Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 3.634
Filtrar
Más filtros

Publication year range
1.
Cell ; 185(2): 328-344.e26, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35063074

RESUMEN

Locomotion is a complex behavior required for animal survival. Vertebrate locomotion depends on spinal interneurons termed the central pattern generator (CPG), which generates activity responsible for the alternation of flexor and extensor muscles and the left and right side of the body. It is unknown whether multiple or a single neuronal type is responsible for the control of mammalian locomotion. Here, we show that ventral spinocerebellar tract neurons (VSCTs) drive generation and maintenance of locomotor behavior in neonatal and adult mice. Using mouse genetics, physiological, anatomical, and behavioral assays, we demonstrate that VSCTs exhibit rhythmogenic properties and neuronal circuit connectivity consistent with their essential role in the locomotor CPG. Importantly, optogenetic activation and chemogenetic silencing reveals that VSCTs are necessary and sufficient for locomotion. These findings identify VSCTs as critical components for mammalian locomotion and provide a paradigm shift in our understanding of neural control of complex behaviors.


Asunto(s)
Locomoción/fisiología , Mamíferos/fisiología , Neuronas Motoras/citología , Tractos Espinocerebelares/citología , Animales , Axones/fisiología , Fenómenos Electrofisiológicos , Uniones Comunicantes/metabolismo , Silenciador del Gen , Ácido Glutámico/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/metabolismo , Interneuronas/fisiología , Vértebras Lumbares/metabolismo , Ratones , Propiocepción , Natación , Sinapsis/fisiología , Factores de Transcripción/metabolismo
2.
Cell ; 178(2): 374-384.e15, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31299201

RESUMEN

Multicellular lifestyle requires cell-cell connections. In multicellular cyanobacteria, septal junctions enable molecular exchange between sister cells and are required for cellular differentiation. The structure of septal junctions is poorly understood, and it is unknown whether they are capable of controlling intercellular communication. Here, we resolved the in situ architecture of septal junctions by electron cryotomography of cryo-focused ion beam-milled cyanobacterial filaments. Septal junctions consisted of a tube traversing the septal peptidoglycan. Each tube end comprised a FraD-containing plug, which was covered by a cytoplasmic cap. Fluorescence recovery after photobleaching showed that intercellular communication was blocked upon stress. Gating was accompanied by a reversible conformational change of the septal junction cap. We provide the mechanistic framework for a cell junction that predates eukaryotic gap junctions by a billion years. The conservation of a gated dynamic mechanism across different domains of life emphasizes the importance of controlling molecular exchange in multicellular organisms.


Asunto(s)
Uniones Comunicantes/metabolismo , Anabaena/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbonil Cianuro m-Clorofenil Hidrazona/análogos & derivados , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Comunicación Celular/efectos de los fármacos , Microscopía por Crioelectrón , Uniones Comunicantes/química , Uniones Comunicantes/ultraestructura , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutagénesis
3.
Cell ; 173(3): 776-791.e17, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29576449

RESUMEN

Transformation from morula to blastocyst is a defining event of preimplantation embryo development. During this transition, the embryo must establish a paracellular permeability barrier to enable expansion of the blastocyst cavity. Here, using live imaging of mouse embryos, we reveal an actin-zippering mechanism driving this embryo sealing. Preceding blastocyst stage, a cortical F-actin ring assembles at the apical pole of the embryo's outer cells. The ring structure forms when cortical actin flows encounter a network of polar microtubules that exclude F-actin. Unlike stereotypical actin rings, the actin rings of the mouse embryo are not contractile, but instead, they expand to the cell-cell junctions. Here, they couple to the junctions by recruiting and stabilizing adherens and tight junction components. Coupling of the actin rings triggers localized myosin II accumulation, and it initiates a tension-dependent zippering mechanism along the junctions that is required to seal the embryo for blastocyst formation.


Asunto(s)
Actinas/química , Blastocisto/metabolismo , Microtúbulos/metabolismo , Miosina Tipo II/química , Animales , Comunicación Celular , Proteínas del Citoesqueleto/química , Embrión de Mamíferos , Desarrollo Embrionario , Femenino , Proteínas Fluorescentes Verdes , Imagenología Tridimensional , Ratones , Ratones Endogámicos C57BL , Mórula , ARN Interferente Pequeño/metabolismo , Uniones Estrechas
4.
Cell ; 169(3): 510-522.e20, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28431249

RESUMEN

Organ-specific functions of tissue-resident macrophages in the steady-state heart are unknown. Here, we show that cardiac macrophages facilitate electrical conduction through the distal atrioventricular node, where conducting cells densely intersperse with elongated macrophages expressing connexin 43. When coupled to spontaneously beating cardiomyocytes via connexin-43-containing gap junctions, cardiac macrophages have a negative resting membrane potential and depolarize in synchrony with cardiomyocytes. Conversely, macrophages render the resting membrane potential of cardiomyocytes more positive and, according to computational modeling, accelerate their repolarization. Photostimulation of channelrhodopsin-2-expressing macrophages improves atrioventricular conduction, whereas conditional deletion of connexin 43 in macrophages and congenital lack of macrophages delay atrioventricular conduction. In the Cd11bDTR mouse, macrophage ablation induces progressive atrioventricular block. These observations implicate macrophages in normal and aberrant cardiac conduction.


Asunto(s)
Sistema de Conducción Cardíaco , Macrófagos/fisiología , Animales , Conexina 43/metabolismo , Femenino , Atrios Cardíacos/citología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Miocitos Cardíacos/fisiología
5.
Immunity ; 54(9): 1989-2004.e9, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34363750

RESUMEN

The migration of neutrophils from the blood circulation to sites of infection or injury is a key immune response and requires the breaching of endothelial cells (ECs) that line the inner aspect of blood vessels. Unregulated neutrophil transendothelial cell migration (TEM) is pathogenic, but the molecular basis of its physiological termination remains unknown. Here, we demonstrated that ECs of venules in inflamed tissues exhibited a robust autophagic response that was aligned temporally with the peak of neutrophil trafficking and was strictly localized to EC contacts. Genetic ablation of EC autophagy led to excessive neutrophil TEM and uncontrolled leukocyte migration in murine inflammatory models, while pharmacological induction of autophagy suppressed neutrophil infiltration into tissues. Mechanistically, autophagy regulated the remodeling of EC junctions and expression of key EC adhesion molecules, facilitating their intracellular trafficking and degradation. Collectively, we have identified autophagy as a modulator of EC leukocyte trafficking machinery aimed at terminating physiological inflammation.


Asunto(s)
Autofagia/fisiología , Células Endoteliales/fisiología , Infiltración Neutrófila/fisiología , Migración Transendotelial y Transepitelial/fisiología , Animales , Quimiotaxis de Leucocito/fisiología , Células Endoteliales/patología , Células Endoteliales de la Vena Umbilical Humana/inmunología , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Inflamación/inmunología , Inflamación/patología , Uniones Intercelulares/fisiología , Ratones , Ratones Endogámicos C57BL , Neutrófilos/fisiología
6.
Annu Rev Cell Dev Biol ; 32: 279-301, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27298092

RESUMEN

Inside eukaryotic cells, membrane contact sites (MCSs), regions where two membrane-bound organelles are apposed at less than 30 nm, generate regions of important lipid and calcium exchange. This review principally focuses on the structure and the function of MCSs between the endoplasmic reticulum (ER) and the plasma membrane (PM). Here we describe how tethering structures form and maintain these junctions and, in some instances, participate in their function. We then discuss recent insights into the mechanisms by which specific classes of proteins mediate nonvesicular lipid exchange between the ER and PM and how such phenomena, already known to be crucial for maintaining organelle identity, are also emerging as regulators of cell growth and development.


Asunto(s)
Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Animales , Humanos , Modelos Biológicos
7.
Genes Dev ; 35(9-10): 677-691, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33888564

RESUMEN

During the development of the vertebrate nervous systems, genetic programs assemble an immature circuit that is subsequently refined by neuronal activity evoked by external stimuli. However, prior to sensory experience, the intrinsic property of the developing nervous system also triggers correlated network-level neuronal activity, with retinal waves in the developing vertebrate retina being the best documented example. Spontaneous activity has also been found in the visual system of Drosophila Here, we compare the spontaneous activity of the developing visual system between mammalian and Drosophila and suggest that Drosophila is an emerging model for mechanistic and functional studies of correlated spontaneous activity.


Asunto(s)
Drosophila melanogaster/citología , Drosophila melanogaster/crecimiento & desarrollo , Retina/citología , Retina/embriología , Células Receptoras Sensoriales/fisiología , Animales , Drosophila melanogaster/fisiología , Ojo/citología , Ojo/crecimiento & desarrollo , Humanos , Modelos Animales , Retina/fisiología , Células Receptoras Sensoriales/citología
8.
EMBO J ; 43(15): 3141-3174, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38877304

RESUMEN

Migrating cells preferentially breach and integrate epithelial and endothelial monolayers at multicellular vertices. These sites are amenable to forces produced by the migrating cell and subsequent opening of the junctions. However, the cues that guide migrating cells to these entry portals, and eventually drive the transmigration process, are poorly understood. Here, we show that lymphatic endothelium multicellular junctions are the preferred sites of dendritic cell transmigration in both primary cell co-cultures and in mouse dermal explants. Dendritic cell guidance to multicellular junctions was dependent on the dendritic cell receptor CCR7, whose ligand, lymphatic endothelial chemokine CCL21, was exocytosed at multicellular junctions. Characterization of lymphatic endothelial secretory routes indicated Golgi-derived RAB6+ vesicles and RAB3+/27+ dense core secretory granules as intracellular CCL21 storage vesicles. Of these, RAB6+ vesicles trafficked CCL21 to the multicellular junctions, which were enriched with RAB6 docking factor ELKS (ERC1). Importantly, inhibition of RAB6 vesicle exocytosis attenuated dendritic cell transmigration. These data exemplify how spatially-restricted exocytosis of guidance cues helps to determine where dendritic cells transmigrate.


Asunto(s)
Quimiocina CCL21 , Células Dendríticas , Exocitosis , Receptores CCR7 , Proteínas de Unión al GTP rab , Animales , Ratones , Quimiocina CCL21/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Células Dendríticas/metabolismo , Receptores CCR7/metabolismo , Receptores CCR7/genética , Uniones Intercelulares/metabolismo , Migración Transendotelial y Transepitelial , Endotelio Linfático/metabolismo , Endotelio Linfático/citología , Células Endoteliales/metabolismo , Ratones Endogámicos C57BL , Humanos , Técnicas de Cocultivo , Células Cultivadas , Movimiento Celular
9.
Physiol Rev ; 100(2): 525-572, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31939708

RESUMEN

Of the 21 members of the connexin family, 4 (Cx37, Cx40, Cx43, and Cx45) are expressed in the endothelium and/or smooth muscle of intact blood vessels to a variable and dynamically regulated degree. Full-length connexins oligomerize and form channel structures connecting the cytosol of adjacent cells (gap junctions) or the cytosol with the extracellular space (hemichannels). The different connexins vary mainly with regard to length and sequence of their cytosolic COOH-terminal tails. These COOH-terminal parts, which in the case of Cx43 are also translated as independent short isoforms, are involved in various cellular signaling cascades and regulate cell functions. This review focuses on channel-dependent and -independent effects of connexins in vascular cells. Channels play an essential role in coordinating and synchronizing endothelial and smooth muscle activity and in their interplay, in the control of vasomotor actions of blood vessels including endothelial cell reactivity to agonist stimulation, nitric oxide-dependent dilation, and endothelial-derived hyperpolarizing factor-type responses. Further channel-dependent and -independent roles of connexins in blood vessel function range from basic processes of vascular remodeling and angiogenesis to vascular permeability and interactions with leukocytes with the vessel wall. Together, these connexin functions constitute an often underestimated basis for the enormous plasticity of vascular morphology and function enabling the required dynamic adaptation of the vascular system to varying tissue demands.


Asunto(s)
Vasos Sanguíneos/metabolismo , Diferenciación Celular , Plasticidad de la Célula , Conexinas/metabolismo , Células Endoteliales/metabolismo , Miocitos del Músculo Liso/metabolismo , Animales , Vasos Sanguíneos/citología , Permeabilidad Capilar , Microambiente Celular , Uniones Comunicantes/metabolismo , Humanos , Neovascularización Fisiológica , Fenotipo , Transducción de Señal , Remodelación Vascular
10.
Development ; 151(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38205947

RESUMEN

Cell junctions play key roles in epithelial integrity. During development, when epithelia undergo extensive morphogenesis, these junctions must be remodeled in order to maintain mechanochemical barriers and ensure the cohesion of the tissue. In this Review, we present a comprehensive and integrated description of junctional remodeling mechanisms in epithelial cells during development, from embryonic to adult epithelia. We largely focus on Drosophila, as quantitative analyses in this organism have provided a detailed characterization of the molecular mechanisms governing cell topologies, and discuss the conservation of these mechanisms across metazoans. We consider how changes at the molecular level translate to tissue-scale irreversible deformations, exploring the composition and assembly of cellular interfaces to unveil how junctions are remodeled to preserve tissue homeostasis during cell division, intercalation, invagination, ingression and extrusion.


Asunto(s)
Drosophila , Uniones Intercelulares , Animales , División Celular , Desarrollo Embrionario , Células Epiteliales
11.
Proc Natl Acad Sci U S A ; 121(12): e2314995121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38470918

RESUMEN

Collective properties of complex systems composed of many interacting components such as neurons in our brain can be modeled by artificial networks based on disordered systems. We show that a disordered neural network of superconducting loops with Josephson junctions can exhibit computational properties like categorization and associative memory in the time evolution of its state in response to information from external excitations. Superconducting loops can trap multiples of fluxons in many discrete memory configurations defined by the local free energy minima in the configuration space of all possible states. A memory state can be updated by exciting the Josephson junctions to fire or allow the movement of fluxons through the network as the current through them surpasses their critical current thresholds. Simulations performed with a lumped element circuit model of a 4-loop network show that information written through excitations is translated into stable states of trapped flux and their time evolution. Experimental implementation on a high-Tc superconductor YBCO-based 4-loop network shows dynamically stable flux flow in each pathway characterized by the correlations between junction firing statistics. Neural network behavior is observed as energy barriers separating state categories in simulations in response to multiple excitations, and experimentally as junction responses characterizing different flux flow patterns in the network. The state categories that produce these patterns have different temporal stabilities relative to each other and the excitations. This provides strong evidence for time-dependent (short-to-long-term) memories, that are dependent on the geometrical and junction parameters of the loops, as described with a network model.

12.
Am J Hum Genet ; 110(4): 681-690, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36996813

RESUMEN

The blood-brain barrier (BBB) is an essential gatekeeper for the central nervous system and incidence of neurodevelopmental disorders (NDDs) is higher in infants with a history of intracerebral hemorrhage (ICH). We discovered a rare disease trait in thirteen individuals, including four fetuses, from eight unrelated families associated with homozygous loss-of-function variant alleles of ESAM which encodes an endothelial cell adhesion molecule. The c.115del (p.Arg39Glyfs∗33) variant, identified in six individuals from four independent families of Southeastern Anatolia, severely impaired the in vitro tubulogenic process of endothelial colony-forming cells, recapitulating previous evidence in null mice, and caused lack of ESAM expression in the capillary endothelial cells of damaged brain. Affected individuals with bi-allelic ESAM variants showed profound global developmental delay/unspecified intellectual disability, epilepsy, absent or severely delayed speech, varying degrees of spasticity, ventriculomegaly, and ICH/cerebral calcifications, the latter being also observed in the fetuses. Phenotypic traits observed in individuals with bi-allelic ESAM variants overlap very closely with other known conditions characterized by endothelial dysfunction due to mutation of genes encoding tight junction molecules. Our findings emphasize the role of brain endothelial dysfunction in NDDs and contribute to the expansion of an emerging group of diseases that we propose to rename as "tightjunctionopathies."


Asunto(s)
Encefalopatías , Moléculas de Adhesión Celular , Malformaciones del Sistema Nervioso , Trastornos del Neurodesarrollo , Animales , Ratones , Alelos , Encefalopatías/genética , Moléculas de Adhesión Celular/genética , Células Endoteliales/metabolismo , Hemorragias Intracraneales/genética , Malformaciones del Sistema Nervioso/genética , Trastornos del Neurodesarrollo/genética , Uniones Estrechas/genética , Humanos
13.
J Cell Sci ; 137(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39143856

RESUMEN

Fluid shear stress (FSS) from blood flow, sensed by the vascular endothelial cells (ECs) that line all blood vessels, regulates vascular development during embryogenesis, controls adult vascular physiology and determines the location of atherosclerotic plaque formation. Although a number of papers have reported a crucial role for cell-cell adhesions or adhesion receptors in these processes, a recent publication has challenged this paradigm, presenting evidence that ECs can very rapidly align in fluid flow as single cells without cell-cell contacts. To address this controversy, four independent laboratories assessed EC alignment in fluid flow across a range of EC cell types. These studies demonstrate a strict requirement for cell-cell contact in shear stress sensing over timescales consistent with previous literature and inconsistent with the newly published data.


Asunto(s)
Células Endoteliales , Uniones Intercelulares , Mecanotransducción Celular , Estrés Mecánico , Humanos , Uniones Intercelulares/metabolismo , Células Endoteliales/metabolismo , Animales , Resistencia al Corte , Adhesión Celular/fisiología
14.
J Cell Sci ; 137(19)2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39350674

RESUMEN

SGEF (also known as ARHGEF26), a RhoG specific GEF, can form a ternary complex with the Scribble polarity complex proteins Scribble and Dlg1, which regulates the formation and maintenance of adherens junctions and barrier function of epithelial cells. Notably, silencing SGEF results in a dramatic downregulation of both E-cadherin and ZO-1 (also known as TJP1) protein levels. However, the molecular mechanisms involved in the regulation of this pathway are not known. Here, we describe a novel signaling pathway governed by the Scribble-SGEF-Dlg1 complex. Our results show that the three members of the ternary complex are required to maintain the stability of the apical junctions, ZO-1 protein levels and tight junction (TJ) permeability. In contrast, only SGEF is necessary to regulate E-cadherin levels. The absence of SGEF destabilizes the E-cadherin-catenin complex at the membrane, triggering a positive feedback loop that exacerbates the phenotype through the repression of E-cadherin transcription in a process that involves the internalization of E-cadherin by endocytosis, ß-catenin signaling and the transcriptional repressor Slug (also known as SNAI2).


Asunto(s)
Cadherinas , Células Epiteliales , Proteínas de la Membrana , Factores de Intercambio de Guanina Nucleótido Rho , Factores de Transcripción de la Familia Snail , Proteína de la Zonula Occludens-1 , Cadherinas/metabolismo , Cadherinas/genética , Humanos , Células Epiteliales/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Proteína de la Zonula Occludens-1/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción de la Familia Snail/genética , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/genética , Animales , Homólogo 1 de la Proteína Discs Large/metabolismo , Homólogo 1 de la Proteína Discs Large/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Transcripción Genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Células de Riñón Canino Madin Darby , Uniones Estrechas/metabolismo , Perros , Transducción de Señal , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Estabilidad Proteica , beta Catenina/metabolismo , beta Catenina/genética
15.
J Cell Sci ; 137(9)2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38712627

RESUMEN

Tight junctions (TJs) are specialized regions of contact between cells of epithelial and endothelial tissues that form selective semipermeable paracellular barriers that establish and maintain body compartments with different fluid compositions. As such, the formation of TJs represents a critical step in metazoan evolution, allowing the formation of multicompartmental organisms and true, barrier-forming epithelia and endothelia. In the six decades that have passed since the first observations of TJs by transmission electron microscopy, much progress has been made in understanding the structure, function, molecular composition and regulation of TJs. The goal of this Perspective is to highlight the key concepts that have emerged through this research and the future challenges that lie ahead for the field.


Asunto(s)
Uniones Estrechas , Uniones Estrechas/metabolismo , Uniones Estrechas/ultraestructura , Humanos , Animales , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Células Epiteliales/citología
16.
J Cell Sci ; 137(12)2024 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-38940346

RESUMEN

Desmosomes are relatives of ancient cadherin-based junctions, which emerged late in evolution to ensure the structural integrity of vertebrate tissues by coupling the intermediate filament cytoskeleton to cell-cell junctions. Their ability to dynamically counter the contractile forces generated by actin-associated adherens junctions is particularly important in tissues under high mechanical stress, such as the skin and heart. Much more than the simple cellular 'spot welds' depicted in textbooks, desmosomes are in fact dynamic structures that can sense and respond to changes in their mechanical environment and external stressors like ultraviolet light and pathogens. These environmental signals are transmitted intracellularly via desmosome-dependent mechanochemical pathways that drive the physiological processes of morphogenesis and differentiation. This Cell Science at a Glance article and the accompanying poster review desmosome structure and assembly, highlight recent insights into how desmosomes integrate chemical and mechanical signaling in the epidermis, and discuss desmosomes as targets in human disease.


Asunto(s)
Desmosomas , Desmosomas/metabolismo , Humanos , Animales , Epidermis/metabolismo
17.
J Cell Sci ; 137(5)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38345099

RESUMEN

Glycosylated mucin proteins contribute to the essential barrier function of the intestinal epithelium. The transmembrane mucin MUC13 is an abundant intestinal glycoprotein with important functions for mucosal maintenance that are not yet completely understood. We demonstrate that in human intestinal epithelial monolayers, MUC13 localized to both the apical surface and the tight junction (TJ) region on the lateral membrane. MUC13 deletion resulted in increased transepithelial resistance (TEER) and reduced translocation of small solutes. TEER buildup in ΔMUC13 cells could be prevented by addition of MLCK, ROCK or protein kinase C (PKC) inhibitors. The levels of TJ proteins including claudins and occludin were highly increased in membrane fractions of MUC13 knockout cells. Removal of the MUC13 cytoplasmic tail (CT) also altered TJ composition but did not affect TEER. The increased buildup of TJ complexes in ΔMUC13 and MUC13-ΔCT cells was dependent on PKC. The responsible PKC member might be PKCδ (or PRKCD) based on elevated protein levels in the absence of full-length MUC13. Our results demonstrate for the first time that a mucin protein can negatively regulate TJ function and stimulate intestinal barrier permeability.


Asunto(s)
Proteína Quinasa C , Proteínas de Uniones Estrechas , Humanos , Proteínas de Uniones Estrechas/metabolismo , Proteína Quinasa C/metabolismo , Intestinos , Mucosa Intestinal/metabolismo , Uniones Estrechas/metabolismo , Ocludina , Mucinas/metabolismo , Células Epiteliales/metabolismo
18.
Development ; 150(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37226981

RESUMEN

Although the molecular mechanisms governing abscission of isolated cells have largely been elucidated, those underlying the abscission of epithelial progenitors surrounded by epidermal cells (ECs), connected via cellular junctions, remain largely unexplored. Here, we investigated the remodeling of the paracellular diffusion barrier ensured by septate junctions (SJs) during cytokinesis of Drosophila sensory organ precursors (SOPs). We found that SOP cytokinesis involves the coordinated, polarized assembly and remodeling of SJs in the dividing cell and its neighbors, which remain connected to the former via membrane protrusions pointing towards the SOP midbody. SJ assembly and midbody basal displacement occur faster in SOPs than in ECs, leading to quicker disentanglement of neighboring cell membrane protrusions prior to midbody release. As reported in isolated cells, the endosomal sorting complex required for the transport-III component Shrub/CHMP4B is recruited at the midbody and cell-autonomously regulates abscission. In addition, Shrub is recruited to membrane protrusions and is required for SJ integrity, and alteration of SJ integrity leads to premature abscission. Our study uncovers cell-intrinsic and -extrinsic functions of Shrub in coordinating remodeling of the SJs and SOP abscission.


Asunto(s)
Citocinesis , Proteínas de Drosophila , Drosophila , Proteínas del Tejido Nervioso , Animales , Movimiento Celular , Difusión , Complejos de Clasificación Endosomal Requeridos para el Transporte , Proteínas del Tejido Nervioso/genética , Proteínas de Drosophila/genética
19.
Development ; 150(7)2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36897564

RESUMEN

During morphogenesis, large-scale changes of tissue primordia are coordinated across an embryo. In Drosophila, several tissue primordia and embryonic regions are bordered or encircled by supracellular actomyosin cables, junctional actomyosin enrichments networked between many neighbouring cells. We show that the single Drosophila Alp/Enigma-family protein Zasp52, which is most prominently found in Z-discs of muscles, is a component of many supracellular actomyosin structures during embryogenesis, including the ventral midline and the boundary of the salivary gland placode. We reveal that Zasp52 contains within its central coiled-coil region a type of actin-binding motif usually found in CapZbeta proteins, and this domain displays actin-binding activity. Using endogenously-tagged lines, we identify that Zasp52 interacts with junctional components, including APC2, Polychaetoid and Sidekick, and actomyosin regulators. Analysis of zasp52 mutant embryos reveals that the severity of the embryonic defects observed scales inversely with the amount of functional protein left. Large tissue deformations occur where actomyosin cables are found during embryogenesis, and in vivo and in silico analyses suggest a model whereby supracellular Zasp52-containing cables aid to insulate morphogenetic changes from one another.


Asunto(s)
Actomiosina , Proteínas de Drosophila , Animales , Actomiosina/metabolismo , Actinas/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Sarcómeros/metabolismo , Morfogénesis/genética
20.
Development ; 150(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37997696

RESUMEN

Toll-like receptors (TLRs) in mammalian systems are well known for their role in innate immunity. In addition, TLRs also fulfil crucial functions outside immunity, including the dorsoventral patterning function of the original Toll receptor in Drosophila and neurogenesis in mice. Recent discoveries in flies suggested key roles for TLRs in epithelial cells in patterning of junctional cytoskeletal activity. Here, we address the function of TLRs and the downstream key signal transduction component IRAK4 in human epithelial cells. Using differentiated human Caco-2 cells as a model for the intestinal epithelium, we show that these cells exhibit baseline TLR signalling, as revealed by p-IRAK4, and that blocking IRAK4 function leads to a loss of epithelial tightness involving key changes at tight and adherens junctions, such as a loss of epithelial tension and changes in junctional actomyosin. Changes upon IRAK-4 inhibition are conserved in human bronchial epithelial cells. Knockdown of IRAK4 and certain TLRs phenocopies the inhibitor treatment. These data suggest a model whereby TLR receptors near epithelial junctions might be involved in a continuous sensing of the epithelial state to promote epithelial tightness and integrity.


Asunto(s)
Quinasas Asociadas a Receptores de Interleucina-1 , Receptores Toll-Like , Humanos , Células CACO-2 , Inmunidad Innata , Quinasas Asociadas a Receptores de Interleucina-1/genética , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda