Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Small ; : e2404135, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087389

RESUMEN

To effectively solve the challenges of rapid capacity decay and electrode crushing of silicon-carbon (Si-C) anodes, it is crucial to carefully optimize the structure of Si-C active materials and enhance their electron/ion transport dynamic in the electrode. Herein, a unique hybrid structure microsphere of Si/C/CNTs/Cu with surface wrinkles is prepared through a simple ultrasonic atomization pyrolysis and calcination method. Low-cost nanoscale Si waste is embedded into the pyrolysis carbon matrix, cleverly combined with the flexible electrical conductivity carbon nanotubes (CNTs) and copper (Cu) particles, enhancing both the crack resistance and transport kinetics of the entire electrode material. Remarkably, as a lithium-ion battery anode, the fabricated Si/C/CNTs/Cu electrode exhibits stable cycling for up to 2300 cycles even at a current of 2.0 A g-1, retaining a capacity of ≈700 mAh g-1, with a retention rate of 100% compared to the cycling started at a current of 2.0 A g-1. Additionally, when paired with an NCM523 cathode, the full cell exhibits a capacity of 135 mAh g-1 after 100 cycles at 1.0 C. Therefore, this synthesis strategy provides insights into the design of long-life, practical anode electrode materials with micro/nano-spherical hybrid structures.

2.
Nanotechnology ; 35(5)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37879321

RESUMEN

Transition metal selenides are considered as promising anode materials for fast-charging sodium-ion batteries due to their high theoretical specific capacity. However, the low intrinsic conductivity, particle aggregation, and large volume expansion problems can severely inhibit the high-rate and long-cycle performance of the electrode. Herein, FeSe2nanoparticles embedded in nitrogen-doped carbon nanofibers (FeSe2@NCF) have been synthesized using the electrospinning and selenization process, which can alleviate the volume expansion and particle aggregation during the sodiation/desodiation and improve the electrical conductivity of the electrode. The FeSe2@NCF electrode delivers the outstanding specific capacity of 222.3 mAh g-1at a fast current density of 50 A g-1and 262.1 mAh g-1at 10 A g-1with the 87.8% capacity retention after 5000 cycles. Furthermore, the Na-ion full cells assembled with pre-sodiated FeSe2@NCF as anode and Na3V2(PO4)3/C as cathode exhibit the reversible specific capacity of 117.6 mAh g-1at 5 A g-1with the 84.3% capacity retention after 1000 cycles. This work provides a promising way for the conversion-based metal selenides for the applications as fast-charging sodium-ion battery anode.

3.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36613728

RESUMEN

Due to its wide source and low cost, biomass-based hard carbon is considered a valuable anode for lithium-ion batteries (LIBs). Lignins, as the second most abundant source in nature, are being intensively studied as candidate anode materials for next generation LIBs. However, direct carbonization of pure lignin usually leads to low specific surface area and porosity. In this paper, we design a porous carbon material from natural lignin assisted by sacrificing a metal-organic framework (MOF) as the template. The MOF nanoparticles can disperse the lignin particles uniformly and form abundant mesopores in the composites to offer fast transfer channels for Li+. The as-prepared carbon anode shows a high specific capacity of 420 mAh g-1 with the capacity retention of 99% after 300 cycles at 0.2 A g-1. Additionally, it keeps the capacity retention of 85% after long cycle of 1000 cycles, indicating the good application value of the designed anode in LIBs. The work provides a renewable and low-cost candidate anode and a feasible design strategy of the anode materials for LIBs.


Asunto(s)
Lignina , Estructuras Metalorgánicas , Litio , Biomasa , Carbono , Electrodos , Iones
4.
ACS Appl Mater Interfaces ; 16(20): 26217-26225, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38733352

RESUMEN

Among various anode materials, SiOx is regarded as the next generation of promising anode due to its advantages of high theoretical capacity with 2680 mA h g-1, low lithium voltage platform, and rich natural resources. However, the pure SiOx-based materials have slow lithium storage kinetics attributed to their low electron/ion conductive properties and the large volume change during lithiation/delithiation, restricting their practical application. Optimizing the SiOx material structures and the fabricating methods to mitigate these fatal defects and adapt to the market demand for energy density is critical. Hence, SiOx material with TiO1-xNx phase modification has been prepared by simple, low-cost, and scalable ball milling and then combined with nitridation. Consequently, based on the TiO1-xNx modified layer, which boosts high ionic/electronic conductivity, chemical stability, and excellent mechanical properties, the SiOx@TON-10 electrode shows highly stable lithium-ion storage performance for lithium-ion half/full batteries due to a stable solid-electrolyte interface layer, fast Li+ transport channel, and alleviative volumetric expansion, further verifying its practical feasibility and universal applicability.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39361831

RESUMEN

Silicon oxide-based (SiOx-based) materials show great promise as anodes for high-energy lithium-ion batteries due to their high specific capacity. However, their practical application is hindered by the inevitable volumetric expansion during the lithiation/delithiation process. Constructing high-performance binders for SiOx-based anodes has been regarded as an efficient strategy to mitigate their volume expansion and preserve structural integrity. In this work, we propose a green water-solution PAA-LS binder composed of poly(acrylic acid) (PAA) and sodium lignosulfonate (LS) with fast self-healing properties. The designed binder can be restored due to the strong affinity between Fe3+-catechol coordination bonds, thereby effectively alleviating the volumetric strain of SiOx-based anodes. Notably, with an optimized LS content of 0.5%, the SiOx@PAA-LS electrode exhibits excellent performance, delivering a high capacity of 997.3 mAh g-1 after 450 cycles at 0.5 A g-1. Furthermore, the SiOx||NCM622 full cell also demonstrates superior cycling stability, maintaining a discharge capacity of 147.58 mAh g-1 after 100 cycles at 0.5 A g-1, with an impressive capacity retention rate of 82.72%.

6.
ACS Appl Mater Interfaces ; 13(15): 17707-17716, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33847109

RESUMEN

Nickel-rich Li(NixCoyMn1-x-yO2) (x ≥ 0.6) is considered to be a predominant cathode for next-generation lithium-ion batteries (LIBs) due to its towering specific energy density. Unfortunately, serious structural degradation causes rapid capacity degradation with the increase in nickel content. Herein, a Co and Ti co-modified LiNi0.8Co0.1Mn0.1O2 (NCM-811) cathode ameliorates the reversible capacity together with the rate capability by obviously alleviating the lattice structure degradation and microscopic intergranular cracks. Further studies show that the titanium doping effectively reduces the cation mixing and also stabilizes the crystal structure, while the spinel phase formed at the surface by a cobalt oxide coating is much stable than the layered phase at high voltage, which can alleviate the generation of micro-cracks. After 0.5% Co oxide coating and 1% Ti doping (T1Co0.5-NCM), a superior rate capability (121.75 mA h g-1 at 20 C between 2.7 and 4.5 V) and predominant capacity retention (74.2%) are observed compared with the pristine NCM-811 (59.5%) after 400 cycles between 2.7 and 4.7 V. This work supplies an eminent design of high-voltage and high-rate layered cathode materials and has a huge application prospect in the next generation of high-energy LIBs.

7.
ACS Appl Mater Interfaces ; 13(22): 25981-25992, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34039001

RESUMEN

The Li-rich and Mn-based material xLi2MnO3·(1-x)LiMO2 (M = Ni, Co, and Mn) is regarded as one of the new generations of cathode materials for Li-ion batteries due to its high energy density, low cost, and less toxicity. However, there still exist some drawbacks such as its high initial irreversible capacity, capacity/voltage fading, poor rate capability, and so forth, which seriously limit its large-scale commercial applications. In this paper, the Ta-Mo codoped Li1.2Ni0.13Co0.13Mn0.54O2 with high energy density is prepared via a coprecipitation method, followed by a solid-state reaction. The synthetic mechanism and technology, the effect of charge-discharge methods, the bulk doping and the surface structure design on the structure, morphology, and electrochemical performances of the Li1.2Ni0.13Co0.13Mn0.54O2 cathode are systematically investigated. The results show that Ta5+ and Mo6+ mainly occupy the Li site and transition-metal site, respectively. Both the appropriate Ta and Ta-Mo doping are conductive to increase the Mn3+ concentration and suppress the generation of Li/Ni mixing and the oxygen defects. The Ta-Mo codoped cathode sample can deliver 243.2 mA h·g-1 at 1 C under 2.0-4.8 V, retaining 80% capacity retention after 240 cycles, and decay 1.584 mV per cycle in 250 cycles. The capacity retention can be still maintained to 80% after 410 cycles over 2.0-4.4 V, and the average voltage fading rate is 0.714 mV per cycle in 500 cycles. Compared with the pristine, the capacity and voltage fading of Ta-Mo codoped materials are effectively suppressed, which are mainly ascribed to the fact that the highly valence Ta5+ and Mo6+ that entered into the crystal lattice are favorable for maintaining the charge balance, and the strong bond energies of Ta-O and Mo-O can help to maintain the crystal structure and relieve the corrosion from the electrolyte during the charging/discharging process.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda