Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Immunology ; 168(3): 554-568, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36273262

RESUMEN

The development of many systemic autoimmune diseases, including systemic lupus erythematosus, is associated with overactivation of the type I interferon (IFN) pathway, lymphopenia and increased follicular helper T (Tfh)-cell differentiation. However, the cellular and molecular mechanisms underlying these immunological perturbations remain incompletely understood. Here, we show that the mechanistic target of rapamycin complex 2 (mTORC2) promotes Tfh differentiation and disrupts Treg homeostasis. Inactivation of mTORC2 in total T cells, but not in Tregs, greatly ameliorated the immunopathology in a systemic autoimmunity mouse model. This was associated with reduced Tfh differentiation, B-cell activation, and reduced T-cell glucose metabolism. Finally, we show that type I IFN can synergize with TCR ligation to activate mTORC2 in T cells, which partially contributes to T-cell lymphopenia. These data indicate that mTORC2 may act as downstream of type I IFN, TCR and costimulatory receptor ICOS, to promote glucose metabolism, Tfh differentiation, and T-cell lymphopenia, but not to suppress Treg function in systemic autoimmunity. Our results suggest that mTORC2 might be a rational target for systemic autoimmunity treatment.


Asunto(s)
Autoinmunidad , Lupus Eritematoso Sistémico , Ratones , Animales , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Linfocitos T Colaboradores-Inductores , Diferenciación Celular , Receptores de Antígenos de Linfocitos T/metabolismo , Glucosa/metabolismo
2.
Front Nephrol ; 4: 1343594, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38379641

RESUMEN

A 27-year-old female at 20th week of pregnancy was admitted with edema, foamy urine, but normal blood pressure. Her blood count was normal, she had proteinuria of 3 g/day, creatinine 0.4 mg/dl, albumin 2.4 g/dl, and cholesterol 355 mg/dl. Antinuclear antibodies 1/160, but Anti-DNA, anticardiolipin antibodies and lupus anticoagulant were negative, with normal serum C3 and C4. A renal biopsy showed secondary membranous glomerulopathy, most likely lupus class V pure. Steroids, azathioprine, and aspirin were initiated, up to 28 weeks of pregnancy, when she developed severe hypertension, photopsia, headache, anasarca, extensive bruising of the extremities, severe anemia, thrombocytopenia, and creatinine rose to 2.09 mg/dl with preserved diuresis. A female infant, 1045 grams, was delivered by emergency caesarean section. Following the surgery, she experienced diplopia, dysarthria, bradypsychia, and sensory alterations in the lower extremities, necessitating emergency hemodialysis due to pulmonary congestion. Blood smear revealed schistocytes, LDH elevated at 1148 IU/L, while transaminases and liver function remained normal, suggesting thrombotic thrombocytopenic purpura. ADAMTS13 revealed 6% activity with the presence of inhibitor. Mycophenolate and daily plasmapheresis with fresh frozen plasma replacement yielded unsatisfactory response, unaffected by the addition of methylprednisolone pulses and rituximab. Eventually, intravenous cyclophosphamide was introduced, resulting in complete hematological remission and normalization of ADAMTS13, however dialysis-dependence persisted and four years later, right renal cancer prompted bilateral nephrectomy. After a total follow-up of six years, she remained free of neoplastic recurrence and lupus activity, receiving prednisone and hydroxychloroquine. The differential diagnosis of microangiopathic syndrome in a pregnant lupus patient is discussed.

3.
Front Immunol ; 14: 1072598, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37051253

RESUMEN

Introduction: Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAVs) present with a complex phenotype and are associated with high mortality and multi-organ involvement. We sought to define the transcriptional landscape and molecular endotypes of AAVs and compare it to systemic lupus erythematosus (SLE). Methods: We performed whole blood mRNA sequencing from 30 patients with AAV (granulomatosis with polyangiitis/GPA and microscopic polyangiitis/MPA) combined with functional enrichment and network analysis for aberrant pathways. Key genes and pathways were validated in an independent cohort of 18 AAV patients. Co-expression network and hierarchical clustering analysis, identified molecular endotypes. Multi-level transcriptional overlap analysis to SLE was based on our published data from 142 patients. Results: We report here that "Pan-vasculitis" signature contained 1,982 differentially expressed genes, enriched in leukocyte differentiation, cytokine signaling, type I and type II IFN signaling and aberrant B-T cell immunity. Active disease was characterized by signatures linked to cell cycle checkpoints and metabolism pathways, whereas ANCA-positive patients exhibited a humoral immunity transcriptional fingerprint. Differential expression analysis of GPA and MPA yielded an IFN-g pathway (in addition to a type I IFN) in the former and aberrant expression of genes related to autophagy and mRNA splicing in the latter. Unsupervised molecular taxonomy analysis revealed four endotypes with neutrophil degranulation, aberrant metabolism and B-cell responses as potential mechanistic drivers. Transcriptional perturbations and molecular heterogeneity were more pronounced in SLE. Molecular analysis and data-driven clustering of AAV uncovered distinct transcriptional pathways that could be exploited for targeted therapy. Discussion: We conclude that transcriptomic analysis of AAV reveals distinct endotypes and molecular pathways that could be targeted for therapy. The AAV transcriptome is more homogenous and less fragmented compared to the SLE which may account for its superior rates of response to therapy.


Asunto(s)
Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos , Lupus Eritematoso Sistémico , Humanos , Anticuerpos Anticitoplasma de Neutrófilos , Lupus Eritematoso Sistémico/genética , Genómica , ARN Mensajero
4.
Front Immunol ; 14: 1232560, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37753082

RESUMEN

Introduction: Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked enzymatic disorder that is particularly prevalent in Africa, Asia, and the Middle East. This study aimed to assess the long-term health risks associated with G6PD deficiency. Methods: A retrospective cohort study was conducted using data from a national healthcare provider in Israel (Leumit Health Services). A total of 7,473 G6PD-deficient individuals were matched with 29,892 control subjects in a 1:4 ratio, based on age, gender, socioeconomic status, and ethnic groups. The exposure of interest was recorded G6PD diagnosis or positive G6PD diagnostic test. The main outcomes and measures included rates of infectious diseases, allergic conditions, and autoimmune disorders between 2002 and 2022. Results: Significantly increased rates were observed for autoimmune disorders, infectious diseases, and allergic conditions in G6PD-deficient individuals compared to the control group. Specifically, notable increases were observed for rheumatoid arthritis (odds ratio [OR] 2.41, p<0.001), systemic lupus erythematosus (OR 4.56, p<0.001), scleroderma (OR 6.87, p<0.001), pernicious anemia (OR 18.70, p<0.001), fibromyalgia (OR 1.98, p<0.001), Graves' disease (OR 1.46, p=0.001), and Hashimoto's thyroiditis (OR 1.26, p=0.001). These findings were supported by elevated rates of positive autoimmune serology and higher utilization of medications commonly used to treat autoimmune conditions in the G6PD-deficient group. Discussion: In conclusion, individuals with G6PD deficiency are at a higher risk of developing autoimmune disorders, infectious diseases, and allergic conditions. This large-scale observational study provides valuable insights into the comprehensive association between G6PD deficiency and infectious and immune-related diseases. The findings emphasize the importance of considering G6PD deficiency as a potential risk factor in clinical practice and further research is warranted to better understand the underlying mechanisms of these associations.


Asunto(s)
Artritis Reumatoide , Enfermedades Autoinmunes , Deficiencia de Glucosafosfato Deshidrogenasa , Enfermedad de Graves , Hipersensibilidad , Humanos , Enfermedades Autoinmunes/epidemiología , Deficiencia de Glucosafosfato Deshidrogenasa/epidemiología , Estudios Retrospectivos
5.
Front Pharmacol ; 13: 1046687, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36726783

RESUMEN

Systemic lupus erythematosus (SLE) is a complex autoimmune disease with systemic clinical manifestations including, but not limited to, rash, inflammatory arthritis, serositis, glomerulonephritis, and cerebritis. Treatment options for SLE are expanding and the increase in our understanding of the immune pathogenesis is leading to the development of new therapeutics. Autoantibody formation and immune complex formation are important mediators in lupus pathogenesis, but an important role of the type I interferon (IFN) pathway has been identified in SLE patients and mouse models of lupus. These studies have led to the development of therapeutics targeting type I IFN and related pathways for the treatment of certain manifestations of SLE. In the current narrative review, we will discuss the role of type I IFN in SLE pathogenesis and the potential translation of these data into strategies using type I IFN as a biomarker and therapeutic target for patients with SLE.

6.
Front Immunol ; 13: 833636, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35185925

RESUMEN

The establishment of an "interferon (IFN) signature" to subset SLE patients on disease severity has led to therapeutics targeting IFNα. Here, we investigate IFN signaling in SLE using multiplexed protein arrays and single cell cytometry by time of flight (CyTOF). First, the IFN signature for SLE patients (n=81) from the Stanford Lupus Registry is determined using fluidigm qPCR measuring 44 previously determined IFN-inducible transcripts. IFN-high (IFN-H) patients have increased SLE criteria and renal/CNS/immunologic involvement, and increased autoantibody reactivity against spliceosome-associated antigens. CyTOF analysis is performed on non-stimulated and stimulated (IFNα, IFNγ, IL-21) PBMCs from SLE patients (n=25) and HCs (n=9) in a panel identifying changes in phosphorylation of intracellular signaling proteins (pTOF). Another panel is utilized to detect changes in intracellular cytokine (ICTOF) production in non-stimulated and stimulated (PMA/ionomycin) PBMCs from SLE patients (n=31) and HCs (n=17). Bioinformatic analysis by MetaCyto and OMIQ reveal phenotypic changes in immune cell subsets between IFN-H and IFN-low (IFN-L) patients. Most notably, IFN-H patients exhibit increased STAT1/3/5 phosphorylation downstream of cytokine stimulation and increased phosphorylation of non-canonical STAT proteins. These results suggest that IFN signaling in SLE modulates STAT phosphorylation, potentially uncovering possible targets for future therapeutic approaches.


Asunto(s)
Interferón Tipo I/fisiología , Interleucinas/fisiología , Leucocitos Mononucleares/metabolismo , Lupus Eritematoso Sistémico/metabolismo , Factor de Transcripción STAT1/metabolismo , Adulto , Femenino , Citometría de Flujo , Humanos , Interferón Tipo I/análisis , Interleucinas/análisis , Masculino , Persona de Mediana Edad , Fosforilación , Transducción de Señal , Análisis de la Célula Individual
7.
Front Immunol ; 12: 724047, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512651

RESUMEN

Objectives: Impact of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic on individuals with arthritis has been highlighted whereas data on other rheumatic diseases, e.g., systemic lupus erythematosus (SLE), are scarce. Similarly to SLE, severe SARS-CoV-2 infection includes risks for thromboembolism, an unbalanced type I interferon response, and complement activation. Herein, SARS-CoV-2 antibodies in longitudinal samples collected prior to vaccination were analyzed and compared with SLE progression and antinuclear antibody (ANA) levels. Methods: One hundred patients (83 women) with established SLE and a regular visit to the rheumatologist (March 2020 to January 2021) were included. All subjects donated blood and had done likewise prior to the pandemic. SARS-CoV-2 antibody isotypes (IgG, IgA, IgM) to the cell receptor-binding S1-spike outer envelope protein were detected by ELISA, and their neutralizing capacity was investigated. IgG-ANA were measured by multiplex technology. Results: During the pandemic, 4% had PCR-confirmed infection but 36% showed SARS-CoV-2 antibodies of ≥1 isotype; IgA was the most common (30%), followed by IgM (9%) and IgG (8%). The antibodies had low neutralizing capacity and were detected also in prepandemic samples. Plasma albumin (p = 0.04) and anti-dsDNA (p = 0.003) levels were lower in patients with SARS-CoV-2 antibodies. Blood group, BMI, smoking habits, complement proteins, daily glucocorticoid dose, use of hydroxychloroquine, or self-reported coronavirus disease 2019 (COVID-19) symptoms (except fever, >38.5°C) did not associate with SARS-CoV-2 antibodies. Conclusion: Our data from early 2021 indicate that a large proportion of Swedish SLE patients had serological signs of exposure to SARS-CoV-2 but apparently with a minor impact on the SLE course. Use of steroids and hydroxychloroquine showed no distinct effects, and self-reported COVID-19-related symptoms correlated poorly with all antibody isotypes.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/epidemiología , COVID-19/inmunología , Lupus Eritematoso Sistémico/complicaciones , Lupus Eritematoso Sistémico/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antinucleares/sangre , Anticuerpos Antinucleares/inmunología , Anticuerpos Antivirales/sangre , Femenino , Humanos , Isotipos de Inmunoglobulinas/sangre , Isotipos de Inmunoglobulinas/inmunología , Inmunosupresores/uso terapéutico , Lupus Eritematoso Sistémico/tratamiento farmacológico , Masculino , Persona de Mediana Edad , SARS-CoV-2
8.
Front Cardiovasc Med ; 8: 757738, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34859072

RESUMEN

Background: Chronic inflammatory diseases (CIDs) are considered risk enhancing factors for coronary heart disease (CHD). However, sparse data exist regarding relative CHD risks across CIDs. Objective: Determine relative differences in CHD risk across multiple CIDs: psoriasis, rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), human immunodeficiency virus (HIV), systemic sclerosis (SSc), and inflammatory bowel disease (IBD). Methods: The cohort included patients with CIDs and controls without CID in an urban medical system from 2000 to 2019. Patients with CIDs were frequency-matched with non-CID controls on demographics, hypertension, and diabetes. CHD was defined as myocardial infarction (MI), ischemic heart disease, and/or coronary revascularization based on validated administrative codes. Multivariable-adjusted Cox models were used to determine the risk of incident CHD and MI for each CID relative to non-CID controls. In secondary analyses, we compared CHD risk by disease severity within each CID. Results: Of 17,049 patients included for analysis, 619 had incident CHD (202 MI) over an average of 4.4 years of follow-up. The multivariable-adjusted risk of CHD was significantly higher for SLE [hazard ratio (HR) 1.9, 95% confidence interval (CI) 1.2, 3.2] and SSc (HR 2.1, 95% CI 1.2, 3.9). Patients with SLE also had a significantly higher risk of MI (HR 3.6, 95% CI 1.9, 6.8). When CIDs were categorized by markers of disease severity (C-reactive protein for all CIDs except HIV, for which CD4 T cell count was used), greater disease severity was associated with higher CHD risk across CIDs. Conclusions: Patients with SLE and SSc have a higher risk of CHD. CHD risk with HIV, RA, psoriasis, and IBD may only be elevated in those with greater disease severity. Clinicians should personalize CHD risk and treatment based on type and severity of CID.

9.
Front Immunol ; 12: 661437, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33986751

RESUMEN

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the production of autoantibodies predominantly to nuclear material. Many aspects of disease pathology are mediated by the deposition of nucleic acid containing immune complexes, which also induce the type 1interferon response, a characteristic feature of SLE. Notably, SLE is remarkably heterogeneous, with a variety of organs involved in different individuals, who also show variation in disease severity related to their ancestries. Here, we probed one potential contribution to disease heterogeneity as well as a possible source of immunoreactive nucleic acids by exploring the expression of human endogenous retroviruses (HERVs). We investigated the expression of HERVs in SLE and their potential relationship to SLE features and the expression of biochemical pathways, including the interferon gene signature (IGS). Towards this goal, we analyzed available and new RNA-Seq data from two independent whole blood studies using Telescope. We identified 481 locus specific HERV encoding regions that are differentially expressed between case and control individuals with only 14% overlap of differentially expressed HERVs between these two datasets. We identified significant differences between differentially expressed HERVs and non-differentially expressed HERVs between the two datasets. We also characterized the host differentially expressed genes and tested their association with the differentially expressed HERVs. We found that differentially expressed HERVs were significantly more physically proximal to host differentially expressed genes than non-differentially expressed HERVs. Finally, we capitalized on locus specific resolution of HERV mapping to identify key molecular pathways impacted by differential HERV expression in people with SLE.


Asunto(s)
Retrovirus Endógenos/genética , Perfilación de la Expresión Génica/métodos , Regulación Viral de la Expresión Génica , Interferones/genética , Lupus Eritematoso Sistémico/genética , Adulto , Femenino , Ontología de Genes , Genoma Humano/genética , Genómica/métodos , Humanos , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/virología , Masculino , Persona de Mediana Edad , RNA-Seq/métodos , Adulto Joven
10.
Front Immunol ; 11: 575179, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193366

RESUMEN

Hypersensitivity reactions and immune dysregulation have been reported with the use of quaternary ammonium compound disinfectants (QACs). We hypothesized that QAC exposure would exacerbate autoimmunity associated with systemic lupus erythematosus (lupus). Surprisingly, however, we found that compared to QAC-free mice, ambient exposure of lupus-prone mice to QACs led to smaller spleens with no change in circulating autoantibodies or the severity of glomerulonephritis. This suggests that QACs may have immunosuppressive effects on lupus. Using a microfluidic device, we showed that ambient exposure to QACs reduced directional migration of bone marrow-derived neutrophils toward an inflammatory chemoattractant ex vivo. Consistent with this, we found decreased infiltration of neutrophils into the spleen. While bone marrow-derived neutrophils appeared to exhibit a pro-inflammatory profile, upregulated expression of PD-L1 was observed on neutrophils that infiltrated the spleen, which in turn interacted with PD-1 on T cells and modulated their fate. Specifically, QAC exposure hindered activation of splenic T cells and increased apoptosis of effector T-cell populations. Collectively, these results suggest that ambient QAC exposure decreases lupus-associated splenomegaly likely through neutrophil-mediated toning of T-cell activation and/or apoptosis. However, our findings also indicate that even ambient exposure could alter immune cell phenotypes, functions, and their fate. Further investigations on how QACs affect immunity under steady-state conditions are warranted.


Asunto(s)
Desinfectantes/farmacología , Inmunosupresores/farmacología , Lupus Eritematoso Sistémico/tratamiento farmacológico , Infiltración Neutrófila/efectos de los fármacos , Neutrófilos/efectos de los fármacos , Compuestos de Amonio Cuaternario/farmacología , Bazo/efectos de los fármacos , Esplenomegalia/prevención & control , Linfocitos T/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/metabolismo , Lupus Eritematoso Sistémico/patología , Ratones Endogámicos MRL lpr , Neutrófilos/inmunología , Neutrófilos/metabolismo , Fenotipo , Bazo/inmunología , Bazo/metabolismo , Bazo/patología , Esplenomegalia/inmunología , Esplenomegalia/metabolismo , Esplenomegalia/patología , Linfocitos T/inmunología , Linfocitos T/metabolismo
11.
Front Immunol ; 10: 1684, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31379872

RESUMEN

Glucocorticoids (GC) are used globally to treat autoimmune and inflammatory disorders. Their anti-inflammatory actions are mainly mediated via binding to the glucocorticoid receptor (GR), creating a GC/GR complex, which acts in both the cytoplasm and nucleus to regulate the transcription of a host of target genes. As a result, signaling pathways such as NF-κB and AP-1 are inhibited, and cell activation, differentiation and survival and cytokine and chemokine production are suppressed. However, the gene regulation by GC can also cause severe side effects in patients. Systemic lupus erythematosus (SLE or lupus) is a multisystem autoimmune disease, characterized by a poorly regulated immune response leading to chronic inflammation and dysfunction of multiple organs, for which GC is the major current therapy. Long-term GC use, however, can cause debilitating adverse consequences for patients including diabetes, cardiovascular disease and osteoporosis and contributes to irreversible organ damage. To date, there is no alternative treatment which can replicate the rapid effects of GC across multiple immune cell functions, effecting disease control during disease flares. Research efforts have focused on finding alternatives to GC, which display similar immunoregulatory actions, without the devastating adverse metabolic effects. One potential candidate is the glucocorticoid-induced leucine zipper (GILZ). GILZ is induced by low concentrations of GC and is shown to mimic the action of GC in several inflammatory processes, reducing immunity and inflammation in in vitro and in vivo studies. Additionally, GILZ has, similar to the GC-GR complex, the ability to bind to both NF-κB and AP-1 as well as DNA directly, to regulate immune cell function, while potentially lacking the GC-related side effects. Importantly, in SLE patients GILZ is under-expressed and correlates negatively with disease activity, suggesting an important regulatory role of GILZ in SLE. Here we provide an overview of the actions and use of GC in lupus, and discuss whether the regulatory mechanisms of GILZ could lead to the development of a novel therapeutic for lupus. Increased understanding of the mechanisms of action of GILZ, and its ability to regulate immune events leading to lupus disease activity has important clinical implications for the development of safer anti-inflammatory therapies.


Asunto(s)
Glucocorticoides/metabolismo , Lupus Eritematoso Sistémico/metabolismo , Animales , Humanos , Inflamación/metabolismo , Leucina Zippers/fisiología , Transducción de Señal/fisiología
12.
Front Immunol ; 10: 2608, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781110

RESUMEN

Infections are considered important environmental triggers of autoimmunity and can contribute to autoimmune disease onset and severity. Nucleic acids and the complexes that they form with proteins-including chromatin and ribonucleoproteins-are the main autoantigens in the autoimmune disease systemic lupus erythematosus (SLE). How these nuclear molecules become available to the immune system for recognition, presentation, and targeting is an area of research where complexities remain to be disentangled. In this review, we discuss how bacterial infections participate in the exposure of nuclear autoantigens to the immune system in SLE. Infections can instigate pro-inflammatory cell death programs including pyroptosis and NETosis, induce extracellular release of host nuclear autoantigens, and promote their recognition in an immunogenic context by activating the innate and adaptive immune systems. Moreover, bacterial infections can release bacterial DNA associated with other bacterial molecules, complexes that can elicit autoimmunity by acting as innate stimuli of pattern recognition receptors and activating autoreactive B cells through molecular mimicry. Recent studies have highlighted SLE disease activity-associated alterations of the gut commensals and the expansion of pathobionts that can contribute to chronic exposure to extracellular nuclear autoantigens. A novel field in the study of autoimmunity is the contribution of bacterial biofilms to the pathogenesis of autoimmunity. Biofilms are multicellular communities of bacteria that promote colonization during chronic infections. We review the very recent literature highlighting a role for bacterial biofilms, and their major components, amyloid/DNA complexes, in the generation of anti-nuclear autoantibodies and their ability to stimulate the autoreactive immune response. The best studied bacterial amyloid is curli, produced by enteric bacteria that commonly cause infections in SLE patients, including Escherichia coli and Salmonella spps. Evidence suggests that curli/DNA complexes can trigger autoimmunity by acting as danger signals, molecular mimickers, and microbial chaperones of nucleic acids.


Asunto(s)
Autoantígenos/inmunología , Infecciones Bacterianas/inmunología , Lupus Eritematoso Sistémico/inmunología , Animales , Autoinmunidad , Infecciones Bacterianas/epidemiología , Biopelículas , Muerte Celular , Núcleo Celular/inmunología , Humanos , Lupus Eritematoso Sistémico/epidemiología , Microbiota , Imitación Molecular
13.
Front Immunol ; 10: 772, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31037070

RESUMEN

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the presence of autoantibodies against nuclear antigens, immune complex deposition, and tissue damage in the kidneys, skin, heart and lung. Because of the pathogenic role of antinuclear antibodies and autoreactive T cells in SLE, extensive efforts have been made to demonstrate how B cells act as antibody-producing or as antigen-presenting cells that can prime autoreactive T cell activation. With the discovery of new innate immune cells and inflammatory mediators, innate immunity is emerging as a key player in disease pathologies. Recent work over the last decade has highlighted the importance of innate immune cells and molecules in promoting and potentiating SLE. In this review, we discuss recent evidence of the involvement of different innate immune cells and pathways in the pathogenesis of SLE. We also discuss new therapeutics targets directed against innate immune components as potential novel therapies in SLE.


Asunto(s)
Inmunidad Innata/inmunología , Lupus Eritematoso Sistémico/inmunología , Animales , Humanos
15.
Front Immunol ; 9: 2430, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30405625

RESUMEN

Ultraviolet (UV) light is an important environmental trigger for systemic lupus erythematosus (SLE) patients, yet the mechanisms by which UV light impacts disease are not fully known. This review covers evidence in both human and murine systems for the impacts of UV light on DNA damage, apoptosis, autoantigen exposure, cytokine production, inflammatory cell recruitment, and systemic flare induction. In addition, the role of the circadian clock is discussed. Evidence is compared in healthy individuals and SLE patients as well as in wild-type and lupus-prone mice. Further research is needed into the effects of UV light on cutaneous and systemic immune responses to understand how to prevent UV-light mediated lupus flares.


Asunto(s)
Lupus Eritematoso Sistémico/inmunología , Trastornos por Fotosensibilidad/inmunología , Rayos Ultravioleta/efectos adversos , Animales , Apoptosis/efectos de los fármacos , Autoinmunidad/efectos de los fármacos , Relojes Circadianos , Citocinas/metabolismo , Daño del ADN/efectos de la radiación , Modelos Animales de Enfermedad , Humanos , Mediadores de Inflamación/metabolismo , Ratones
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda