Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Sensors (Basel) ; 22(21)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36365791

RESUMEN

This paper proposes a perimeter detection scheme based on the quantum physical properties of photons. Existing perimeter intrusion detection schemes, if using light, rely on the classical properties of light only. Our quantum sensor network uses the quantum property of spatial superposition of photons, meaning that a photon can simultaneously follow two different paths after going through a beam splitter. Using multiple Mach-Zehnder interferometers, an entire web of paths can be generated, such that one single photon occupies them all. If an intruder violates this web in some arbitrary point, the entire photon superposition is destroyed, the photon does not self-interfere any more and this event is detected by measurements. For one single photon, the intruder detection probability is limited theoretically but can be increased arbitrarily with the usage of a sequence of photons. We show both theoretical bounds as well as practical results of the proposed schemes. The practical results are obtained by simulation experiments on IBM Quantum platforms. The benefits of our quantum approach are: low power, invisibility to potential intruders, scalability and easy practical implementation.

2.
Sensors (Basel) ; 21(23)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34883846

RESUMEN

RF power is broadly available in both urban and semi-urban areas and thus exhibits as a promising candidate for ambient energy scavenging sources. In this research, a high-efficiency quad-band rectenna is designed for ambient RF wireless energy scavenging over the frequency range from 0.8 to 2.5 GHz. Firstly, the detailed characteristics (i.e., available frequency bands and associated power density levels) of the ambient RF power are studied and analyzed. The data (i.e., RF survey results) are then applied to aid the design of a new quad-band RF harvester. A newly designed impedance matching network (IMN) with an additional L-network in a third-branch of dual-port rectifier circuit is familiarized to increase the performance and RF-to-DC conversion efficiency of the harvester with comparatively very low input RF power density levels. A dual-polarized multi-frequency bow-tie antenna is designed, which has a wide bandwidth (BW) and is miniature in size. The dual cross planer structure internal triangular shape and co-axial feeding are used to decrease the size and enhance the antenna performance. Consequently, the suggested RF harvester is designed to cover all available frequency bands, including part of most mobile phone and wireless local area network (WLAN) bands in Malaysia, while the optimum resistance value for maximum dc rectification efficiency (up to 48%) is from 1 to 10 kΩ. The measurement result in the ambient environment (i.e., both indoor and outdoor) depicts that the new harvester is able to harvest dc voltage of 124.3 and 191.0 mV, respectively, which can be used for low power sensors and wireless applications.

3.
Sensors (Basel) ; 19(18)2019 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-31547403

RESUMEN

One of the basic needs of professional athletes is the real-time and non-invasive monitoring of their activities. The use of these kind of data is necessary to develop strategies for specific tailored training in order to improve performances. The sensor system presented in this work has the aim to adopt a novel approach for the monitoring of physiological parameters, and athletes' performances, during their training. The anaerobic threshold is herein identified with the monitoring of the lactate concentration and the respiratory parameters. The data collected by the sensor are used to build a model using a supervised method (based on the partial least squares method, PLS) to predict the values of the parameters of interest. The sensor is able to measure the lactate concentration from a sample of saliva and it can estimate a respiratory parameter, such as maximal oxygen consumption, maximal carbon dioxide production and respiratory rate from a sample of exhaled breath. The main advantages of the device are the low power; the wireless communication; and the non-invasive sampling method, which allow its use in a real context of sport practice.


Asunto(s)
Atletas , Ejercicio Físico , Ácido Láctico/análisis , Monitoreo Fisiológico/métodos , Pruebas Respiratorias , Ejercicio Físico/fisiología , Humanos , Análisis de los Mínimos Cuadrados , Monitoreo Fisiológico/estadística & datos numéricos , Consumo de Oxígeno/fisiología , Prueba de Estudio Conceptual , Saliva
4.
Sensors (Basel) ; 17(10)2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28972554

RESUMEN

In this work, three different concepts are used to develop a fully passive sensor that is capable of measuring different types of data. The sensor was supplied by Wireless Power Transmission (WPT). Communication between the sensor and reader is established by a backscatter, and to ensure minimum energy consumption, low power techniques are used. In a simplistic way, the process starts by the transmission of two different waves by the reader to the sensor, one of which is used in power transmission and the other of which is used to communicate. Once the sensor is powered, the monitoring process starts. From the monitoring state, results from after processing are used to modulate the incoming wave, which is the information that is sent back from the reader to the tag. This new combination of technologies enables the possibility of using sensors without any cables or batteries to operate 340 cm from the reader. The developed prototype measures acceleration and temperature. However, it is scalable. This system enables a new generation of passive Internet of Things (IoT) devices.

5.
Sensors (Basel) ; 17(8)2017 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-28788084

RESUMEN

We present a self-sustained battery-less multi-sensor platform with RF harvesting capability down to -17 dBm and implementing a standard DASH7 wireless communication interface. The node operates at distances up to 17 m from a 2 W UHF carrier. RF power transfer allows operation when common energy scavenging sources (e.g., sun, heat, etc.) are not available, while the DASH7 communication protocol makes it fully compatible with a standard IoT infrastructure. An optimized energy-harvesting module has been designed, including a rectifying antenna (rectenna) and an integrated nano-power DC/DC converter performing maximum-power-point-tracking (MPPT). A nonlinear/electromagnetic co-design procedure is adopted to design the rectenna, which is optimized to operate at ultra-low power levels. An ultra-low power microcontroller controls on-board sensors and wireless protocol, to adapt the power consumption to the available detected power by changing wake-up policies. As a result, adaptive behavior can be observed in the designed platform, to the extent that the transmission data rate is dynamically determined by RF power. Among the novel features of the system, we highlight the use of nano-power energy harvesting, the implementation of specific hardware/software wake-up policies, optimized algorithms for best sampling rate implementation, and adaptive behavior by the node based on the power received.

6.
Sensors (Basel) ; 15(9): 21554-66, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26343681

RESUMEN

This paper presents an ultra low-power and low-voltage pulse-width modulation based ratiometric capacitive sensor interface. The interface was designed and fabricated in a standard 90 nm CMOS 1P9M technology. The measurements show an effective resolution of 10 bits using 0.5 V of supply voltage. The active occupied area is only 0.0045 mm2 and the Figure of Merit (FOM), which takes into account the energy required per conversion bit, is 0.43 pJ/bit. Furthermore, the results show low sensitivity to PVT variations due to the proposed ratiometric architecture. In addition, the sensor interface was connected to a commercial pressure transducer and the measurements of the resulting complete pressure sensor show a FOM of 0.226 pJ/bit with an effective linear resolution of 7.64 bits. The results validate the use of the proposed interface as part of a pressure sensor, and its low-power and low-voltage characteristics make it suitable for wireless sensor networks and low power consumer electronics.

7.
Sensors (Basel) ; 10(1): 361-73, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-22315545

RESUMEN

We have developed a simple way to generate binary patterns based on spectral slopes in different frequency ranges at fluctuation-enhanced sensing. Such patterns can be considered as binary "fingerprints" of odors. The method has experimentally been demonstrated with a commercial semiconducting metal oxide (Taguchi) sensor exposed to bacterial odors (Escherichia coli and Anthrax-surrogate Bacillus subtilis) and processing their stochastic signals. With a single Taguchi sensor, the situations of empty chamber, tryptic soy agar (TSA) medium, or TSA with bacteria could be distinguished with 100% reproducibility. The bacterium numbers were in the range of 2.5 × 10(4)-10(6). To illustrate the relevance for ultra-low power consumption, we show that this new type of signal processing and pattern recognition task can be implemented by a simple analog circuitry and a few logic gates with total power consumption in the microWatts range.


Asunto(s)
Algoritmos , Técnicas Biosensibles/instrumentación , Recuento de Colonia Microbiana/instrumentación , Recuento de Colonia Microbiana/métodos , Transductores , Diseño de Equipo , Análisis de Falla de Equipo
8.
ACS Sens ; 5(2): 563-570, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31922397

RESUMEN

High-performance, monolithic photoactivated gas sensors based on the integration of gas-sensitive semiconductor metal oxide nanowires on micro light-emitting diodes (µLEDs) are introduced. The µLEDs showed improved irradiance and energy conversion efficiency (i.e., external quantum efficiency, EQE), as the size of LEDs was reduced from 200 × 200 µm2 (irradiance of 46.5 W/cm2 and EQE of 4%) to 30 × 30 µm2 (irradiance of 822.4 W/cm2 and EQE of 9%). Gas-sensitive zinc oxide (ZnO) nanowires were directly synthesized on top of the µLED through a hydrothermal reaction. The direct contact between the sensing component and µLED sensor platform leads to high light coupling efficiency, minimizing power consumption of the sensor. Furthermore, the sensing performance (i.e., sensitivity) at optimal operating power was improved as the LED size was reduced. The smallest fabricated gas sensor (active area = 30 × 30 µm2) showed excellent NO2 sensitivity (ΔR/R0 = 605% to 1 ppm NO2) at the optimal operating power (∼184 µW). In addition, the sensor showed a low limit of detection (∼14.9 ppb) and robustness to high humidity conditions, which demonstrate its potential for practical applications in mobile internet of things (IoT) devices.


Asunto(s)
Técnicas Biosensibles/métodos , Óxido de Zinc/química
9.
ACS Appl Mater Interfaces ; 11(45): 42349-42357, 2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31617994

RESUMEN

We developed self-heated, suspended, and palladium-decorated silicon nanowires (Pd-SiNWs) for high-performance hydrogen (H2) gas sensing with low power consumption and high stability against diverse environmental noises. To prepare the Pd-SiNWs, SiNWs were fabricated by conventional complementary metal-oxide-semiconductor (CMOS) processes, and Pd nanoparticles were coated on the SiNWs by a physical vapor deposition method. Suspended Pd-SiNWs were simply obtained by etching buried oxide layer and Pd deposition. Joule heating of Pd-SiNW (<1 mW) enables the detection of H2 gas with a faster response and without the reduction of sensitivity unlike other Pd-based H2 gas sensors. We proposed a H2 sensing model using oxygen adsorption on the Pd nanoparticle-coated silicon oxide surface to understand the H2 response of Joule-heated Pd-SiNWs. A suspended Pd-SiNW showed a similar transient sensing response with around four times lower Joule heating power (147 µW) than the substrate-bound Pd-SiNW (613 µW). The effect of interfering gas on the Pd-SiNW was investigated, and it was found that the Joule heating of Pd-SiNW helps to maintain the H2 sensing performance in humid or carbon monoxide environments.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda