Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Metab Brain Dis ; 38(2): 453-466, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36094724

RESUMEN

Maintaining the balance of mitochondrial fission and mitochondrial autophagy on seizures is helpful to find a solution to control seizures and reduce brain injuries. The present study is to investigate the protective effect of inhibiting mitochondrial fission on brain injury in juvenile rat epilepsy induced by pentatetrazol (PTZ) by inhibiting the BCL2L13/LC3-mediated mitophagy pathway. PTZ was injected (40 mg/kg) to induce kindling once every other day, for a total of 15 times. In the PTZ + DMSO (DMSO), PTZ + Mdivi-1 (Mdivi-1), and PTZ + WY14643 (WY14643) groups, rats were pretreated with DMSO, Mdivi-1 and WY14643 for half an hour prior to PTZ injection. The seizure attacks of young rats were observed for 30 min after model establishment. The Morris water maze (MWM) was used to test the cognition of experimental rats. After the test, the numbers of NeuN(+) neurons and GFAP(+) astrocytes were observed and counted by immunofluorescence (IF). The protein expression levels of Drp1, BCL2L13, LC3 and caspase 3 in the hippocampus of young rats were detected by immunohistochemistry (IHC) and Western blotting (WB). Compared with the PTZ and DMSO groups, the seizure latency in the Mdivi-1 group was longer (P < 0.01), and the severity degree and frequency of seizures were lower (P < 0.01). The MWM test showed that the incubation periods of crossing the platform in the Mdivi-1 group was significantly shorter. The number of platform crossings, the platform stay time, and the ratio of residence time/total stay time were significantly increased in the Mdivi-1 group (P < 0.01). The IF results showed that the number of NeuN(+) neurons in the Mdivi-1 group was greater, while the number of GFAP(+) astrocytes was lower. IHC and WB showed that the average optical density (AOD) and relative protein expression levels of Drp1, BCL2L13, LC3 and caspase 3 in the hippocampi of rats in the Mdivi-1 group were higher (P < 0.05). The above results in the WY14643 group were opposite to those in the Mdivi-1 group. Inhibition of mitochondrial fission could reduce seizure attacks, protect injured neurons, and improve cognition following PTZ-induced epilepsy by inhibiting mitochondrial autophagy mediated by the BCL2L13/LC3 mitophagy pathway.


Asunto(s)
Lesiones Encefálicas , Epilepsia , Dinámicas Mitocondriales , Animales , Ratas , Caspasa 3/metabolismo , Dimetilsulfóxido/efectos adversos , Epilepsia/metabolismo , Hipocampo/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitofagia , Pentilenotetrazol/farmacología , Convulsiones/inducido químicamente , Excitación Neurológica , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
2.
Turk J Med Sci ; 53(1): 19-28, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36945933

RESUMEN

BACKGROUND: Ketamine (KET) is a commonly used anesthetic agent. However, several previous studies reported that KET leads to neuronal damage in neurodevelopmental stages and has neuroprotective effects. The present experimental study aimed to determine the undesirable histopathological effects of KET in the cerebral cortex, striatum, and hippocampus after recurrent KET administration in juvenile rats. METHODS: After ethical approval was obtained, 32 juvenile male Wistar Albino rats were randomized into four groups: 1 mg/kg serum saline intraperitoneally (i.p.), 5 mg/kg KET i.p., 20 mg/kg KET i.p., and 50 mg/kg KET i.p. KET was administered for three consecutive days at three-h intervals in three doses. Ten days after the last KET dose, the rats were sacrificed. Cerebral hemispheres were fixed. Hematoxylin and eosin stain was used for morphometric analysis. Hippocampi were evaluated by immunohistochemistry with anticleaved caspase-3 antibodies. Statistical analysis was conducted with SPSS 21 software using the ANOVA test and Bonferroni post hoc analysis method. RESULTS: The experimental study findings revealed no difference between the groups' cell counts or sizes in cortical morphometry. No degenerative changes were observed in pyramidal and granular cells in the striatum. Mild gliosis was observed in the 20 mg/kg and 50 mg/kg KET administration groups. Immuno-histo-chemical analysis was conducted to determine apoptosis in the CA1 region of the hippocampus and revealed that caspase-3 positivity increased with the KET dose. However, there was no statistical difference between the groups. While it was lower than the control group in the 5 mg/kg KET group, it was similar to the control group in the 20 mg/kg KET group and higher in the 50 mg/kg KET group (p > 0.05). DISCUSSION: : Repetitive KET exposure did not significantly affect juvenile cerebral morphology and apoptosis in hippocampal cells.


Asunto(s)
Ketamina , Animales , Ratas , Masculino , Ketamina/farmacología , Caspasa 3 , Ratas Wistar , Hipocampo , Encéfalo
3.
Antimicrob Agents Chemother ; 66(11): e0048322, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36255258

RESUMEN

Fluoroquinolone use in children is limited due to its potential toxicity and negative effects on skeletal development, but the actual effects/risks of fluoroquinolones on bone growth and the mechanisms behind fluoroquinolone-driven arthropathy remain unknown. Gepotidacin is a novel, bactericidal, first-in-class triazaacenaphthylene antibiotic with a unique mechanism of action that is not anticipated to have the same risks to bone growth as those of fluoroquinolones. Gepotidacin is in phase III clinical development for uncomplicated urinary tract infections (ClinicalTrials.gov identifiers NCT04020341 and NCT04187144) and urogenital gonorrhea (ClinicalTrials.gov identifier NCT04010539) in adults and adolescents ≥12 years of age. To inform arthropathy and other potential toxicity risks of gepotidacin in pediatric studies, this nonclinical study assessed oral gepotidacin toxicity in juvenile rats from postnatal day (PND) 4 to PND 32/35 (approximately equivalent to human ages from newborn to 11 years), using both in-life assessments (tolerability, toxicity, and toxicokinetics) and terminal assessments (necropsy with macroscopic and microscopic skeletal femoral head and/or stifle joint examinations). Gepotidacin doses of ≤300 mg/kg of body weight/day were well tolerated from PND 4 to PND 21, and higher doses of ≤1,250 mg/kg/day were well tolerated from PND 22 when the dose levels were escalated to maintain systemic exposure levels up to PND 35, with no observed treatment-related clinical signs, effects on mean body weight gain, or macroscopic findings on articular surfaces. A dose of 1,000 mg/kg/day was not tolerated during the dosing period from PND 4 to 21, with effects on body weight gain, fecal consistency, and body condition. Microscopic effects on articular surfaces were evaluated after 32 days of gepotidacin treatment at the highest tolerated dose. After 32 days of treatment with the highest tolerated gepotidacin dose of 300/1,250 mg/kg/day (systemic concentrations [area under the curve {AUC} values] of 93.7 µg · h/mL [males] and 121 µg · h/mL [females]), no skeletal effects on articular surfaces of the femoral head or stifle joint were observed. The absence of treatment-related clinical signs and arthropathy in juvenile rats provides evidence to support the potential future use of gepotidacin in children.


Asunto(s)
Artropatías , Policétidos , Adolescente , Adulto , Animales , Niño , Femenino , Humanos , Masculino , Ratas , Antibacterianos/farmacología , Peso Corporal , Fluoroquinolonas , Pruebas de Sensibilidad Microbiana , Inhibidores de Topoisomerasa II , Ensayos Clínicos Fase III como Asunto
4.
J Integr Neurosci ; 21(4): 121, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35864772

RESUMEN

BACKGROUND: To explore the mechanism of endocannabinoid cannabinoid receptor 1 (CB1) receptor pathway that regulates synaptic plasticity in the dorsal horn of the spinal cord of rats with neuropathic pain at different ages. METHODS: Neonatal, juvenile, and adult male sprague dawley (SD) rats were divided into the spinal nerve preservation injury (SNI), SNI + Anandamide (AEA), SNI + D-AP5, SNI + CNQX, SNI + D-AP5 + AEA, SNI + CNQX + AEA, sham SNI, sham SNI + AEA, sham SNI + D-AP5, sham SNI + CNQX, sham SNI + D-AP5 + AEA, and sham SNI + CNQX + AEA groups, respectively. Paw withdrawal threshold (PWT) and long-term potentiation (LTP) of the spinal dorsal horn PS (field potential) were assessed to judge the spinal cord's functional state. Immunohistochemical staining and Western blot were conducted to detect CB1 protein levels in the spinal dorsal horn. RESULTS: The LTP response in the spinal cord was alleviated in the SNI + AEA group. After treatment with the N-methyl-D-aspartate (NMDA) receptor blocker D-AP5, the LTP of neonatal A nerve was relieved further. After treatment with the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor blocker CNQX, LTP change in the A nerve was not obvious. The LTP of the A and C nerves were relieved after D-AP5 or CNQX treatment in young and adult animals; however, the blocking effect of CNQX was obvious. The altered levels of PWT and CB1 support these results. CONCLUSIONS: The CB1 receptor activation produces analgesia in neonatal rats through NMDA receptor formation for PS inhibitory activity. In juvenile and adult rats, this phenomenon was effectuated through NMDA and AMPA receptors. This difference could be attributed to the varied number of NMDA and/or AMPA receptors activated during development and changes in the NMDA/AMPA receptor ratio.


Asunto(s)
N-Metilaspartato , Receptores AMPA , 6-Ciano 7-nitroquinoxalina 2,3-diona/metabolismo , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Endocannabinoides/metabolismo , Endocannabinoides/farmacología , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de Cannabinoides/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Médula Espinal , Asta Dorsal de la Médula Espinal/metabolismo , Sinapsis
5.
Exp Physiol ; 106(2): 463-474, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33369800

RESUMEN

NEW FINDINGS: What is the central question of this study? Exercise can stimulate brown adipose tissue (BAT) with subsequent increase in uncoupling protein 1 expression and mitochondrial biogenesis. In that case, do BAT-specific Hox genes modify BAT functioning and cause uncoupling protein expression changes due to exercise? What is the main finding and its importance? Exercise enhanced brown adipocyte markers, with significant upregulation of HoxA5 and downregulation of HoxC10 mRNA expression in rat BAT. HoxA5 and HoxC10 are thus likely to play distinct roles in exercise-induced changes in BAT markers during the early postnatal period. These findings provide new insight into the mechanisms underlying exercise-induced changes in BAT function. ABSTRACT: Brown adipose tissue (BAT) recruitment is involved in increased energy expenditure associated with cold exposure and exercise training. We explored whether exercise training induced changes in expression levels of brown adipocyte-selective factors and Homeobox (Hox) genes during the post-weaning growth period of male Wistar rats. Relative to total body weight, BAT weights alone were lower in exercise-trained (EX) rats compared to sedentary control (SED) rats. mRNA expression of HoxA5 was higher and that of HoxC10 was lower in EX rats than in SED rats, accompanied by both higher citrate synthase activity and protein expression levels for uncoupling protein 1 (UCP1), peroxisome proliferator-activated receptor (PPAR) α, and PPARγ-coactivator (PGC)-1α. HoxA5 knockdown with siRNA reduced the expression of PR-domain containing 16 (Prdm16), cell death-inducing DNA fragmentation factor-α-like effector A (Cidea) gene, type 2 deiodinase mRNA, and PRDM16 protein. Comparatively, HoxC10 knockdown with siRNA enhanced mRNA expression of Prdm16, Pparα and Pgc1α and protein expression of UCP1, PPARα and PGC1α in brown adipocytes. The stimulation of brown adipocytes with isoproterenol, a ß-adrenoceptor agonist, caused a phenomenon similar to the effect of exercise training on the genes tested: upregulation of HoxA5 mRNA, downregulation of HoxC10 mRNA, and increased protein expression for UCP1 and PGC1α. Collectively, HoxA5 and HoxC10 may have unique functions that contribute to modulating the expression of BAT-selective markers in BAT of juvenile rats during exercise training. The study findings regarding activation and recruitment of BAT during exercise training have implications for anti-obesity management.


Asunto(s)
Adaptación Fisiológica/genética , Tejido Adiposo Pardo/metabolismo , Genes Homeobox/genética , Proteínas de Homeodominio/genética , Condicionamiento Físico Animal/fisiología , Animales , Citrato (si)-Sintasa/metabolismo , Proteínas de Homeodominio/metabolismo , Masculino , PPAR alfa/genética , PPAR alfa/metabolismo , Ratas , Ratas Wistar , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
6.
Clin Exp Pharmacol Physiol ; 48(8): 1103-1110, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33686709

RESUMEN

This study aims to investigate the protective effect of roflumilast, a phosphodiesterase (PDE)-4 enzyme inhibitor, and demonstrate its possible role in the development prevention of cerebral ischemia/reperfusion injury (CI/RI) after stroke induced by carotid artery ligation in juvenile rats. The rats were randomly divided into five groups: healthy group without any treatment, healthy group administered with 1 mg/kg roflumilast, CI group not administered with roflumilast, CI group administered with 0.5 mg/kg roflumilast, and CI group administered with 1 mg/kg roflumilast. In the CI groups, reperfusion was achieved 2h after ischemia induction; in the roflumilast groups, this drug was intraperitoneally administered immediately after reperfusion and at the 12th hour. At the end of 24h, the rats were sacrificed and their brain tissues removed for examination. The mRNA expressions obtained with real-time PCR of IL-1ß, TNF-α, and NLRP3 significantly increased in the CI/RI-induced groups compared with the control group, and this increase was significantly lower in the groups administered with roflumilast compared with the CI/RI-induced groups. Moreover, ELISA revealed that both IL-1 ß and IL-6 brain levels were significantly higher in the CI/RI-induced groups than in the controls. This increase was significantly lower in the groups administered with roflumilast compared with the CI/RI-induced groups. Histopathological studies revealed that the values closest to those of the healthy group were obtained from the roflumilast groups. Nissl staining revealed that the Nissl bodies manifested normal density in the healthy and roflumilast-administered healthy groups, but were rare in the CI/RI-induced groups. Roflumilast treatment increased these decreased Nissl bodies with increasing doses. Observations indicated that the Nissl body density was close to the value in the healthy group in the CI/RI-induced group administered with 1 mg/kg roflumilast. Overall, roflumilast reduced cellular damage caused by CI/RI in juvenile rats, and this effect may be mediated by NLRP3.


Asunto(s)
Aminopiridinas , Benzamidas , Fármacos Neuroprotectores , Animales , Encéfalo , Ciclopropanos , Masculino , Ratas , Daño por Reperfusión
7.
Molecules ; 26(14)2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34299551

RESUMEN

Forchlorfenuron (CPPU) is a plant growth regulator extensively used in agriculture. However, studies on CPPU pharmacokinetics are lacking. We established and validated a rapid, sensitive, and accurate liquid chromatography-mass spectrometry method for CPPU detection in rat plasma. CPPU pharmacokinetics was evaluated in adult and juvenile rats orally treated with 10, 30, and 90 mg/kg of the compound. The area under the plasma drug concentration-time curve from 0 to 24 h (AUC), at the final time point sampled (AUC0-t), and the maximum drug concentration of CPPU increased in a dose-dependent manner. The pharmacokinetic parameters AUC0-t and absolute bioavailability were higher in the juvenile rats than in adult rats. The mean residence time and AUC0-t of juvenile rats in the gavage groups, except for the 10 mg/kg dose, were significantly higher in comparison to those observed for adult rats (p < 0.001). The plasma clearance of CPPU in juvenile rats was slightly lower than that in the adult rats. Taken together, juvenile rats were more sensitive to CPPU than adult rats, which indicates potential safety risks of CPPU in minors.


Asunto(s)
Compuestos de Fenilurea/farmacocinética , Piridinas/farmacocinética , Administración Oral , Animales , Disponibilidad Biológica , Cromatografía Líquida de Alta Presión/métodos , Femenino , Masculino , Plasma/metabolismo , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem/métodos
8.
Regul Toxicol Pharmacol ; 92: 268-277, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29278694

RESUMEN

To determine the impact of single and cumulative doses of MultiHance on toxicity, pharmacokinetics, tissue gadolinium presence, behavior and neurological function in juvenile rats. Juvenile male and female rats received either physiological saline or MultiHance at 0.6, 1.25 or 2.5 mmol/kg bodyweight. Animals received either single or six consecutive MultiHance administrations and were sacrificed the day after the last administration or after a 60-day treatment-free period. Animals were assessed for behavior, cognitive function, grip strength, gait, pupillary reflex, and auditory reflex, as well as for physical development, sexual maturation and histopathology. Gadolinium presence in brain, femur, kidneys, liver and skin was determined using inductively coupled plasma-mass spectrometry (ICP-MS). No effects of MultiHance on behavior, cognitive function or any other parameter were noted, even for the highest administered cumulative dose (15 mmol/kg). Gadolinium presence was variable across tissues and decreased during the 60-day treatment-free period. The highest levels were noted in the femur and the lowest levels in the brain. Gadolinium presence in juvenile rat brain following single or repeated MultiHance administrations was minimal and non-impactful.


Asunto(s)
Animales Recién Nacidos/metabolismo , Gadolinio/farmacocinética , Meglumina/análogos & derivados , Compuestos Organometálicos/administración & dosificación , Compuestos Organometálicos/efectos adversos , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Cognición/efectos de los fármacos , Femenino , Fémur/efectos de los fármacos , Fémur/metabolismo , Masculino , Meglumina/administración & dosificación , Meglumina/efectos adversos , Ratas , Ratas Sprague-Dawley , Distribución Tisular/efectos de los fármacos
9.
Toxicol Appl Pharmacol ; 275(1): 36-43, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24388840

RESUMEN

Juvenile rat toxicity studies with the direct renin inhibitor aliskiren were initiated to support treatment in the pediatric population. In Study 1, aliskiren was administered orally to juvenile rats at doses of 0, 30, 100 or 300 mg/kg/day with repeated dosing from postpartum day (PPD) 8 to PPD 35/36. In-life, clinical pathology, anatomic pathology, and toxicokinetics evaluations were performed. In Study 2, single oral doses of aliskiren (0, 100 or 300 mg/kg) were given to 14-, 21-, 24-, 28-, 31- or 36-day-old rats; in-life data and toxicokinetics were evaluated. Study 3 was a single dose (3 mg/kg i.v.) pharmacokinetic study in juvenile rats on PPD 8, 14, 21 and 28. In Study 4, naïve rats were used to investigate ontogenic changes of the multidrug-resistant protein 1 (MDR1) and the organic anion transporting polypeptide (OATP) mRNA in several organs. Oral administration of aliskiren at 100 and 300 mg/kg caused unexpected mortality and severe morbidity in 8-day-old rats. Aliskiren plasma and tissue concentrations were increased in rats aged 21days and younger. Expression of MDR1 and OATP mRNA in the intestine, liver and brain was significantly lower in very young rats. In conclusion, severe toxicity and increased exposure in very young rats after oral administration of aliskiren are considered to be the result of immature drug transporter systems. Immaturity of MDR1 in enterocytes appears to be the most important mechanism responsible for the high exposure.


Asunto(s)
Envejecimiento , Amidas/efectos adversos , Antihipertensivos/efectos adversos , Fumaratos/efectos adversos , Renina/antagonistas & inhibidores , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Administración Oral , Amidas/administración & dosificación , Amidas/metabolismo , Amidas/farmacocinética , Animales , Antihipertensivos/administración & dosificación , Antihipertensivos/metabolismo , Antihipertensivos/farmacocinética , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Femenino , Fumaratos/administración & dosificación , Fumaratos/metabolismo , Fumaratos/farmacocinética , Inyecciones Intravenosas , Yeyuno/efectos de los fármacos , Yeyuno/crecimiento & desarrollo , Yeyuno/metabolismo , Hígado/efectos de los fármacos , Hígado/crecimiento & desarrollo , Hígado/metabolismo , Masculino , Transportadores de Anión Orgánico/antagonistas & inhibidores , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Distribución Tisular , Pruebas de Toxicidad
10.
Toxicol Mech Methods ; 24(9): 703-12, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25258188

RESUMEN

CONTEXT: Cytarabine (Ara-C) is an effective chemotherapeutic drug for the treatment of acute leukaemias. It inhibits the DNA synthesis and repair, thereby causes cytotoxicity in the proliferating cells. OBJECTIVE: This study was aimed to investigate the effects of pre-pubertal exposure of Ara-C on testesticular development in juvenile SD rats and their function at puberty. MATERIALS AND METHODS: Ara-C was injected at the doses of 50, 100 and 200 mg/kg/day from postnatal day (PND) 29-42 (14 days) by intraperitoneal (i.p.) route. Half of the animals were sacrificed on PND 43 and remaining on PND 70. End points of the evaluation included gross pathological examination, histomorphometric analysis, sperm count and sperm head morphology, cell proliferation and DNA damage as well as apoptosis analysis. RESULTS: Ara-C treatment significantly decreased food and water intake, weight gain, testes and epididymis weight and increased histological alterations in the seminiferous tubule. Furthermore, Ara-C treatment significantly decreased the PCNA-positive cells and sperm count in a dose-dependent manner. Ara-C treatment also increased the DNA damage and apoptosis in testes and sperm as evident from the comet and TUNEL assays results. DISCUSSION: The present study results clearly indicated that Ara-C treatment impaired spermatogenesis and adversely affects the testicular development and its function in rats by reducing the germ cell proliferation and the inducing DNA damage and apoptosis.


Asunto(s)
Citarabina/toxicidad , Daño del ADN/efectos de los fármacos , Maduración Sexual/efectos de los fármacos , Espermatogénesis/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Testículo/efectos de los fármacos , Animales , Masculino , Ratas , Ratas Sprague-Dawley , Testículo/patología
11.
J Toxicol Sci ; 49(7): 321-335, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38945843

RESUMEN

To examine the effects of decreased food consumption on toxicological parameters in juvenile rats, rats on postnatal day 21 were fed 40%, 50% (only four weeks), and 60% less food, compared to that of controls for four or eight weeks, and clinical observations, measurement of body and organ weights, morphological differentiation analysis, clinical pathology, and macroscopic and microscopic examinations were conducted. The body weight decreased depending on the degree of food restriction (FR). Cleavage of the balano-preputial skinfold was delayed, and cell debris in the epididymal lumen was noted as a related finding after four-week FR. Vaginal opening was also delayed, and some histopathological findings, such as absence of corpus luteum in the ovary, mucinous degeneration in the vagina, and immature uterus, were noted after eight-week FR. Erythrocyte count increased after four-week FR, but slightly decreased in males only after eight-week FR, and decreased leukocyte and/or reticulocyte counts, accompanied by related histopathological findings were noted after four- and eight-week FR. In blood chemistry, the levels of total protein including globulin, glucose, triglyceride, and calcium decreased, and sodium and chloride increased after four- and eight-week FR. Increases in activities of aspartate transaminase and lactate dehydrogenase and total bilirubin levels were noted after four-week FR, which were attenuated after eight-week FR. The effects of FR seemed to be more remarkable after four weeks. In drug safety evaluation, findings caused by malnutrition should be considered in juvenile toxicity studies when decreased food consumption is observed.


Asunto(s)
Peso Corporal , Animales , Masculino , Femenino , Tamaño de los Órganos , Ratas , Restricción Calórica/efectos adversos , Factores de Tiempo , Privación de Alimentos/fisiología , Ratas Sprague-Dawley , Ratas Wistar
12.
Exp Neurol ; 367: 114453, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37302746

RESUMEN

Neurologic morbidity is highly prevalent in pediatric critical illness, and the use of benzodiazepines and/or opioids is a risk factor for delirium and post-discharge sequelae. However, little is known about how multidrug sedation with these medications interacts with inflammation in the developing brain, a frequent condition during childhood critical illness that has not been extensively studied. In weanling rats, mild-moderate inflammation was induced with lipopolysaccharide (LPS) on postnatal day (P)18 and combined with 3 days repeated opioid and benzodiazepine sedation using morphine and midazolam (MorMdz) between P19-21. Delirium-like behaviors including abnormal response to whisker stimulation, wet dog shakes, and delay in finding buried food were induced in male and female rat pups treated with LPS, MorMdz, or LPS/MorMdz (n ≥ 17/group) and were compared using a z-score composite. Composite behavior scores were significantly increased in LPS, MorMdz, and LPS/MorMdz groups compared to saline control (F3,78 = 38.1, p < 0.0001). Additionally, expression of glial-associated neuroinflammatory markers ionized calcium-binding adaptor molecule 1 (Iba1) and glial fibrillary acidic protein (GFAP) in western blots of P22 brain homogenate were significantly higher after LPS than after LPS/MorMdz (Iba1, p < 0.0001; GFAP, p < 0.001). Likewise, proinflammatory cytokines were increased in brains of LPS-treated pups versus Saline (p = 0.002), but not LPS/MorMdz-treated pups (p = 0.16). These results are of potential interest during pediatric critical illness, as inflammation is ubiquitous and the effects of multidrug sedation on homeostatic neuroimmune responses need to be considered along with neurodevelopmental effects.


Asunto(s)
Delirio , Enfermedades Neuroinflamatorias , Humanos , Ratas , Animales , Masculino , Femenino , Hipnóticos y Sedantes/efectos adversos , Hipnóticos y Sedantes/metabolismo , Cuidados Posteriores , Enfermedad Crítica , Alta del Paciente , Encéfalo/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Benzodiazepinas/farmacología , Analgésicos Opioides/efectos adversos , Delirio/metabolismo , Lipopolisacáridos/toxicidad
13.
Hum Exp Toxicol ; 41: 9603271221102515, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35593271

RESUMEN

Testicular torsion is an emergency, mainly in newborn and adolescent males, resulting in testicular ischemia. The current study aimed to evaluate the effect of Idebenone (IDE) on testicular torsion/detorsion (T/D) in juvenile rats. Thirty-two rats were randomized into: (1) the sham group: rats received sham operations with no other interventions; (2) the IDE group: rats received idebenone (100 mg/kg, i. p) without T/D; (3) the T/D group: rats underwent torsion for 2 h and detorsion for 4 h; and (4) the IDE+ T/D group: rats received IDE 1 h before T/D. Testicular malondialdehyde (MDA), total nitrite/nitrate (NOx), total antioxidant capacity (TAC), tumor necrosis factor-α (TNF-α), caspase-3, sirtuin type 1 (Sirt1), serum interleukin-1ß (IL-1ß), total cholesterol, and testosterone were measured. Histological changes, nuclear factor (erythroid-derived 2)-like-2 factors (Nrf2), and proliferating cell nuclear antigen (PCNA) immuno-expressions were assessed. T/D displayed an increase in MDA, NOx, TNF-α, caspase-3, IL-1ß, and total cholesterol with a significant decrease in TAC, Sirt1, and testosterone and strong positive Nrf2 and negative PCNA immuno-expressions. IDE could improve all oxidative, inflammatory, and apoptotic indicators. Therefore, IDE significantly reduced testicular ischemia-reperfusion injury in the juvenile rat testicular T/D model by limiting oxidative stress, inflammation, and apoptosis via the Sirt1/Nrf2/TNF-α pathway.


Asunto(s)
Daño por Reperfusión , Torsión del Cordón Espermático , Adolescente , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Apoptosis , Caspasa 3/metabolismo , Colesterol , Humanos , Inflamación/metabolismo , Masculino , Malondialdehído/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ratas , Ratas Wistar , Daño por Reperfusión/metabolismo , Sirtuina 1/metabolismo , Torsión del Cordón Espermático/tratamiento farmacológico , Torsión del Cordón Espermático/metabolismo , Torsión del Cordón Espermático/patología , Testículo , Testosterona/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Ubiquinona/análogos & derivados
14.
J Inflamm Res ; 14: 1085-1110, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33790622

RESUMEN

PURPOSE: Hypertension (HTN) is a major risk factor for cardiovascular disease. In recent years, there were numerous studies on the function of stress in HTN. However, the gut dysbiosis linked to hypertension in animal models under stress is still incompletely understood. Purpose of this study is to use multiple determination method to determine the juvenile stage intestinal bacteria, cytokines and changes in hormone levels. METHODS: Four groups of juvenile male spontaneously hypertensive rats (SHRs) and age-matched male Wistar-Kyoto (WKY) rats were randomly selected as control and experimental groups. Rats in the two stress groups were exposed to restraint stress for 3 hours per day for 7 consecutive days. In one day three times in the method of non-invasive type tail-cuff monitoring blood pressure. The detailed mechanism was illuminated based on the intestinal change using immunohistochemical and immunofluorescence staining and the stress-related hormone and inflammation factors were analyzed via ELISA method. The integrity of the epithelial barrier was assessed using FITC/HRP and the expression levels of proteins associated with the tight junction was detected by Western blot. The alteration of stress-related intestinal flora from ileocecal junction and distal colon were also analyzed using its 16S rDNA sequencing. RESULTS: The results indicate that acute stress rapidly increases mean arterial pressure which is positive correlation to hormone concentration, especially in SHR-stress group. Meanwhile, stress promoted the enhancement of epithelial permeability accompanied with a reduced expression of the tight junction-related protein and the macrophages (Mφ) aggregation to the lamina propria. There were remarkable significant increase of stress-related hormones and pro-inflammatory factor interleukin (IL)-6 along with a decrease in the diversity of intestinal flora and an imbalance in the F/B ratio. CONCLUSION: Our results reveal that stress accompanied with HTN could significantly disrupt the domino effect between intestinal flora and homeostasis.

15.
Environ Pollut ; 256: 113461, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31706765

RESUMEN

OBJECTIVE: Electrohypersensitive people attribute various symptoms to exposure of radiofrequency electromagnetic fields (RF-EMF); sleep disturbance is the most frequently cited. However, laboratory experiments have yielded conflicting results regarding sleep alterations. Our hypothesis was that exposure to RF-EMF alone would lead to slight or non-significant effects but that co-exposure to RF-EMFs and other environmental constraints (such as noise) would lead to significant effects. METHODS: 3-week-old male Wistar rats (4 groups, n = 12 per group) were exposed for 5 weeks to continuous RF-EMF (900 MHz, 1.8 V/m, SAR = 30 mW/kg) in the presence or absence of high-level noise (87.5 dB, 50-20000 Hz) during the rest period. After 5 weeks of exposure, sleep (24 h recording), food and water intakes, and body weight were recorded with or without RF-EMF and/or noise. At the end of this recording period, sleep was scored during the 1 h resttime in the absence of noise and of RF-EMF exposure. RESULTS: Exposure to RF-EMF and/or noise was associated with body weight gain, with hyperphagia in the noise-only and RF-EMF + noise groups and hypophagia in the RF-EMF-only group. Sleep parameters recording over 24 h highlighted a higher frequency of active wakefulness in the RF-EMF-only group and a lower non-rapid eye movement/rapid eye movement sleep ratio during the active period in the noise-only group. There were no differences in sleep duration in either group. During the 1-h, constraint-free sleep recording, sleep rebound was observed in the noise-only group but not in the RF-EMF-only and RF-EMF + noise groups. CONCLUSION: Our study showed effects of RF-EMF, regardless of whether or not the animals were also exposed to noise. However, the RF-EMF + noise group presented no exacerbation of those effects. Our results did not support the hypothesis whereby the effects of RF-EMF on physiological functions studied are only visible in animals exposed to both noise and RF-EMF.


Asunto(s)
Campos Electromagnéticos , Ruido , Ondas de Radio , Animales , Peso Corporal , Ingestión de Alimentos , Exposición a Riesgos Ambientales , Humanos , Masculino , Ratas , Ratas Wistar , Sueño/fisiología
16.
Artículo en Zh | WPRIM | ID: wpr-987669

RESUMEN

@#Cinnabaris(α-HgS) is a mineral traditional Chinese material medica, as a tranquilizer and sedative, which is widely used in combination with herbs for the treatment of children high fever and convulsion.However, a large amount of mercury in Cinnabaris poses a potential risk to the immature central nervous system of children and probably causes severe memory disorders.Inthisstudy,three groups of juvenile rats were given low, medium, and high doses of Cinnabaris by oral gavage once a day for 14 continuous weeks, respectively.The blood mercury concentrations of the rats at different growth phases were monitored by atomic fluorescence spectrometry.The brain structural and functional changes related to the memory functions were investigated through HE staining and Morris water-maze test. Correlation analysis was conducted to clarify the dose- mercury exposure-toxic effect relationship of Cinnabaris and memory disorders.It was found thatthe blood mercury levels increased in both time- and dose-dependent manner.After the 14-week continuous administration of Cinnabaris, the pathological lesions in hippocampal neurons of rats in the high dose group were observed including pyknosis and disordered cell arrangement.In the Morris water-maze test, compared with the control group, rats in the high dose group exhibited the significantly prolonged latency to find the platform and the target quadrant, and the time spent in the target quadrant was obviously shortened. Thus, the significant correlations were established between Cinnabaris dose and mercury exposure,mercury exposure and memory disorders, respectively. In conclusion, the long-term and overdose administration of Cinnabaris in juvenile rats can increase the in-vivo mercury level, destroy the normal hippocampal morphological structure, and lead to memory disorders. This study provided scientific references for the potential mercury poisoning risks pharmacovigilance of Cinnabaris-containing paediatric formulations.

17.
Neuroscience ; 361: 6-18, 2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-28802914

RESUMEN

Adverse effects of nicotine during pregnancy have been greatly studied, while nowadays few works are focused on consequences of maternal tobacco smoking after birth. The present study investigated the behavioral and early neurochemical effects of nicotine treatment during first weeks of post-natal life in rats. We used "free choice" treatment (H2O+NIC dams could drink from two bottles, containing 10mg/L nicotine hydrogen tartrate salt, or water) versus "forced choice" (NIC+NIC mothers could drink from two bottles both containing nicotine hydrogen tartrate salt, range from 0.75mg/L to 4.09mg/L). We found that only "forced nicotine" had impact on maternal behavior, causing increased high-quality maternal care. This immediately impacted on neuro-chemical development, affecting NE levels (only males) in pup's striatum and prefrontal cortex (pFC) at PND 12. After weaning, animals were reared in normal conditions (two brother rats) or in Social Isolation. After two weeks, they were tested with Social Interaction Test (isolated rats met non-isolated opponents, siblings vs. non-siblings). As expected, isolated rats displayed an aggressive form of soliciting behavior: when facing an isolated unknown partner, the non-isolated rat tried to escape. Interestingly, if their dams were exposed to forced nicotine, both rats sooner behaved very affiliative (possibly empathic) between non-sibling partners. As expected, being exposed to post-natal nicotine could alter neuro-chemical development, but with important interactions between both maternal care and adolescent social behavior.


Asunto(s)
Conducta Animal/efectos de los fármacos , Conducta de Elección/efectos de los fármacos , Exposición Materna/efectos adversos , Nicotina/farmacología , Aislamiento Social , Animales , Animales Recién Nacidos , Femenino , Lactancia/efectos de los fármacos , Masculino , Conducta Materna/efectos de los fármacos , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Ratas , Destete
18.
Int J Radiat Biol ; 90(12): 1211-7, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24899391

RESUMEN

PURPOSE: Due to a lack of science-based evidence, we explored the effects of exposure to intermediate frequency magnetic fields (IF-MF) on experimental animals. We assessed several immunological parameters to determine the effect of exposure of the whole body to IF-MF. MATERIALS AND METHODS: Male Sprague-Dawley rats (4-5 weeks old) were divided into three groups: Cage-control, sham, and 3.8-mT (rms) exposure groups. The animals were exposed to IF-MF at 21 kHz under fixed conditions in an acrylic holder. Exposure was performed for 1 h/day for 14 consecutive days. On the 15th day following the exposure, biochemical and hematological parameters in blood were analyzed. The effects of the exposure on immunological functions such as the cytotoxic activity of lymphocytes, chemotactic and phagocytic activity of granulocytes, and T (cluster of differentiation 4 [CD4] and cluster of differentiation 8 [CD8])-cell frequency were also examined. RESULTS: Hematological parameters were not affected by IF-MF exposure. Other immune functions such as the cytotoxic activity and phagocytic activity were not affected. Populations of T cells after exposure also did not show any significant differences. In blood biochemistry, there was significant difference in inorganic phosphorus level between sham and exposure group. However, this will not induce any pathophysiological status, because they were still within physiological range. Overall, no significant effect by exposure of IF-MF was observed under our experimental conditions. CONCLUSIONS: Our results suggest that exposure to 21-kHz sinusoidal IF-MF at 3.8 mT for 1 h/day for 14 days did not affect immune function in juvenile rats.


Asunto(s)
Análisis Químico de la Sangre , Inmunidad , Campos Magnéticos/efectos adversos , Animales , Peso Corporal , Hematología , Masculino , Ratas , Ratas Sprague-Dawley , Linfocitos T/citología , Linfocitos T/inmunología
19.
Artículo en Zh | WPRIM | ID: wpr-572104

RESUMEN

Objective:To make animal model of chronic heart failure(CHF)resulting from pressure overload in juvenile rats,and discuss its pathophysiology.Methods:The animal model of CHF was established by constriction of abdominal aorta.After four weeks of operation,the high frequency ultrasonography,the hemodynamic study,the pathologic analysis of hearts were undergone,the cardiac myocyte apoptosis,and serum contents of lipid peroxidation(LPO) and superoxide dismutase(SOD) were investigated.Results:Compared with the sham-operated group,inner diameter,wall thickness of left ventricule,LVRW,RVRW,SBP,DBP,LVSP,LVEDP,AI,LPO increased significantly( P

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda