol Macromol ; 275(Pt 2): 133737, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986992

RESUMEN

Pattern recognition receptors (PRRs) mediate the innate immune responses and play a crucial role in host defense against pathogen infections. Apextrin C-terminal (ApeC)-containing proteins (ACPs), a newly discovered class of PRRs specific to invertebrates, recognize pathogens through their ApeC domain as intracellular or extracellular effectors. However, the other immunological functions of ACPs remain unclear. In this study, a membrane-localized ACP receptor was identified in the sea cucumber Apostichopus japonicus (denoted as AjACP1). The ApeC domain of AjACP1, which was located outside of its cell membrane, exhibited the capability to recognize and aggregate Vibrio splendidus. AjACP1 was upregulated upon V. splendidus infection, internalizing into the cytoplasm of coelomocytes. AjACP1 overexpression enhanced the phagocytic activity of coelomocytes against V. splendidus, while knockdown of AjACP1 by RNA interfere inhibited coelomocyte endocytosis. Inhibitor experiments indicated that AjACP1 regulated coelomocyte phagocytosis through the actin-dependent endocytic signaling pathway. Further investigation revealed that AjACP1 interacted with the subunit of the actin-related protein 2/3 complex ARPC2, promoting F-actin polymerization and cytoskeletal rearrangement and thereby affecting the coelomocyte phagocytosis of V. splendidus via the actin-dependent endocytic signaling pathway. As a novel membrane PRR, AjACP1 mediates the recognition and phagocytic activity of coelomocytes against V. splendidus through the AjACP1-ARPC2-F-actin polymerization and cytoskeletal rearrangement pathway.

3.
Dev Comp Immunol ; 78: 14-25, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28916267

RESUMEN

In 1983 large numbers of the sea urchin Diadema antillarum unexplainably began showing signs of illness and dying in the Caribbean, and over the next year they came close to extinction, making it one of the worst mass mortality events on record. Present evidence suggests a water-borne pathogen as the etiological agent. Decades later Diadema densities remain low, and its near extinction has been a major factor in transforming living coral reefs in the Caribbean to barren algae-covered rock. In the ensuing decades, no solid explanation has been found to the questions: what killed Diadema; why did Diadema succumb while other species of urchins on the same reefs did not; and why has Diadema still not recovered? A recent hypothesis posited by our lab as to Diadema's vulnerability was directed at possible compromised immunity in Diadema, and experimental results found a significantly impaired humoral response to a key component of gram-negative bacteria. Here we use flow cytometry to examine the cellular arm of invertebrate immunity. We performed cytotoxicity and phagocytosis assays as a measure of the cellular immune responses of cells from Diadema and two other species of sea urchins not affected by the die-off. Despite our previous findings of in impaired humoral response, our study found no apparent difference in the cellular phagocytic response of Diadema compared to the other urchin species studied.


Asunto(s)
Bacterias Gramnegativas/fisiología , Infecciones por Bacterias Gramnegativas/inmunología , Fagocitosis , Erizos de Mar/inmunología , Animales , Región del Caribe , Separación Celular , Células Cultivadas , Citotoxicidad Inmunológica , Susceptibilidad a Enfermedades , Ecosistema , Citometría de Flujo , Inmunidad Celular , Inmunidad Humoral , Especificidad de la Especie
4.
Front Immunol ; 8: 1249, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29051762

RESUMEN

Detection of pathogens by all living organisms is the primary step needed to implement a coherent and efficient immune response. This implies a mediation by different soluble and/or membrane-anchored proteins related to innate immune receptors called PRRs (pattern-recognition receptors) to trigger immune signaling pathways. In most invertebrates, their roles have been inferred by analogy to those already characterized in vertebrate homologs. Despite the induction of their gene expression upon challenge and the presence of structural domains associated with the detection of pathogen-associated molecular patterns in their sequence, their exact role in the induction of immune response and their binding capacity still remain to be demonstrated. To this purpose, we developed a fast interactome approach, usable on any host-pathogen couple, to identify soluble proteins capable of directly or indirectly detecting the presence of pathogens. To investigate the molecular basis of immune recognition specificity, different pathogens (Gram-positive bacterium, Micrococcus luteus; Gram-negative, Escherichia coli; yeast, Saccharomyces cerevisiae; and metazoan parasites, Echinostoma caproni or Schistosoma mansoni) were exposed to hemocyte-free hemolymph from the gastropod Biomphalaria glabrata. Twenty-three different proteins bound to pathogens were identified and grouped into three different categories based on their primary function. Each pathogen was recognized by a specific but overlapping set of circulating proteins in mollusk's hemolymph. While known PRRs such as C-type lectins were identified, other proteins not known to be primarily involved in pathogen recognition were found, including actin, tubulin, collagen, and hemoglobin. Confocal microscopy and specific fluorescent labeling revealed that extracellular actin present in snail hemolymph was able to bind to yeasts and induce their clotting, a preliminary step for their elimination by the snail immune system. Aerolysin-like proteins (named biomphalysins) were the only ones involved in the recognition of all the five pathogens tested, suggesting a sentinel role of these horizontally acquired toxins. These findings highlight the diversity and complexity of a highly specific innate immune sensing system. It paves the way for the use of such approach on a wide range of host-pathogen systems to provide new insights into the specificity and diversity of immune recognition by innate immune systems.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda