Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Neurosci ; 42(47): 8897-8911, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36202617

RESUMEN

Metabotropic glutamate receptor Type 3 (mGlu3) controls the sleep/wake architecture, which plays a role in the glutamatergic pathophysiology of schizophrenia. Interestingly, mGlu3 receptor expression is decreased in the brain of schizophrenic patients. However, little is known about the molecular mechanisms regulating mGlu3 receptors at the cell membrane. Subcellular receptor localization is strongly dependent on protein-protein interactions. Here we show that mGlu3 interacts with PICK1 and that this scaffolding protein is important for mGlu3 surface expression and function in hippocampal primary cultures. Disruption of their interaction via an mGlu3 C-terminal mimicking peptide or an inhibitor of the PDZ domain of PICK1 altered the functional expression of mGlu3 receptors in neurons. We next investigated the impact of disrupting the mGlu3-PICK1 interaction on hippocampal theta oscillations in vitro and in vivo in WT male mice. We found a decreased frequency of theta oscillations in organotypic hippocampal slices, similar to what was previously observed in mGlu3 KO mice. In addition, hippocampal theta power was reduced during rapid eye movement sleep, non-rapid eye movement (NREM) sleep, and wake states after intraventricular administration of the mGlu3 C-terminal mimicking peptide. Targeting the mGlu3-PICK1 complex could thus be relevant to the pathophysiology of schizophrenia.SIGNIFICANCE STATEMENT Dysregulation of the glutamatergic system might play a role in the pathophysiology of schizophrenia. Metabotropic glutamate receptors Type 3 (mGlu3) have been proposed as potential targets for schizophrenia. Understanding the molecular mechanisms regulating mGlu3 receptor at the cell membrane is critical toward comprehending how their dysfunction contributes to the pathogenesis of schizophrenia. Here we describe that the binding of the signaling and scaffolding protein PICK1 to mGlu3 receptors is important for their localization and physiological functions. The identification of new proteins that associate specifically to mGlu3 receptors will advance our understanding of the regulatory mechanisms associated with their targeting and function and ultimately might provide new therapeutic strategies to counter these psychiatric conditions.


Asunto(s)
Proteínas Portadoras , Hipocampo , Receptores de Glutamato Metabotrópico , Animales , Masculino , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Hipocampo/metabolismo , Dominios PDZ , Receptores de Glutamato Metabotrópico/metabolismo
2.
J Neurochem ; 161(4): 366-382, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35411603

RESUMEN

Subtype 3 metabotropic glutamate receptor (mGlu3R) displays a broad range of neuroprotective effects. We previously demonstrated that mGlu3R activation in astrocytes protects hippocampal neurons from Aß neurotoxicity through stimulation of both neurotrophin release and Aß uptake. Alternative-spliced variants of mGlu3R were found in human brains. The most prevalent variant, mGlu3Δ4, lacks exon 4 encoding the transmembrane domain and can inhibit ligand binding to mGlu3R. To date, neither its role in neurodegenerative disorders nor its endogenous expression in CNS cells has been addressed. The present paper describes for the first time an association between altered hippocampal expression of mGlu3Δ4 and Alzheimer's disease (AD) in the preclinical murine model PDAPP-J20, as well as a deleterious effect of mGlu3Δ4 in astrocytes. As assessed by western blot, hippocampal mGlu3R levels progressively decreased with age in PDAPP-J20 mice. On the contrary, mGlu3Δ4 levels were drastically increased with aging in nontransgenic mice, but prematurely over-expressed in 5-month-old PDAPP-J20-derived hippocampi, prior to massive senile plaque deposition. Also, we found that mGlu3Δ4 co-precipitated with mGlu3R mainly in 5-month-old PDAPP-J20 mice. We further showed by western blot that primary cultured astrocytes and neurons expressed mGlu3Δ4, whose levels were reduced by Aß, thereby discouraging a causal effect of Aß on mGlu3Δ4 induction. However, heterologous expression of mGlu3Δ4 in astrocytes induced cell death, inhibited mGlu3R expression, and prevented mGlu3R-dependent Aß glial uptake. Indeed, mGlu3Δ4 promoted neurodegeneration in neuron-glia co-cultures. These results provide evidence of an inhibitory role of mGlu3Δ4 in mGlu3R-mediated glial neuroprotective pathways, which may lie behind AD onset.


Asunto(s)
Enfermedad de Alzheimer , Receptores de Glutamato Metabotrópico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Astrocitos/metabolismo , Células Cultivadas , Ratones , Ratones Transgénicos , Isoformas de Proteínas/metabolismo , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo
3.
J Neuroinflammation ; 18(1): 13, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407565

RESUMEN

BACKGROUND: Perinatal inflammation is a key factor of brain vulnerability in neonates born preterm or with intra-uterine growth restriction (IUGR), two leading conditions associated with brain injury and responsible for neurocognitive and behavioral disorders. Systemic inflammation is recognized to activate microglia, known to be the critical modulators of brain vulnerability. Although some evidence supports a role for metabotropic glutamate receptor 3 (mGlu3 receptor) in modulation of neuroinflammation, its functions are still unknown in the developing microglia. METHODS: We used a double-hit rat model of perinatal brain injury induced by a gestational low-protein diet combined with interleukin-1ß injections (LPD/IL-1ß), mimicking both IUGR and prematurity-related inflammation. The effect of LPD/IL-1ß on mGlu3 receptor expression and the effect of mGlu3 receptor modulation on microglial reactivity were investigated using a combination of pharmacological, histological, and molecular and genetic approaches. RESULTS: Exposure to LPD/IL-1ß significantly downregulated Grm3 gene expression in the developing microglia. Both transcriptomic analyses and pharmacological modulation of mGlu3 receptor demonstrated its central role in the control of inflammation in resting and activated microglia. Microglia reactivity to inflammatory challenge induced by LPD/IL-1ß exposure was reduced by an mGlu3 receptor agonist. Conversely, both specific pharmacological blockade, siRNA knock-down, and genetic knock-out of mGlu3 receptors mimicked the pro-inflammatory phenotype observed in microglial cells exposed to LPD/IL-1ß. CONCLUSIONS: Overall, these data show that Grm3 plays a central role in the regulation of microglial reactivity in the immature brain. Selective pharmacological activation of mGlu3 receptors may prevent inflammatory-induced perinatal brain injury.


Asunto(s)
Microglía/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animales , Animales Recién Nacidos , Lesiones Encefálicas/metabolismo , Lesiones Encefálicas/patología , Femenino , Perfilación de la Expresión Génica/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/patología , Embarazo , Ratas , Ratas Sprague-Dawley , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores
4.
FASEB J ; 33(12): 14204-14220, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31665922

RESUMEN

Polymorphic variants of the gene encoding for metabotropic glutamate receptor 3 (mGlu3) are linked to schizophrenia. Because abnormalities of cortical GABAergic interneurons lie at the core of the pathophysiology of schizophrenia, we examined whether mGlu3 receptors influence the developmental trajectory of cortical GABAergic transmission in the postnatal life. mGlu3-/- mice showed robust changes in the expression of interneuron-related genes in the prefrontal cortex (PFC), including large reductions in the expression of parvalbumin (PV) and the GluN1 subunit of NMDA receptors. The number of cortical cells enwrapped by perineuronal nets was increased in mGlu3-/- mice, suggesting that mGlu3 receptors shape the temporal window of plasticity of PV+ interneurons. Electrophysiological measurements of GABAA receptor-mediated responses revealed a more depolarized reversal potential of GABA currents in the somata of PFC pyramidal neurons in mGlu3-/- mice at postnatal d 9 associated with a reduced expression of the K+/Cl- symporter. Finally, adult mGlu3-/- mice showed lower power in electroencephalographic rhythms at 1-45 Hz in quiet wakefulness as compared with their wild-type counterparts. These findings suggest that mGlu3 receptors have a strong impact on the development of cortical GABAergic transmission and cortical neural synchronization mechanisms corroborating the concept that genetic variants of mGlu3 receptors may predispose to psychiatric disorders.-Imbriglio, T., Verhaeghe, R., Martinello, K., Pascarelli, M. T., Chece, G., Bucci, D., Notartomaso, S., Quattromani, M., Mascio, G., Scalabrì, F., Simeone, A., Maccari, S., Del Percio, C., Wieloch, T., Fucile, S., Babiloni, C., Battaglia, G., Limatola, C., Nicoletti, F., Cannella, M. Developmental abnormalities in cortical GABAergic system in mice lacking mGlu3 metabotropic glutamate receptors.


Asunto(s)
Corteza Cerebral/anomalías , Embrión de Mamíferos/anomalías , Neuronas GABAérgicas/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Animales , Biomarcadores , Corteza Cerebral/metabolismo , Femenino , Regulación de la Expresión Génica , Genes Homeobox , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , ARN Mensajero , Receptores de Glutamato Metabotrópico/genética
5.
Bioorg Med Chem Lett ; 29(18): 2670-2674, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31358468

RESUMEN

This letter describes the further optimization of a series of mGlu3 NAMs based on an N-aryl phenoxyethoxy pyridinone core. A multidimensional optimization campaign, with focused matrix libraries, quickly established challenging SAR, enantiospecific activity, differences in assay read-outs (Ca2+ flux via a promiscuous G protein (Gα15) versus native coupling to GIRK channels), identified both full and partial mGlu3 NAMs and a new in vivo tool compound, VU6017587. This mGlu3 NAM showed efficacy in tail suspension, elevated zero maze and marble burying, suggesting selective inhibition of mGlu3 affords anxiolytic-like and antidepressant-like phenotypes in mice.


Asunto(s)
Ansiolíticos/farmacología , Antidepresivos/farmacología , Piridonas/farmacología , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Animales , Ansiolíticos/síntesis química , Ansiolíticos/química , Antidepresivos/síntesis química , Antidepresivos/química , Relación Dosis-Respuesta a Droga , Ratones , Estructura Molecular , Piridonas/síntesis química , Piridonas/química , Ratas , Receptores de Glutamato Metabotrópico/metabolismo , Estereoisomerismo , Relación Estructura-Actividad
6.
Bioorg Med Chem Lett ; 24(12): 2693-8, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24794112

RESUMEN

Herein we report the design and synthesis of a series of substituted pyrazolo[1,5-a]quinazolin-5(4H)-ones as negative allosteric modulators of metabotropic glutamate receptors 2 and 3 (mGlu2 and mGlu3, respectively). Development of this series was initiated by reports that pyrazolo[1,5-a]quinazoline-derived scaffolds can yield compounds with activity at group II mGlu receptors which are prone to molecular switching following small structural changes. Several potent analogues, including 4-methyl-2-phenyl-8-(pyrimidin-5-yl)pyrazolo[1,5-a]quinazolin-5(4H)-one (10b), were discovered with potent in vitro activity as dual mGlu2/mGlu3 NAMs, with excellent selectivity versus the other mGluRs.


Asunto(s)
Pirazoles/síntesis química , Quinazolinas/síntesis química , Receptores de Glutamato Metabotrópico/efectos de los fármacos , Receptores de Glutamato Metabotrópico/metabolismo , Regulación Alostérica , Diseño de Fármacos , Concentración 50 Inhibidora , Estructura Molecular , Pirazoles/química , Pirazoles/farmacología , Quinazolinas/química , Quinazolinas/farmacología , Receptores de Glutamato Metabotrópico/química , Relación Estructura-Actividad
7.
Int Rev Neurobiol ; 168: 221-264, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36868630

RESUMEN

Stress and trauma exposure contribute to the development of psychiatric disorders such as post-traumatic stress disorder (PTSD) and major depressive disorder (MDD) in a subset of people. A large body of preclinical work has found that the metabotropic glutamate (mGlu) family of G protein-coupled receptors regulate several behaviors that are part of the symptom clusters for both PTSD and MDD, including anhedonia, anxiety, and fear. Here, we review this literature, beginning with a summary of the wide variety of preclinical models used to assess these behaviors. We then summarize the involvement of Group I and II mGlu receptors in these behaviors. Bringing together this extensive literature reveals that mGlu5 signaling plays distinct roles in anhedonia, fear, and anxiety-like behavior. mGlu5 promotes susceptibility to stress-induced anhedonia and resilience to stress-induced anxiety-like behavior, while serving a fundamental role in the learning underlying fear conditioning. The medial prefrontal cortex, basolateral amygdala, nucleus accumbens, and ventral hippocampus are key regions where mGlu5, mGlu2, and mGlu3 regulate these behaviors. There is strong support that stress-induced anhedonia arises from decreased glutamate release and post-synaptic mGlu5 signaling. Conversely, decreasing mGlu5 signaling increases resilience to stress-induced anxiety-like behavior. Consistent with opposing roles for mGlu5 and mGlu2/3 in anhedonia, evidence suggests that increased glutamate transmission may be therapeutic for the extinction of fear learning. Thus, a large body of literature supports the targeting of pre- and post-synaptic glutamate signaling to ameliorate post-stress anhedonia, fear, and anxiety-like behavior.


Asunto(s)
Trastorno Depresivo Mayor , Receptores de Glutamato Metabotrópico , Humanos , Anhedonia , Ansiedad , Miedo , Glutamatos
8.
Curr Neuropharmacol ; 21(1): 105-118, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35579153

RESUMEN

BACKGROUND: Previous studies suggest that different metabotropic glutamate (mGlu) receptor subtypes are potential drug targets for treating absence epilepsy. However, no information is available on mGlu3 receptors. OBJECTIVE: To examine whether (i) changes of mGlu3 receptor expression/signaling are found in the somatosensory cortex and thalamus of WAG/Rij rats developing spontaneous absence seizures; (ii) selective activation of mGlu3 receptors with LY2794193 affects the number and duration of spikewave discharges (SWDs) in WAG/Rij rats; and (iii) a genetic variant of GRM3 (encoding the mGlu3 receptor) is associated with absence epilepsy. METHODS: Animals: immunoblot analysis of mGlu3 receptors, GAT-1, GLAST, and GLT-1; realtime PCR analysis of mGlu3 mRNA levels; assessment of mGlu3 receptor signaling; EEG analysis of SWDs; assessment of depressive-like behavior. Humans: search for GRM3 and GRM5 missense variants in 196 patients with absence epilepsy or other Idiopathic Generalized Epilepsy (IGE)/ Genetic Generalized Epilepsy (GGE) and 125,748 controls. RESULTS: mGlu3 protein levels and mGlu3-mediated inhibition of cAMP formation were reduced in the thalamus and somatosensory cortex of pre-symptomatic (25-27 days old) and symptomatic (6-7 months old) WAG/Rij rats compared to age-matched controls. Treatment with LY2794193 (1 or 10 mg/kg, i.p.) reduced absence seizures and depressive-like behavior in WAG/Rij rats. LY2794193 also enhanced GAT1, GLAST, and GLT-1 protein levels in the thalamus and somatosensory cortex. GRM3 and GRM5 gene variants did not differ between epileptic patients and controls. CONCLUSION: We suggest that mGlu3 receptors modulate the activity of the cortico-thalamo-cortical circuit underlying SWDs and that selective mGlu3 receptor agonists are promising candidate drugs for absence epilepsy treatment.


Asunto(s)
Epilepsia Tipo Ausencia , Receptores de Glutamato Metabotrópico , Ratas , Humanos , Animales , Lactante , Epilepsia Tipo Ausencia/tratamiento farmacológico , Epilepsia Tipo Ausencia/genética , Epilepsia Tipo Ausencia/metabolismo , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Electroencefalografía , Convulsiones , Genética Humana , Modelos Animales de Enfermedad
9.
Biol Psychiatry ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38061467

RESUMEN

BACKGROUND: Polymorphisms in the gene encoding for metabotropic glutamate receptor 3 (mGlu3) are associated with an increased likelihood of schizophrenia diagnosis and can predict improvements in negative symptoms following treatment with antipsychotics. However, the mechanisms by which mGlu3 can regulate brain circuits involved in schizophrenia pathophysiology are not clear. METHODS: We employed selective pharmacological tools and a variety of approaches including whole-cell patch-clamp electrophysiology, slice optogenetics, and fiber photometry to investigate the effects of mGlu3 activation on phencyclidine (PCP)-induced impairments in thalamo-accumbal transmission and sociability deficits. A chemogenetic approach was used to evaluate the role of thalamo-accumbal transmission in PCP-induced sociability deficits. RESULTS: We first established that PCP treatment augmented excitatory transmission onto dopamine D1 receptor-expressing medium spiny neurons (D1-MSNs) in the nucleus accumbens (NAc) and induced sociability deficits. Our studies revealed a selective increase in glutamatergic synaptic transmission from thalamic afferents to D1-MSNs in the NAc shell. Chemogenetic silencing of thalamo-accumbal inputs rescued PCP-induced sociability deficits. Pharmacological activation of mGlu3 normalized PCP-induced impairments in thalamo-accumbal transmission and sociability deficits. Mechanistic studies revealed that mGlu3 activation induced robust long-term depression at synapses from the thalamic projections onto D1-MSNs in the NAc shell. CONCLUSIONS: These data demonstrate that activation of mGlu3 decreases thalamo-accumbal transmission and thereby rescues sociability deficits in mouse modeling schizophrenia-like symptoms. These findings provide novel insights into the NAc-specific mechanisms and suggest that agents modulating glutamatergic signaling in the NAc may provide a promising approach for treating negative symptoms in schizophrenia.

10.
Int Rev Neurobiol ; 168: 177-219, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36868629

RESUMEN

Metabotropic glutamate (mGlu) receptors are expressed throughout the central nervous system and act as important regulators of drug-induced neuroplasticity and behavior. Preclinical research suggests that mGlu receptors play a critical role in a spectrum of neural and behavioral consequences arising from methamphetamine (meth) exposure. However, an overview of mGlu-dependent mechanisms linked to neurochemical, synaptic, and behavioral changes produced by meth has been lacking. This chapter provides a comprehensive review of the role of mGlu receptor subtypes (mGlu1-8) in meth-induced neural effects, such as neurotoxicity, as well as meth-associated behaviors, such as psychomotor activation, reward, reinforcement, and meth-seeking. Additionally, evidence linking altered mGlu receptor function to post-meth learning and cognitive deficits is critically evaluated. The chapter also considers the role of receptor-receptor interactions involving mGlu receptors and other neurotransmitter receptors in meth-induced neural and behavioral changes. Taken together, the literature indicates that mGlu5 regulates the neurotoxic effects of meth by attenuating hyperthermia and possibly through altering meth-induced phosphorylation of the dopamine transporter. A cohesive body of work also shows that mGlu5 antagonism (and mGlu2/3 agonism) reduce meth-seeking, though some mGlu5-blocking drugs also attenuate food-seeking. Further, evidence suggests that mGlu5 plays an important role in extinction of meth-seeking behavior. In the context of a history of meth intake, mGlu5 also co-regulates aspects of episodic memory, with mGlu5 stimulation restoring impaired memory. Based on these findings, we propose several avenues for the development of novel pharmacotherapies for Methamphetamine Use Disorder based on the selective modulation mGlu receptor subtype activity.


Asunto(s)
Trastornos del Conocimiento , Disfunción Cognitiva , Metanfetamina , Humanos , Sistema Nervioso Central , Glutamatos
11.
Int Rev Neurobiol ; 168: 1-31, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36868628

RESUMEN

Parkinson's disease (PD) is a complex disorder that leads to alterations in multiple neurotransmitter systems, notably glutamate. As such, several drugs acting at glutamatergic receptors have been assessed to alleviate the manifestation of PD and treatment-related complications, culminating with the approval of the N-methyl-d-aspartate (NMDA) antagonist amantadine for l-3,4-dihydroxyphenylalanine (l-DOPA)-induced dyskinesia. Glutamate elicits its actions through several ionotropic and metabotropic (mGlu) receptors. There are 8 sub-types of mGlu receptors, with sub-types 4 (mGlu4) and 5 (mGlu5) modulators having been tested in the clinic for endpoints pertaining to PD, while sub-types 2 (mGlu2) and 3 (mGlu3) have been investigated in pre-clinical settings. In this book chapter, we provide an overview of mGlu receptors in PD, with a focus on mGlu5, mGlu4, mGlu2 and mGlu3 receptors. For each sub-type, we review, when applicable, their anatomical localization and possible mechanisms underlying their efficacy for specific disease manifestation or treatment-induced complications. We then summarize the findings of pre-clinical studies and clinical trials with pharmacological agents and discuss the potential strengths and limitations of each target. We conclude by offering some perspectives on the potential use of mGlu modulators in the treatment of PD.


Asunto(s)
Enfermedad de Parkinson , Receptores de Glutamato Metabotrópico , Humanos , Amantadina , Glutamatos
12.
Front Neuroanat ; 16: 849937, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35444520

RESUMEN

Metabotropic glutamate receptors type 3 (mGlu3, encoded by GRM3) are increasingly related to cognitive functioning, including the working memory operations of the prefrontal cortex (PFC). In rhesus monkeys, mGlu3 are most commonly expressed on glia (36%), but are also very prominent on layer III dendritic spines (23%) in the dorsolateral PFC (dlPFC) where they enhance working memory-related neuronal firing. In contrast, mGlu2 are predominately presynaptic in layer III of macaque dlPFC, indicating a pre- vs. post-synaptic dissociation by receptor subtype. The current study examined the cellular and subcellular localizations of mGlu3 in the rat prelimbic medial PFC (PL mPFC), a region needed for spatial working memory performance in rodents. Multiple label immunofluorescence demonstrated mGlu3 expression in neurons and astrocytes, with rare labeling in microglia. Immunoelectron microscopy of layers III and V found that the predominant location for mGlu3 was on axons (layer III: 35.9%; layer V: 44.1%), with labeling especially prominent within the intervaricose segments distant from axon terminals. mGlu3 were also found on glia (likely astrocytes), throughout the glial membrane (layer III: 28.2%; layer V: 29.5%). Importantly, mGlu3 could be seen on dendritic spines, especially in layer III (layer III: 15.6%; layer V: 8.2%), with minor labeling on dendrites. These data show that there are some similarities between mGlu3 expression in rat PL mPFC and macaque dlPFC, but the spine expression enriches and differentiates in the more recently evolved primate dlPFC.

13.
Pharmacol Biochem Behav ; 221: 173493, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36402243

RESUMEN

Glutamate is a major excitatory neurotransmitter in the central nervous system (CNS) and abnormalities in the glutamatergic system underlie various CNS disorders. As metabotropic glutamate receptor 3 (mGlu3 receptor) regulates glutamatergic transmission in various brain areas, emerging literature suggests that targeting mGlu3 receptors can be a novel approach to the treatment of psychiatric and neurological disorders. For example, mGlu3 receptor negative allosteric modulators (NAMs) induce rapid antidepressant-like effects in both acute and chronic stress models. Activation of mGlu3 receptors can enhance cognition in the rodents modeling schizophrenia-like pathophysiology. The mGlu3 receptors expressed in the astrocytes induce neuroprotective effects. Although polymorphisms in GRM3 have been shown to be associated with addiction, there is not significant evidence about the efficacy of mGlu3 receptor ligands in rodent models of addiction. Collectively, drugs targeting mGlu3 receptors may provide an alternative approach to fill the unmet clinical need for safer and more efficacious therapeutics for CNS disorders.


Asunto(s)
Enfermedades del Sistema Nervioso , Receptores de Glutamato Metabotrópico , Humanos , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Sistema Nervioso Central , Ácido Glutámico
14.
Neuropharmacology ; 209: 109022, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35248529

RESUMEN

Rett syndrome (RTT) and MECP2 Duplication syndrome (MDS) have opposing molecular origins in relation to expression and function of the transcriptional regulator Methyl-CpG-binding protein 2 (MeCP2). Several clinical and preclinical phenotypes, however, are shared between these disorders. Modulation of MeCP2 levels has recently emerged as a potential treatment option for both of these diseases. However, toxicity concerns remain with these approaches. Here, we focus on pharmacologically modulating the group II metabotropic glutamate receptors (mGlu), mGlu2 and mGlu3, which are two downstream targets of MeCP2 that are bidirectionally affected in expression in RTT patients and mice (Mecp2Null/+) versus an MDS mouse model (MECP2Tg1/o). Mecp2Null/+ and MECP2Tg1/o animals also exhibit contrasting phenotypes in trace fear acquisition, a form of temporal associative learning and memory, with trace fear deficiency observed in Mecp2Null/+ mice and abnormally enhanced trace fear acquisition in MECP2Tg1/o animals. In Mecp2Null/+ mice, treatment with the mGlu2/3 agonist LY379268 reverses the deficit in trace fear acquisition, and mGlu2/3 antagonism with LY341495 normalizes the abnormal trace fear learning and memory phenotype in MECP2Tg1/o mice. Altogether, these data highlight the role of group II mGlu receptors in RTT and MDS and demonstrate that both mGlu2 and mGlu3 may be potential therapeutic targets for these disorders.


Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X , Receptores de Glutamato Metabotrópico , Síndrome de Rett , Animales , Modelos Animales de Enfermedad , Humanos , Discapacidad Intelectual Ligada al Cromosoma X/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Glutamato Metabotrópico/metabolismo , Síndrome de Rett/tratamiento farmacológico , Síndrome de Rett/genética , Síndrome de Rett/metabolismo
15.
Front Neurol ; 12: 668877, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220677

RESUMEN

Backgroud: Type-3 metabotropic glutamate (mGlu3) receptors are found in both neurons and glial cells and regulate synaptic transmission, astrocyte function, and microglial reactivity. Here we show that the genetic deletion of mGlu3 receptors amplifies ischemic brain damage and associated neuroinflammation in adult mice. An increased infarct size was observed in mGlu3-/- mice of both CD1 and C57Black strains 24 h following a permanent occlusion of the middle cerebral artery (MCA) as compared to their respective wild-type (mGlu3+/+ mice) counterparts. Increases in the expression of selected pro-inflammatory genes including those encoding interleukin-1ß, type-2 cycloxygenase, tumor necrosis factor-α, CD86, and interleukin-6 were more prominent in the peri-infarct region of mGlu3-/- mice. In contrast, the expression of two genes associated with the anti-inflammatory phenotype of microglia (those encoding the mannose-1-phosphate receptor and the α-subunit of interleukin-4 receptor) and the gene encoding the neuroprotective factor, glial cell line-derived neurotrophic factor, was enhanced in the peri-infarct region of wild-type mice, but not mGlu3-/- mice, following MCA occlusion. In C57Black mice, the genetic deletion of mGlu3 receptors worsened the defect in the paw placement test as assessed in the contralateral forepaw at short times (4 h) following MCA occlusion. These findings suggest that mGlu3 receptors are protective against ischemic brain damage and support the way to the use of selective mGlu3 receptor agonists or positive allosteric modulators in experimental animal models of ischemic stroke.

16.
Biol Psychiatry ; 90(6): 385-398, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-33965197

RESUMEN

BACKGROUND: Polymorphisms in GRM3, the gene encoding the mGlu3 metabotropic glutamate receptor, are associated with impaired cognition and neuropsychiatric disorders such as schizophrenia. Limited availability of selective genetic and molecular tools has hindered progress in developing a clear understanding of the mechanisms through which mGlu3 receptors regulate synaptic plasticity and cognition. METHODS: We examined associative learning in mice with trace fear conditioning, a hippocampal-dependent learning task disrupted in patients with schizophrenia. Underlying cellular mechanisms were assessed using ex vivo hippocampal slice preparations with selective pharmacological tools and selective genetic deletion of mGlu3 receptor expression in specific neuronal subpopulations. RESULTS: mGlu3 receptor activation enhanced trace fear conditioning and reversed deficits induced by subchronic phencyclidine. Mechanistic studies revealed that mGlu3 receptor activation induced metaplastic changes, biasing afferent stimulation to induce long-term potentiation through an mGlu5 receptor-dependent, endocannabinoid-mediated, disinhibitory mechanism. Selective genetic deletion of either mGlu3 or mGlu5 from hippocampal pyramidal cells eliminated effects of mGlu3 activation, revealing a novel mechanism by which mGlu3 and mGlu5 interact to enhance cognitive function. CONCLUSIONS: These data demonstrate that activation of mGlu3 receptors in hippocampal pyramidal cells enhances hippocampal-dependent cognition in control and impaired mice by inducing a novel form of metaplasticity to regulate circuit function, providing a clear mechanism through which genetic variation in GRM3 can contribute to cognitive deficits. Developing approaches to positively modulate mGlu3 receptor function represents an encouraging new avenue for treating cognitive disruption in schizophrenia and other psychiatric diseases.


Asunto(s)
Receptores de Glutamato Metabotrópico , Esquizofrenia , Animales , Cognición , Hipocampo/metabolismo , Potenciación a Largo Plazo , Ratones , Receptores de Glutamato Metabotrópico/metabolismo , Esquizofrenia/genética
17.
Neurochem Int ; 140: 104837, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32858088

RESUMEN

Astrocytes play a key role by providing antioxidant support to nearby neurons under oxidative stress. We have previously demonstrated that in vitro astroglial subtype 3 metabotropic glutamate receptor (mGlu3R) is neuroprotective. However, its role during aging has been poorly explored. Our study aimed to determine whether LY379268, an mGlu3R agonist, exerts an antioxidant effect on aged cultured rat astrocytes. Aged cultured astrocytes obtained after 9-weeks (9w) in vitro were positive for ß-galactosidase stain, showed decreased mGlu3R and glutathione (GSH) levels and superoxide dismutase (SOD) activity, while nuclear erythroid factor 2 (Nrf2) protein levels, reactive oxygen species (ROS) production and apoptosis were increased. Treatment of 9w astrocytes with LY379268 resulted in an increase in mGlu3R and Nrf2 protein levels and SOD activity, and decreased mitochondrial ROS levels and apoptosis. mGlu3R activation in aged astrocytes also prevented hippocampal neuronal death induced by Aß1-42 in co-culture assays. We conclude that activation of mGlu3R in aged astrocytes had an anti-oxidant effect and protected hippocampal neurons against Aß-induced neurotoxicity. The present study suggests mGlu3R activation in aging astrocytes as a therapeutic strategy to slow down age-associated neurodegeneration.


Asunto(s)
Antioxidantes/farmacología , Astrocitos/metabolismo , Senescencia Celular/fisiología , Fármacos Neuroprotectores/farmacología , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Aminoácidos/farmacología , Animales , Astrocitos/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Técnicas de Cocultivo , Femenino , Embarazo , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
18.
Chronic Stress (Thousand Oaks) ; 3: 2470547019837712, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32500107

RESUMEN

Since discovering that ketamine has robust antidepressant effects, the glutamatergic system has been proposed as an attractive target for the development of novel antidepressants. Among the glutamatergic system, metabotropic glutamate (mGlu) receptors are of interest because mGlu receptors play modulatory roles in glutamatergic transmission, consequently, agents acting on mGlu receptors might not exert the adverse effects associated with ketamine. mGlu receptors have eight subtypes that are classified into three groups, and the roles of each mGlu receptor subtype in depression are being investigated. To date, the potential use of mGlu5 receptor antagonists and mGlu2/3 receptor antagonists as antidepressants has been actively investigated, and the mechanisms underlying these antidepressant effects are being delineated. Although the outcomes of clinical trials using an mGlu5 receptor negative allosteric modulator and an mGlu2/3 receptor negative allosteric modulator have not been encouraging, these trials have been inconclusive, and additional trials using other compounds with more appropriate profiles are needed. In contrast, the roles of group III mGlu receptors have not yet been fully elucidated because of a lack of suitable pharmacological tools. Nonetheless, investigations of the use of mGlu4 and mGlu7 receptors as drug targets for the development of antidepressants have been ongoing, and some interesting evidence has been obtained.

19.
Neuropharmacology ; 144: 19-28, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30326237

RESUMEN

Stress can precipitate or worsen symptoms of many psychiatric illnesses. Dysregulation of the prefrontal cortex (PFC) glutamate system may underlie these disruptions and restoring PFC glutamate signaling has emerged as a promising avenue for the treatment of stress disorders. Recently, we demonstrated that activation of metabotropic glutamate receptor subtype 3 (mGlu3) induces a postsynaptic form of long-term depression (LTD) that is dependent on the activity of another subtype, mGlu5. Stress exposure disrupted this plasticity, but the underlying signaling mechanisms and involvement in higher-order cognition have not yet been investigated. Acute stress was applied by 20-min restraint and early reversal learning was evaluated in an operant-based food-seeking task. We employed whole-cell patch-clamp recordings of layer 5 prelimbic (PL)-PFC pyramidal cells to examine mGlu3-LTD and several mechanistically distinct mGlu5-dependent functions. Acute stress impaired both mGlu3-LTD and early reversal learning. Interestingly, potentiating mGlu5 signaling with the mGlu5 positive allosteric modulator (PAM) VU0409551 rescued stress-induced deficits in both mGlu3-LTD and reversal learning. Other aspects of PL-PFC mGlu5 function were not disrupted following stress; however, signaling downstream of mGlu5-Homer interactions, phosphoinositide-3-kinase (PI3K), Akt, and glycogen synthase kinase 3ß was implicated in these phenomena. These findings demonstrate that acute stress disrupts early reversal learning and PL-PFC-dependent synaptic plasticity and that potentiating mGlu5 function can restore these impairments. These findings provide a framework through which modulating coordinated mGlu3/mGlu5 signaling may confer benefits for the treatment of stress-related psychiatric disorders.


Asunto(s)
Corteza Cerebral/metabolismo , Plasticidad Neuronal/fisiología , Receptor del Glutamato Metabotropico 5/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Aprendizaje Inverso/fisiología , Estrés Psicológico/metabolismo , Animales , Conducta Apetitiva/efectos de los fármacos , Conducta Apetitiva/fisiología , Fármacos del Sistema Nervioso Central/farmacología , Corteza Cerebral/efectos de los fármacos , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Discapacidades para el Aprendizaje/etiología , Discapacidades para el Aprendizaje/metabolismo , Masculino , Ratones Endogámicos C57BL , Plasticidad Neuronal/efectos de los fármacos , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Receptor del Glutamato Metabotropico 5/agonistas , Restricción Física , Aprendizaje Inverso/efectos de los fármacos , Estrés Psicológico/psicología , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda