Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
ACS Appl Mater Interfaces ; 15(5): 7184-7195, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36701765

RESUMEN

Bistable polymer-stabilized cholesteric liquid crystal (LC) devices have been extensively researched due to their energy-saving benefits. Compared to devices with merely transparent and light-scattering states, LC devices with controlled light absorption or changeable color functions are unquestionably more intriguing. In this paper, a polymer-stabilized ion-doped cholesteric LC and an electrochromic layer are used to fabricate a colorable device which can show four operating states: transparent, light-scattering, colored transparent, and colored light-scattering. The working principle and fabrication strategy are explained in detail. Based on the dielectric response of LC, the electrohydrodynamic effect of ion-doped LC, and the redox reaction of electrochromic materials, the transparent or light-scattering state and the colored or colorless state of the device can be regulated by controlling the alternating frequency and the direction of the electric field. The display performance related to the monomer, chiral dopant, and electrochromic layer is investigated. The content of monomer and chiral dopant affects the polymer network and pitch of cholesteric LC, which then affects the driving voltages and contrast ratio. The thickness of the electrochromic layer has a significant impact on the transmittance of the device's coloring and fading states. The sample with excellent operating states is obtained by optimizing the material and the construction, which can be widely applied in smart windows and energy-saving display devices.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda