Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Clin Chem Lab Med ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896030

RESUMEN

Extracellular vesicles (EVs) represent a diverse class of nanoscale membrane vesicles actively released by cells. These EVs can be further subdivided into categories like exosomes and microvesicles, based on their origins, sizes, and physical attributes. Significantly, disease-derived EVs have been detected in virtually all types of body fluids, providing a comprehensive molecular profile of their cellular origins. As a result, EVs are emerging as a valuable addition to liquid biopsy techniques. In this collective statement, the authors share their current perspectives on EV-related research and product development, with a shared commitment to translating this newfound knowledge into clinical applications for cancer and other diseases, particularly as disease biomarkers. The consensus within this document revolves around the overarching recognition of the merits, unresolved questions, and existing challenges surrounding EVs. This consensus manuscript is a collaborative effort led by the Committee of Exosomes, Society of Tumor Markers, Chinese anti-Cancer Association, aimed at expediting the cultivation of robust scientific and clinically applicable breakthroughs and propelling the field forward with greater swiftness and efficacy.

2.
Front Neurosci ; 11: 278, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28588440

RESUMEN

Our team has been a pioneer in harvesting extracellular vesicles (EVs) enriched for neuronal origin from peripheral blood and using them as a biomarker discovery platform for neurological disorders. This methodology has demonstrated excellent diagnostic and predictive performance for Alzheimer's and other neurodegenerative diseases in multiple studies, providing a strong proof of concept for this approach. Here, we describe our methodology in detail and offer further evidence that isolated EVs are enriched for neuronal origin. In addition, we present evidence that EVs enriched for neuronal origin represent a more sensitive and accurate base for biomarkers than plasma, serum, or non-enriched total plasma EVs. Finally, we proceed to investigate the protein content of EVs enriched for neuronal origin and compare it with other relevant enriched and non-enriched populations of plasma EVs. Neuronal-origin enriched plasma EVs contain higher levels of signaling molecules of great interest for cellular metabolism, survival, and repair, which may be useful as biomarkers and to follow response to therapeutic interventions in a mechanism-specific manner.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda