Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 3.574
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(12): e2221651120, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36913577

RESUMEN

Nanostructured materials can display unique physical properties and are of particular interest for their new functionalities. Epitaxial growth is a promising approach for the controlled synthesis of nanostructures with desired structures and crystallinity. SrCoOx is a particularly intriguing material owing to a topotactic phase transition between an antiferromagnetic insulating brownmillerite SrCoO2.5 (BM-SCO) phase and a ferromagnetic metallic perovskite SrCoO3-δ (P-SCO) phase depending on the oxygen concentration. Here, we present the formation and control of epitaxial BM-SCO nanostructures by substrate-induced anisotropic strain. Perovskite substrates with a (110)-orientation and which allow for compressive strain result in the creation of BM-SCO nanobars, while (111)-oriented substrates give rise to the formation of BM-SCO nanoislands. We have found that substrate-induced anisotropic strain coupled with the orientation of crystalline domains determines the shape and facet of the nanostructures, while their size can be tuned by the degree of strain. Moreover, the nanostructures can be transformed between antiferromagnetic BM-SCO and ferromagnetic P-SCO via ionic liquid gating. Thus, this study provides insights into the design of epitaxial nanostructures whose structure and physical properties can be readily controlled.

2.
Bioessays ; 45(8): e2200242, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37338306

RESUMEN

DNA extraction, playing an irreplaceable role in molecular biology as it is an essential step prior to various downstream biological analyses. Thus, the accuracy and reliability of downstream research outcomes depend largely on upstream DNA extraction methodology. However, with the advancement of downstream DNA detection techniques, the development of corresponding DNA extraction methods is lagging behind. The most innovative DNA extraction techniques are silica- or magnetic-based. Recent studies have demonstrated that plant fiber-based adsorbents (PF-BAs) have stronger DNA capturing ability than classic materials. Moreover, magnetic ionic liquid (MIL)-based DNA extraction has gathered attention lately, and extrachromosomal circular DNA (eccDNA), cell-free DNA (cfDNA), and microbial community DNA are current research hotspots. These require specific extraction methods, along with constant improvements in the way they are used. This review discusses the significance as well as the direction of innovation of DNA extraction methods to try to provide valuable references including current status and trends for DNA extraction.


Asunto(s)
ADN , Líquidos Iónicos , Reproducibilidad de los Resultados
3.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35197281

RESUMEN

Apomorphine, a dopamine agonist, is a highly effective therapeutic to prevent intermittent off episodes in advanced Parkinson's disease. However, its short systemic half-life necessitates three injections per day. Such a frequent dosing regimen imposes a significant compliance challenge, especially given the nature of the disease. Here, we report a deep eutectic-based formulation that slows the release of apomorphine after subcutaneous injection and extends its pharmacokinetics to convert the current three-injections-a-day therapy into an every-other-day therapy. The formulation comprises a homogeneous mixture of a deep eutectic solvent choline-geranate, a cosolvent n-methyl-pyrrolidone, a stabilizer polyethylene glycol, and water, which spontaneously emulsifies into a microemulsion upon injection in the subcutaneous space, thereby entrapping apomorphine and significantly slowing its release. Ex vivo studies with gels and rat skin demonstrate this self-emulsification process as the mechanism of action for sustained release. In vivo pharmacokinetics studies in rats and pigs further confirmed the extended release and improvement over the clinical comparator Apokyn. In vivo pharmacokinetics, supported by a pharmacokinetic simulation, demonstrate that the deep eutectic formulation reported here allows the maintenance of the therapeutic drug concentration in plasma in humans with a dosing regimen of approximately three injections per week compared to the current clinical practice of three injections per day.


Asunto(s)
Antiparkinsonianos/administración & dosificación , Apomorfina/administración & dosificación , Preparaciones de Acción Retardada , Implantes de Medicamentos , Emulsiones , Enfermedad de Parkinson/tratamiento farmacológico , Tejido Subcutáneo , Animales , Antiparkinsonianos/farmacocinética , Antiparkinsonianos/uso terapéutico , Apomorfina/farmacocinética , Apomorfina/uso terapéutico , Área Bajo la Curva , Semivida , Humanos , Ratas , Porcinos
4.
Nano Lett ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836517

RESUMEN

As a potential alternative to antibiotics, hyperbranched poly(ionic liquid)s (HPILs) have demonstrated significant potential in combating bacterial biofilms. However, their high cation density poses a high risk of toxicity, greatly limiting their in vivo applications. In this study, we constructed a biocompatible HPIL (HPIL-Glu) from a hyperbranched polyurea core with modified terminals featuring charge-convertible ionic liquids. These ionic liquid moieties consist of an ammonium-based cation and a gluconate (Glu) organic counter. HPIL-Glu could form a homogeneous nanoassembly in water and exhibited a pH-responsive charge conversion property. Under neutral conditions, Glu shielded the positively charged surface, minimizing the toxicity. In a mildly acidic environment, Glu protonation exposes cationic moieties to biofilm eradication. Comprehensive antimicrobial assessments demonstrate that HPIL-Glu effectively kills bacteria and promotes the healing of bacteria-infected chronic wounds. Furthermore, prolonged exposure to HPIL-Glu does not induce antimicrobial resistance.

5.
Nano Lett ; 24(23): 7040-7047, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38804573

RESUMEN

Flexible pressure sensors with a broad range and high sensitivity are greatly desired yet challenging to build. Herein, we have successfully fabricated a pressure-temperature dual sensor via an ionic assisted charge enhancement strategy. Benefiting from the immobilization effect for [EMIM+] [TFSI-] ion pairs and charge transfer between ionic liquid (IL) and HFMO (H10Fe3Mo21O51), the formed IL-HFMO-TPU pressure sensor shows a high sensitivity of 25.35 kPa-1 and broad sensing range (∼10 MPa), respectively. Furthermore, the sensor device exhibits high durability and stability (5000 cycles@1 MPa). The IL-HFMO-TPU sensor also shows the merit of good temperature sensing properties. Attributed to these superior properties, the proposed sensor device could detect pressure in an ultrawide sensing range (from Pa to MPa), including breathe and biophysical signal monitoring etc. The proposed ionic assisted enhancement approach is a generic strategy for constructing high performance flexible pressure-temperature dual sensor.

6.
Nano Lett ; 24(43): 13607-13614, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39432100

RESUMEN

Solvent-free oxidative desulfurization can avoid environmental pollution caused by organic solvents as well as prevent loss of fuel during the oil-water separation process. In this work, first, hydrophilic ionic liquid gel microspheres with [BMIM]BF4 and PHEMA as the dispersion medium and gel network, respectively, were successfully prepared by using mesoporous silica microspheres as a supporting skeleton capable of stabilizing the gel through an anchoring effect, and then the catalyst [BMIM]PW and oxidant H2O2 were incorporated into the gel microspheres to construct a liquid compartment microreactor for deep desulfurization. The prepared microreactor (SiO2@[BMIM]PW/ILG-microspheres) has excellent extraction-catalytic capacity and exhibited ∼100% desulfurization ratio for a model oil of n-heptane with 500 ppm of DBT at 60 °C for 3 h without solvents. Additionally, the prepared microreactor can absorb hydrophilic desulfurization products after the reaction and has advantages of reusability and simple recovery without polluting the fuel oil, which is beneficial for potential petroleum industrial application.

7.
Nano Lett ; 2024 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-39487816

RESUMEN

Organic material polyimides (PI) are widely used in secondary batteries due to green safety, renewables, and structural designability. However, problems such as low conductivity and structural damage of polyimide electrode materials seriously limit its practical application. Herein, an innovative in situ modification method with CaCl2 is used to construct pure Al metal-based artificial SEI film on the surface of PI to improve the electrochemical performance of organic dual-ion batteries. Compared with the pure PI material, it has a noticeable improvement in cycle performance. Importantly, characterization results of the physicochemical analysis show that the pure Al metal-based artificial SEI film formed in situ on the surface of the PI material plays a key role in isolating and improving the electrochemical performance of PI anode materials. The innovative approach offers an efficacious strategy to construct pure metal-based artificial SEI films for the practical implementation of organic batteries.

8.
Nano Lett ; 24(4): 1351-1359, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38251855

RESUMEN

The anomalous Hall effect (AHE) is one of the most fascinating transport properties in condensed matter physics. However, the AHE magnitude, which mainly depends on net spin polarization and band topology, is generally small in oxides and thus limits potential applications. Here, we demonstrate a giant enhancement of AHE in a LaCoO3-induced 5d itinerant ferromagnet SrIrO3 by hydrogenation. The anomalous Hall resistivity and anomalous Hall angle, which are two of the most critical parameters in AHE-based devices, are found to increase to 62.2 µΩ·cm and 3%, respectively, showing an unprecedentedly large enhancement ratio of ∼10000%. Theoretical analysis suggests the key roles of Berry curvature in enhancing AHE. Furthermore, the hydrogenation concomitantly induces the significant elevation of Curie temperature from 75 to 160 K and 40-fold reinforcement of coercivity. Such giant regulation and very large AHE magnitude observed in SrIrO3 could pave the path for 5d oxide devices.

9.
Nano Lett ; 24(8): 2520-2528, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38359360

RESUMEN

Enzymatic catalysis presents an eco-friendly, energy-efficient method for lignin degradation. However, challenges arise due to the inherent incompatibility between enzymes and native lignin. In this work, we introduce a supramolecular catalyst composed of fluorenyl-modified amino acids and Cu2+, designed based on the aromatic stacking of the fluorenyl group, which can operate in ionic liquid environments suitable for the dissolution of native lignin. Amino acids and halide anions of ionic liquids shape the copper site's coordination sphere, showcasing remarkable catechol oxidase-mimetic activity. The catalyst exhibits thermophilic property, and maintains oxidative activity up to 75 °C, which allows the catalyzed degradation of the as-dissolved native lignin with high efficiency even without assistance of the electron mediator. In contrast, at this condition, the native copper-dependent oxidase completely lost its activity. This catalyst with superior stability and activity offer promise for sustainable lignin valorization through biocatalytic routes compatible with ionic liquid pretreatment, addressing limitations in native enzymes for industrially relevant conditions.


Asunto(s)
Líquidos Iónicos , Líquidos Iónicos/química , Lignina/química , Cobre , Oxidorreductasas , Catálisis , Aminoácidos
10.
Nano Lett ; 24(37): 11599-11606, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39229905

RESUMEN

2D layered metal halide perovskites (MHPs) are a potential material for fabricating self-powered photodetectors (PDs). Nevertheless, 2D MHPs produced via solution techniques frequently exhibit multiple quantum wells, leading to notable degradation in the device performance. Besides, the wide band gap in 2D perovskites limits their potential for broad-band photodetection. Integrating narrow-band gap materials with perovskite matrices is a viable strategy for broad-band PDs. In this study, the use of methylamine acetate (MAAc) as an additive in 2D perovskite precursors can effectively control the width of the quantum wells (QWs). The amount of MAAc greatly affects the phase purity. Subsequently, PbSe QDs were embedded into the 2D perovskite matrix with a broadened absorption spectrum and no negative effects on ferroelectric properties. PM6:Y6 was combined with the hybrid ferroelectric perovskite films to create a self-powered and broad-band PD with enhanced performance due to a ferro-pyro-phototronic effect, reaching a peak responsivity of 2.4 A W-1 at 940 nm.

11.
Nano Lett ; 24(43): 13796-13804, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39401413

RESUMEN

Aqueous zinc-bromine redox systems possess multiple merits for scalable energy storage. Applying bromine complexing agents shows effectiveness in alleviating the key challenge of ubiquitous crossover of reactive liquid bromine species, while the underlying microscopic mechanism requires a deep understanding to engineer better complexing electrochemistry. Herein, taking a series of quaternary ammonium ionic liquids (methyl4NBr, ethyl4NBr, propyl4NBr, and butyl4NBr) as a redox mediator model, operando optical monitoring was used to visualize the dynamic electrochemical behaviors, unveiling the ionic liquid-mediated polybromide electrochemistry with a distinct chain length effect. A longer chain length possesses a stronger electrostatic interaction in the complexing product to effectively capture Br2. Operando results reveal the liquid nature of the reversibly electrogenerated polybromide microdroplets in the butyl4NBr-added redox system, which promoted the Br3-/Br- conversion kinetics and alleviated the self-discharge for improved battery performance. This work provides direct evidence and new insights into complexing electrochemistry for advancing Zn-Br2 batteries.

12.
Small ; 20(34): e2311353, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38573945

RESUMEN

Atomic force microscope (AFM) videos reveal the near-surface nanostructure and dynamics of the ionic liquids (ILs) 1-butyl-3-methylimidazolium dicyanamide (BMIM DCA) and 1-hexyl-3-methylimidazolium dicyanamide (HMIM DCA) above highly oriented pyrolytic graphite (HOPG) electrodes as a function of surface potential. Molecular dynamics (MD) simulations reveal the molecular-level composition of the nanostructures. In combination, AFM and MD show that the near-surface aggregates form via solvophobic association of the cation alkyl chains at the electrode interface. The diffusion coefficients of interfacial nanostructures are ≈0.01 nm2 s-1 and vary with the cation alkyl chain length and the surface potential. For each IL, the nanostructure diffusion coefficients are similar at open-circuit potential (OCP) and OCP + 1V, but BMIM DCA moves about twice as fast as HMIM DCA. At negative potentials, the diffusion coefficient decreases for BMIM DCA and increases for HMIM DCA. When the surface potential is switched from negative to positive, a sudden change in the direction of the nanostructure motion is observed for both BMIM DCA and HMIM DCA. No transient dynamics are noted following other potential jumps. This study provides a new fundamental understanding regarding the dynamics of electrochemically stable ILs at electrodes vital for the rational development of IL-based electrochemical devices.

13.
Small ; 20(7): e2306011, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37806754

RESUMEN

Video-rate atomic force microscopy (AFM) is used to study the near-surface nanostructure dynamics of the ionic liquid ethylammonium nitrate (EAN) at a highly oriented pyrolytic graphite (HOPG) electrode as a function of potential in real-time for the first time. The effects of varying the surface potential and adding 10 wt% water on the nanostructure diffusion coefficient are probed. For both EAN and the 90 wt% EAN-water mixture, disk-like features ≈9 nm in diameter and 1 nm in height form above the Stern layer at all potentials. The nanostructure diffusion coefficient increases with potential (from OCP -0.5 V to OCP +0.5 V) and with added water. Nanostructure dynamics depends on both the magnitude and direction of the potential change. Upon switching the potential from OCP -0.5 V to OCP +0.5 V, a substantial increase in the diffusion coefficients is observed, likely due to the absence of solvophobic interactions between the nitrate (NO3 - ) anions and the ethylammonium (EA+ ) cations in the near-surface region. When the potential is reversed, EA+ is attracted to the Stern layer to replace NO3 - , but its movement is hindered by solvophobic attractions. The outcomes will aid applications, including electrochemical devices, catalysts, and lubricants.

14.
Small ; : e2403109, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105361

RESUMEN

Video-rate atomic force microscopy (AFM) is used to record the near-surface nanostructure and dynamics of one pure ionic liquid (IL), 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate (HMIM FAP), and a locally-concentrated IL comprising HMIM FAP with the low viscosity diluent 1,1,2,2-tetrafluoroethyl 2,2,2-trifluoroethyl ether (TFTFE), on highly oriented pyrolytic graphite (HOPG) and Au(111) electrodes as a function of potential. Over the potential range measured (open-circuit potential ± 1 V), different near-surface nanostructures are observed. For pure HMIM FAP, globular aggregates align in rows on HOPG, whereas elongated and worm-like nanostructures form on Au(111). For 2:1 (wt:wt) HMIM FAP:TFTFE, larger and less defined diluent swollen IL aggregates are present on both electrodes. Long-lived near-surface nanostructures for HMIM FAP and the 2:1 (wt:wt) HMIM FAP:TFTFE persist on both electrodes. 2:1 (wt:wt) HMIM FAP:TFTFE mixture diffuses more rapidly than pure HMIM FAP on both electrodes with obviously higher diffusion coefficients on HOPG than on Au(111) due to weaker electrostatic and solvophobic interactions between near-surface aggregates and Stern layer ions. These outcomes provide valuable insights for a wide range of IL applications in interface sciences, including electrolytes, catalysts, lubricants, and sensors.

15.
Small ; 20(2): e2305668, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37670219

RESUMEN

A liquescent bis(malononitriledithiolato)nickel(III) complex with a bis(methoxyethyl)imidazolium cation, 1[Ni(mnt)2 ], exhibits three-stage thermochromic modulation of transparency/absorption in the short-wave-infrared (SWIR) region (1000-2500 nm), driven by associated structural changes. Upon heating, the electronic spectra of 1[Ni(mnt)2 ] in the SWIR region shift to shorter wavelengths accompanying with the solid-liquid phase transition at 76 °C. Further heating to over 109 °C induces a second transition of the electronic spectra, characterized by a blue-shift of the SWIR absorption in the liquid phase. The results of temperature-dependent electronic spectra and magnetic susceptibility indicated that the thermochromic changes can be attributed to the two-step dissociation of the associated structures of [Ni(mnt)2 ]- , occurring during the solid-liquid phase transition and the shift of dimer-monomer equilibrium in the liquid state. These changes can be visualized using an SWIR imaging camera under appropriate SWIR lights.

16.
Small ; 20(37): e2311283, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38716925

RESUMEN

Bio-inspired in nature, using nanomaterials to fabricate the vivid bionic structural color and intelligent stimulus responsive interface as smart skin or optical devices are widely concerned and remain a huge challenge. Here, the bionic flexible film is designed and fabricated with chiral nanointerface and tunable hydrophilic-hydrophobic by the ultrasonic energy perturbation strategy and crosslinking of the cellulose nanocrystals (CNC). An intelligent nanointerface with adjustable hydrophilic and hydrophobic properties is constructed by the supramolecular assembly using a smart ionic liquid molecule. The bionic flexible film possessed the variable hydrophilic-hydrophobic, stimulus responsive, and robust iridescent structural color. The reflective wavelength and the helical pitch of the film can be easily modulated through the ultrasonic energy perturbation strategy. The bionic flexible film by covalent cross-linking has excellent robustness, good elasticity and flexibility. The tunable brilliant structural color of the chiral nanointerface is attributed to the surface charge change of the CNC photonic crystal, which is disturbed by ultrasonic energy perturbation. The bionic flexible film with tunable structure color has intelligent hydrophilic and hydrophobic stimulus response properties. The chiral bionic materials have potential applications in smart skin, optical devices, bionic materials, robots, anti-counterfeiting, colorful displays, and stealth materials.

17.
Small ; 20(43): e2403174, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39031672

RESUMEN

Porosity in bulky solvents can be created by the methods of dispersing and dissolving porous hosts or by their chemical adornment. And the ensuing liquids with cavities offer requisite high gas uptakes. Intriguingly, metal-organic cages (MOCs) as discrete nanoporous hosts have been utilized recently as soluble entities to obtain a series of interesting type II porous liquids (PLs). Yet, factors affecting the fabrication of type II PLs have not been disclosed. Herein, three metallocages (NUT-101, ZrT-1-NH2, and ZrT-1) with the same zirconocene nodes but different organic ligands are chosen as porous hosts and a polyethylene-glycol (PEG) linked bis-imidazolium based IL, IL(NTf2), is used as a bulky solvent. It is revealed for the first time that the generation of type II PL depends upon the flexibility of MOCs and the interaction between MOCs and solvent molecules. The maximum solubility is observed with NUT-101 (5%) in IL(NTf2) while ZrT-1-NH2 and ZrT-1 remain least soluble (0.5% and 0.2%). As a result, PL-NUT-101-5% with most intrinsic cavities shows higher CO2 uptake (0.576 mmol g-1) than PL-ZrT-1-NH2-0.5% and PL-ZrT-1-0.2% as well as those reported type II PLs.

18.
Small ; 20(43): e2303315, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39058219

RESUMEN

Metal-organic framework (MOF) composite materials containing ionic liquids (ILs) have been proposed for a range of potential applications, including gas separation, ion conduction, and hybrid glass formation. Here, an order transition in an IL@MOF composite is discovered using CuBTC (copper benzene-1,3,5-tricarboxylate) and [EMIM][TFSI] (1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide). This transition - absent for the bare MOF or IL - provides an extended super-cooling range and latent heat at a capacity similar to that of soft paraffins, in the temperature range of ≈220 °C. Structural analysis and in situ monitoring indicate an electrostatic interaction between the IL molecules and the Cu paddle-wheels, leading to a decrease in pore symmetry at low temperature. These interactions are reversibly released above the transition temperature, which reflects in a volume expansion of the MOF-IL composite.

19.
Small ; 20(40): e2402472, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38813745

RESUMEN

Despite significant advancements, current self-healing materials often suffer from a compromise between mechanical robustness and functional performance, particularly in terms of conductivity and responsiveness to environmental stimuli. Addressing this issue, the research introduces a self-healable and conductive copolymer, poly(ionic liquid-co-acrylic acid) (PIL-co-PAA), synthesized through free radical polymerization, and further optimized by incorporating thermoplastic polyurethane (TPU). This combination leverages the unique properties of each component, especially ion-dipole interactions and hydrogen bonds, resulting in a material that exhibits exceptional self-healing abilities and demonstrates enhanced mechanical properties and electrical conductivity. Moreover, the PIL-co-PAA/TPU films showcase alkaline-responsive behavior, a feature that broadens their applicability in dynamic environments. Through systematic characterization, including thermogravimetric analysis, tensile testing, and electrical properties measurements, the mechanisms behind the improved performance and functionality of these films are elucidated. The conductivities and ultimate tensile strength (σuts) of the PIL-co-PAA/TPU films regain 80% under 8 h healing process. To extend the applications for wearable devices, the self-healing properties of commercial cotton fabrics coated with the self-healable PIL-co-PAA are also investigated, demonstrating both self-healing and electrical properties. This study advances the understanding of self-healable conductive polymers and opens new avenues for their application in wearable technology.

20.
Small ; 20(28): e2308637, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38327152

RESUMEN

Liquid aerosols are ubiquitous in nature, and several tools exist to quantify their physicochemical properties. As a measurement science technique, electrochemistry has not played a large role in aerosol analysis because electrochemistry in air is rather difficult. Here, a remarkably simple method is demonstrated to capture and electroanalyze single liquid aerosol particles with radii on the order of single micrometers. An electrochemical cell is constructed by a microwire (cylindrical working electrode) traversing a film of ionic liquid (1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide) that is suspended within a wire loop (reference/counter electrode). An ionic liquid is chosen because the low vapor pressure preserves the film over weeks, vastly improving suspended film electroanalysis. The resultant high surface area allows the suspended ionic liquid cell to act as an aerosol net. Given the hydrophobic nature of the ionic liquid, aqueous aerosol particles do not coalesce into the film. When the liquid aerosols collide with the sufficiently biased microwire (creating a complex boundary: aerosol|wire|ionic liquid|air), the electrochemistry within a single liquid aerosol particle can be interrogated in real-time. The ability to achieve liquid aerosol size distributions for aerosols over 1 µm in radius is demonstrated.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda