Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Sensors (Basel) ; 23(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36772112

RESUMEN

Tailored optical frequency combs are generated by nesting passive etalons within mode-locked oscillators. In this work, the oscillator generates a comb of 6.8 GHz with 106 MHz side-bands. This tailored comb results from the self-synchronized locking of two cavities with precision optical frequency tuning. In this manuscript, it is demonstrated that these combs can be precisely predicted utilizing a temporal ABCD matrix method and precise comb frequency tuning by scanning over the D1 transition line of 87Rb and observing the fluorescence.

2.
Sensors (Basel) ; 23(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36904737

RESUMEN

Intracavity phase interferometry is a powerful phase sensing technique using two correlated, counter-propagating frequency combs (pulse trains) in mode-locked lasers. Generating dual frequency combs of the same repetition rate in fiber lasers is a new field with hitherto unanticipated challenges. The large intensity in the fiber core, coupled with the nonlinear index of glass, result in a cumulative nonlinear index on axis that dwarfs the signal to be measured. The large saturable gain changes in an unpredictable way the repetition rate of the laser impeding the creation of frequency combs with identical repetition rate. The huge amount of phase coupling between pulses crossing at the saturable absorber eliminates the small signal response (deadband). Although there have been prior observation of gyroscopic response in mode-locked ring lasers, to our knowledge this is the first time that orthogonally polarized pulses were used to successfully eliminate the deadband and obtain a beat note.

3.
Sensors (Basel) ; 23(14)2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37514709

RESUMEN

This study presents a comparison of data acquired from three LiDAR sensors from different manufacturers, i.e., Yellow Scan Mapper (YSM), AlphaAir 450 Airborne LiDAR System CHC Navigation (CHC) and DJI Zenmuse L1 (L1). The same area was surveyed with laser sensors mounted on the DIJ Matrice 300 RTK UAV platform. In order to compare the data, a diverse test area located in the north-western part of the Lublin Province in eastern Poland was selected. The test area was a gully system with high vegetation cover. In order to compare the UAV information, LiDAR reference data were used, which were collected within the ISOK project (acquired for the whole area of Poland). In order to examine the differentiation of the acquired data, both classified point clouds and DTM products calculated on the basis of point clouds acquired from individual sensors were compared. The analyses showed that the largest average height differences between terrain models calculated from point clouds were recorded between the CHC sensor and the base data, exceeding 2.5 m. The smallest differences were recorded between the L1 sensor and ISOK data-RMSE was 0.31 m. The use of UAVs to acquire very high resolution data can only be used locally and must be subject to very stringent landing site preparation procedures, as well as data processing in DTM and its derivatives.

4.
Sensors (Basel) ; 23(6)2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36991756

RESUMEN

In this work, a fiber laser refractometer based on a fiber ball lens (FBL) interferometer is proposed. The linear cavity erbium-doped fiber laser uses an FBL structure acting as a spectral filter and sensing element for determining the RI of a liquid medium surrounding the fiber. The optical interrogation of the sensor is the wavelength displacement of the generated laser line as a function of the RI variations. For the proposed FBL interferometric filter, the free spectral range of its wavelength-modulated reflection spectrum is adjusted to maximum in order to obtain RI measurements in a range of 1.3939 to 1.4237 RIU, from laser wavelength displacements in a range from 1532.72 to 1565.76 nm. The obtained results show that the wavelength of the generated laser line is a linear function of the RI variations on the medium surrounding the FBL with a sensitivity of 1130.28 nm/RIU. The reliability of the proposed fiber laser RI sensor is analytically and experimentally investigated.

5.
Sensors (Basel) ; 22(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36366155

RESUMEN

Optical rangefinders based on Self-Mixing Interferometry are widely described in literature, but not yet on the market as commercial instruments. The main reason is that it is relatively easy to propose new elaboration techniques and get results in controlled conditions, while it is very difficult to develop a reliable instrument. In this paper, we propose a laser distance sensor with improved reliability, realized through a wavelength modulation at a different frequency, able to decorrelate single measurement errors and obtain improvement by averages. A dedicated software is implemented to automatically calculate the modulation pre-emphasis, needed to linearize the wavelength modulation. Finally, data selection algorithms allow to overcome signal fading problems due to the speckle effect. A prototype demonstrates the approach with about 0.1 mm accuracy up to 2 m of distance at 200 measurements per second.

6.
Sensors (Basel) ; 23(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36616899

RESUMEN

This study addresses any sensor based on measuring a physical quantity through the phase of a probing beam. This includes sensing of rotation, acceleration, index change, displacement, fields… While most phase measurements are made by detecting an amplitude change in interfering beams, we detect instead a phase change through a relative frequency shift of two correlated frequency combs. This paper explores the limit sensitivity that this method can achieve, when the combs are generated in an Optical Parametric Oscillator (OPO), pumped synchronously by a train of femtosecond pulses separated by half the OPO cavity round-trip time. It is shown that a phase difference as small as 0.4 nanoradians can be resolved between the two pulses circulating in the cavity. This phase difference is one order of magnitude better than the previous record. The root-mean-square deviation of the measured phase over measuring time is close to the standard quantum limit (phase-photon number uncertainty product of 0.66). Innovations that made such improved performances possible include a more stable OPO cavity design; a stabilization system with a novel purely electronic locking of the OPO cavity length relative to that of the pump laser; a shorter pump laser cavity; and a square pulse generator for driving a 0.5 mm pathlength lithium niobate phase modulator. Future data acquisition improvements are suggested that will bring the phase sensitivity exactly to the standard quantum limit, and beyond the quantum limit by squeezing.

7.
Sensors (Basel) ; 22(16)2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-36015703

RESUMEN

The development of light detection and ranging (lidar) technology began in the 1960s, following the invention of the laser, which represents the central component of this system, integrating laser scanning with an inertial measurement unit (IMU) and Global Positioning System (GPS). Lidar technology is spreading to many different areas of application, from those in autonomous vehicles for road detection and object recognition, to those in the maritime sector, including object detection for autonomous navigation, monitoring ocean ecosystems, mapping coastal areas, and other diverse applications. This paper presents lidar system technology and reviews its application in the modern road transportation and maritime sector. Some of the better-known lidar systems for practical applications, on which current commercial models are based, are presented, and their advantages and disadvantages are described and analyzed. Moreover, current challenges and future trends of application are discussed. This paper also provides a systematic review of recent scientific research on the application of lidar system technology and the corresponding computational algorithms for data analysis, mainly focusing on deep learning algorithms, in the modern road transportation and maritime sector, based on an extensive analysis of the available scientific literature.


Asunto(s)
Ecosistema , Transportes , Predicción , Rayos Láser
8.
Sensors (Basel) ; 21(4)2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33670280

RESUMEN

A low-cost optical reflectivity sensor is proposed in this paper, able to detect the presence of objects or surface optical properties variations, at a distance of up to 20 m. A collimated laser beam is pulsed at 10 kHz, and a synchronous digital detector coherently measures the back-diffused light collected through a 1-inch biconvex lens. The sensor is a cost-effective solution for punctual measurement of the surface reflection at different distances. To enhance the interference immunity, an algorithm based on a double-side digital baseline restorer is proposed and implemented to accurately detect the amplitude of the reflected light. As results show, the sensor is robust against ambient light and shows a strong sensitivity on a wide reflection range. The capability of the proposed sensor was evaluated experimentally for object detection and recognition, in addition to dedicated measurement systems, like remote encoders or keyphasors, realized far from the object to be measured.

9.
Sensors (Basel) ; 21(12)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208632

RESUMEN

The paper presents the contemporary displacement measurement systems used in geotechnical laboratories during the determination of soil precise mechanical parameters, e.g., the shear modules G: initial and in the range of small and very small strains. In the laboratory, researchers use standard sensors for measuring deformation, pressure, and force as well as modern measuring systems such as linear variable differential transformers (LVDT), proximity transducers (PT), magnetic encoder sensors with fiber Bragg grating (FBG), or methods based on laser or X-ray measurement. None of the measurements are universal and their use depends on the type of soil (cohesive, non-cohesive), its condition (loose or dense, stiff or very soft), and its characteristic properties (e.g., organic soil, swelling soil). This study points out the interesting equipment solutions and presents the guidelines for selecting appropriate methods of deformation measurement.

10.
Sensors (Basel) ; 21(24)2021 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-34960566

RESUMEN

A method to increase the sensitivity of an intracavity differential phase measurement that is not made irrelevant by a larger increase of noise is explored. By introducing a phase velocity feedback by way of a resonant dispersive element in an active sensor in which two ultrashort pulses circulate, it is shown that the measurement sensitivity is elevated without significantly increasing the Petermann excess noise factor. This enhancement technique has considerable implications for any optical phase based measurement; from gyroscopes and accelerometers to magnetometers and optical index measurements. Here we describe the enhancement method in the context of past dispersion enhancement studies including the recent work surrounding non-Hermitian quantum mechanics, justify the method with a theoretical framework (including numerical simulations), and propose practical applications.

11.
Sensors (Basel) ; 19(8)2019 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-31022844

RESUMEN

Laser sensors can be used to measure distances to objects and their related parameters (displacements, position, surface profiles and velocities). Laser sensors are based on many different optical techniques, such as triangulation, time-of-flight, confocal and interferometric sensors. As laser sensor technology has improved, the size and cost of sensors have decreased, which has led to the widespread use of laser sensors in many areas. In addition to traditional manufacturing industry applications, laser sensors are increasingly used in robotics, surveillance, autonomous driving and biomedical areas. This paper outlines some of the recent efforts made towards laser sensors for displacement, distance and position.

12.
Sensors (Basel) ; 18(3)2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-29495610

RESUMEN

A ppbv-level quartz-enhanced photoacoustic spectroscopy (QEPAS)-based ethane (C2H6) sensor was demonstrated by using a 3.3 µm continuous-wave (CW), distributed feedback (DFB) interband cascade laser (ICL). The ICL was employed for targeting a strong C2H6 absorption line located at 2996.88 cm-1 in its fundamental absorption band. Wavelength modulation spectroscopy (WMS) combined with the second harmonic (2f) detection technique was utilized to increase the signal-to-noise ratio (SNR) and simplify data acquisition and processing. Gas pressure and laser frequency modulation depth were optimized to be 100 Torr and 0.106 cm-1, respectively, for maximizing the 2f signal amplitude. Performance of the QEPAS sensor was evaluated using specially prepared C2H6 samples. A detection limit of 11 parts per billion in volume (ppbv) was obtained with a 1-s integration time based on an Allan-Werle variance analysis, and the detection precision can be further improved to ~1.5 ppbv by increasing the integration time up to 230 s.

13.
Sensors (Basel) ; 18(11)2018 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-30453577

RESUMEN

This paper presents a new method for measuring the linewidth enhancement factor (alpha factor) by the relaxation oscillation (RO) frequency of a laser with external optical feedback (EOF). A measurement formula for alpha is derived which shows the alpha can be determined by only using the RO frequencies and no need to know any other parameters related to the internal or external parameters associated to the laser. Unlike the existing EOF based alpha measurement methods which require an external target has a symmetric reciprocate movement. The proposed method only needs to move the target to be in a few different positions along the light beam. Furthermore, this method also suits for the case with alpha less than 1. Both simulation and experiment are performed to verify the proposed method.

14.
Sensors (Basel) ; 18(7)2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-29954082

RESUMEN

We employed a single-mode, widely tunable (~300 cm−1) external-cavity quantum cascade laser operating around 8 µm for broadband direct absorption spectroscopy and wavelength modulation spectroscopy where a modulation frequency of 50 kHz was employed with high modulation amplitudes of up to 10 GHz. Using a compact multipass cell, we measured the entire molecular absorption band of acetone at ~7.4 µm with a spectral resolution of ~1 cm−1. In addition, to demonstrate the high modulation dynamic range of the laser, we performed direct absorption (DAS) and second harmonic wavelength modulation spectroscopy (WMS-2f) of the Q-branch peak of acetone molecular absorption band (HWHM ~10 GHz) near 1365 cm−1. With WMS-2f, a minimum detection limit of 15 ppbv in less than 10 s is achieved, which yields a noise equivalent absorption sensitivity of 1.9 × 10−8 cm−1 Hz−1/2.

15.
Sensors (Basel) ; 17(6)2017 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-28587116

RESUMEN

In this work, a beat-frequency encoded fiber laser hydrophone is developed for high-resolution acoustic detection by using an elastic corrugated diaphragm. The diaphragm is center-supported by the fiber. Incident acoustic waves deform the diaphragm and induce a concentrated lateral load on the laser cavity. The acoustically induced perturbation changes local optical phases and frequency-modulates the radio-frequency beat signal between two orthogonal lasing modes of the cavity. Theoretical analysis reveals that a higher corrugation-depth/thickness ratio or larger diaphragm area can provide higher transduction efficiency. The experimentally achieved average sensitivity in beat-frequency variation is 185.7 kHz/Pa over a bandwidth of 1 kHz. The detection capability can be enhanced by shortening the cavity length to enhance the signal-to-noise ratio. The minimum detectable acoustic pressure reaches 74 µPa/Hz1/2 at 1 kHz, which is comparable to the zeroth order sea noise.

16.
Sensors (Basel) ; 15(8): 19140-56, 2015 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-26251907

RESUMEN

We study the nonlinear dynamics of a quantum cascade laser (QCL) with a strong reinjection provided by the feedback from two external targets in a double cavity configuration. The nonlinear coupling of interferometric signals from the two targets allows us to propose a displacement sensor with nanometric resolution. The system exploits the ultra-stability of QCLs in self-mixing configuration to access the intrinsic nonlinearity of the laser, described by the Lang-Kobayashi model, and it relies on a stroboscopic-like effect in the voltage signal registered at the QCL terminals that relates the "slow" target motion to the "fast" target one.

17.
Sensors (Basel) ; 11(1): 138-61, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22346571

RESUMEN

Neuromolecular Imaging (NMI) based on adsorptive electrochemistry, combined with Dual Laser Doppler Flowmetry (LDF) is presented herein to investigate the brain neurochemistry affected by enoxaparin (Lovenox(®)), an antiplatelet/antithrombotic medication for stroke victims. NMI with miniature biosensors enables neurotransmitter and neuropeptide (NT) imaging; each NT is imaged with a response time in milliseconds. A semiderivative electronic reduction circuit images several NT's selectively and separately within a response time of minutes. Spatial resolution of NMI biosensors is in the range of nanomicrons and electrochemically-induced current ranges are in pico- and nano-amperes. Simultaneously with NMI, the LDF technology presented herein operates on line by illuminating the living brain, in this example, in dorso-striatal neuroanatomic substrates via a laser sensor with low power laser light containing optical fiber light guides. NMI biotechnology with BRODERICK PROBE(®) biosensors has a distinct advantage over conventional electrochemical methodologies both in novelty of biosensor formulations and on-line imaging capabilities in the biosensor field. NMI with unique biocompatible biosensors precisely images NT in the body, blood and brain of animals and humans using characteristic experimentally derived half-wave potentials driven by oxidative electron transfer. Enoxaparin is a first line clinical treatment prescribed to halt the progression of acute ischemic stroke (AIS). In the present studies, BRODERICK PROBE(®) laurate biosensors and LDF laser sensors are placed in dorsal striatum (DStr) dopaminergic motor neurons in basal ganglia of brain in living animals; basal ganglia influence movement disorders such as those correlated with AIS. The purpose of these studies is to understand what is happening in brain neurochemistry and cerebral blood perfusion after causal AIS by middle cerebral artery occlusion in vivo as well as to understand consequent enoxaparin and reperfusion effects actually while enoxaparin is inhibiting blood clots to alleviate AIS symptomatology. This research is directly correlated with the medical and clinical needs of stroke victims. The data are clinically relevant, not only to movement dysfunction but also to the depressive mood that stroke patients often endure. These are the first studies to image brain neurotransmitters while any stroke medications, such as anti-platelet/anti-thrombotic and/or anti-glycoprotein are working in organ systems to alleviate the debilitating consequences of brain trauma and stroke/brain attacks.


Asunto(s)
Anticoagulantes/uso terapéutico , Técnicas Biosensibles , Lesiones Encefálicas/metabolismo , Dopamina/metabolismo , Enoxaparina/uso terapéutico , Serotonina/metabolismo , Accidente Cerebrovascular/metabolismo , Animales , Velocidad del Flujo Sanguíneo , Lesiones Encefálicas/patología , Técnicas Electroquímicas , Flujometría por Láser-Doppler , Masculino , Neuronas Motoras/metabolismo , Ratas , Ratas Sprague-Dawley , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/patología
18.
Materials (Basel) ; 14(18)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34576407

RESUMEN

To ensure that measurements can be made with non-contact metrology technologies, it is necessary to use verification and calibration procedures using precision artefacts as reference elements. In this environment, the need for increasingly accurate but also more cost-effective calibration artefacts is a clear demand in industry. The aim of this work is to demonstrate the feasibility of using low-cost precision spheres as reference artefacts in calibration and verification procedures of non-contact metrological equipment. Specifically, low-cost precision stainless steel spheres are used as reference artefacts. Obviously, for such spheres to be used as standard artefacts, it is necessary to change their optical behavior by removing their high brightness. For this purpose, the spheres are subjected to a manual sandblasting process, which is also a very low-cost process. The equipment used to validate the experiment is a laser triangulation sensor mounted on a Coordinate Measuring Machine (CMM). The CMM touch probe, which is much more accurate, will be used as a device for measuring the influence of sandblasting on the spheres. Subsequently, the influence of this post-processing is also checked with the laser triangulation sensor. Ultimately, the improvement in the quality of the point clouds captured by the laser sensor will be tested after removing the brightness, which distorts and reduces the quantity of points as well as the quality of the point clouds. In addition to the number of points obtained, the parameters used to study the effect of sandblasting on each sphere, both in contact probing and laser scanning, are the measured diameter, the form error, as well as the standard deviation of the point cloud regarding the best-fit sphere.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 226: 117605, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-31605968

RESUMEN

A simple, compact sensor involving a continuous-wave 3.38 µm distributed feedback laser in combination with a novel compact dense-pattern multipass cell was demonstrated for simultaneous measurement of atmospheric methane and water vapor. The calibration-free direct absorption spectroscopy approach was adopted for data generation and processing. Allan deviation analysis indicates that minimum detection limits (1σ) of 11.0 ppb for CH4 and 100 ppm for H2O were achieved with a 1-s integration time at an optimum pressure of 50 Torr. Atmospheric environmental mixing ratios of these two gases were recorded and analyzed. This newly developed mid-infrared dual-gas sensor is very suitable for trace gas sensing in weight-limited unmanned aerial vehicle- or balloon-embedded field observations.

20.
Biomed Opt Express ; 8(8): 3516-3525, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28856031

RESUMEN

We propose and demonstrate a single-laser-based sensing method for measuring both blood oxygenation and microvascular blood flow. Based on the optimal wavelength range found from theoretical analysis on differential absorption based blood oxygenation measurement, we designed and fabricated a 720-nm-band wavelength tunable V-cavity laser. Without any grating or bandgap engineering, the laser has a wavelength tuning range of 14.1 nm. By using the laser emitting at 710.3 nm and 724.4 nm to measure the oxygenation and blood flow, we experimentally demonstrate the proposed method.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda