RESUMEN
Osteoarthritis (OA) is a degenerative joint disease characterized by obscure etiology and unsatisfactory therapeutic outcomes, making the development of new efficient therapies urgent. Superfluous reactive oxygen species (ROS) have historically been considered one of the crucial factors inducing the pathological progression of OA. Ultrasmall Prussian blue nanoparticles (USPBNPs), approximately sub-5 nm in size, are developed by regulating the configuration of polyvinylpyrrolidone chains. USPBNPs display an excellent ROS eliminating capacity and catalase-like activity, capable of decomposing hydrogen peroxide (H2O2) into O2. The anti-inflammatory mechanism of USPBNPs can be attributed to repolarizing macrophages from pro-inflammatory M1 to anti-inflammatory M2 phenotype by decreasing the ROS levels accompanied by O2 improvement. Additionally, USPBNPs exhibit an exciting therapeutic efficiency against OA, comparable to that of hydrocortisone in vivo. This study not only develops a new therapeutic agent for OA but also offers an estimable insight into the application of the nanozyme.
Asunto(s)
Ferrocianuros , Macrófagos , Osteoartritis , Especies Reactivas de Oxígeno , Ferrocianuros/química , Ferrocianuros/farmacología , Osteoartritis/tratamiento farmacológico , Osteoartritis/patología , Osteoartritis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Nanopartículas/química , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/metabolismo , Humanos , Células RAW 264.7 , Antiinflamatorios/farmacología , Antiinflamatorios/química , Fenotipo , Tamaño de la PartículaRESUMEN
Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment, and the M2-type TAMs can promote tumor growth, invasion and angiogenesis, and suppress antitumor immune responses. It has been reported that spectrin beta, non-erythrocytic 1 (SPTBN1) may inhibit the infiltration of macrophages in Sptbn1+/- mouse liver, but whether tumor SPTBN1 affects TAMs polarization remains unclear. This study investigated the effect and mechanism of tumor cell SPTBN1 on polarization and migration of TAMs in hepatoma and breast cancer. By analyzing tumor immune databases, we found a negative correlation between SPTBN1 and abundance of macrophages and myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. By reverse transcription-quantitative real-time PCR assays and cell migration assays, the migration and M2 polarization of macrophages were enhanced by the culture medium from hepatocellular carcinoma cell line PLC/PRF/5, SNU449, and breast cancer cell line MDA-MB-231 with SPTBN1 suppression, which could be reversed by CXCL1 neutralizing antibody MAB275. Meanwhile, the ability of migration and colony formation of PLC/PRF/5, SNU449, and MDA-MB-231 cells were promoted when coculture with M2 macrophages. We also found that SPTBN1 regulated CXCL1 through p65 by cytoplasmic-nuclear protein isolation experiments and ChIP-qPCR. Our data suggest that tumor cell SPTBN1 inhibits migration and M2-type polarization of TAMs by reducing the expression and secretion of CXCL1 via inhibiting p65 nuclear localization.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Espectrina , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Neoplasias Hepáticas/metabolismo , Macrófagos/metabolismo , Microambiente Tumoral , Macrófagos Asociados a Tumores/patología , Humanos , Espectrina/metabolismo , Quimiocina CXCL1RESUMEN
Canine hemangiosarcoma (HSA) is a highly malignant tumor derived from hematopoietic stem cells and commonly occurs in visceral organs or skin. Visceral HSAs are particularly aggressive and progress rapidly despite multimodal treatment. Tumor-associated macrophages (TAMs) play a central role in carcinogenesis, tumor progression, and metastasis in humans and murine models. In this retrospective study, we investigated the prevalence and phenotype of TAMs in privately owned, treatment-naïve dogs with naturally occurring HSA. We used CD204 as a general macrophage marker and CD206 as a marker for M2-polarized macrophages. Formalin-fixed paraffin-embedded tissues from HSAs in the spleen (n = 9), heart (n = 6), and other locations (n = 12) from 17 dogs were sectioned and immunohistochemically labeled with CD204 and CD206 antibodies. The mean number of log(CD204)- and log(CD206)-positive cells and the ratio of log(CD206/CD204)-positive cells were compared with normal surrounding tissues and between tumor locations. There were significantly more macrophages and M2 macrophages, and a higher ratio of M2 macrophages to total macrophages in tumor hot spots (P = .0002, P < .0001, and P = .0002, respectively) and in tumor tissues outside of hot spots (P = .009, P = .002, and P = .007, respectively) than in normal surrounding tissues. There were no significant differences between tumor locations, but there was a trend toward higher numbers of CD204-positive macrophages within the splenic tumors. There was no association between histological parameters or clinical stage and TAM numbers or phenotype. As in humans, TAMs in dogs with HSA have a predominantly M2-skewed phenotype. Dogs with HSA could serve as excellent models to evaluate new TAM-reprogramming therapies.
Asunto(s)
Enfermedades de los Perros , Hemangiosarcoma , Humanos , Animales , Perros , Ratones , Macrófagos Asociados a Tumores , Estudios Retrospectivos , Hemangiosarcoma/veterinaria , Hemangiosarcoma/patología , Inmunohistoquímica , Macrófagos/patología , Enfermedades de los Perros/patologíaRESUMEN
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease. Syncytin-1 (Syn), an envelope glycoprotein encoded by the env gene of the human endogenous retrovirus-W family, has been resorted to be highly expressed in biopsies from the muscles from ALS patients; however, the specific regulatory role of Syn during ALS progression remains uncovered. In this study, C57BL/6 mice were injected with adeno-associated virus-overexpressing Syn, with or without Fasudil administration. The Syn expression was assessed by quantitative real-time polymerase chain reaction and immunohistochemistry analysis. The histological change of anterior tibial muscles was determined by hematoxylin-eosin staining. Qualitative ultrastructural analysis of electron micrographs obtained from lumbar spinal cords was carried out. Serum inflammatory cytokines were assessed by enzyme linked immunosorbent assay (ELISA) assay and motor function was recorded using Basso, Beattie, and Bresnahan (BBB) scoring, climbing test and treadmill running test. Immunofluorescence and western blot assays were conducted to examine microglial- and motor neurons-related proteins. Syn overexpression significantly caused systemic inflammatory response, muscle tissue lesions, and motor dysfunction in mice. Meanwhile, Syn overexpression promoted the impairment of motor neuron, evidenced by the damaged structure of the neurons and reduced expression of microtubule-associated protein 2, HB9, neuronal nuclei and neuron-specific enolase in Syn-induced mice. In addition, Syn overexpression greatly promoted the expression of CD16/CD32 and inducible nitric oxide synthase (M1 phenotype markers), and reduced the expression of CD206 and arginase 1 (M2 phenotype markers). Importantly, the above changes caused by Syn overexpression were partly abolished by Fasudil administration. This study provides evidence that Syn-activated microglia plays a pivotal role during the progression of ALS.
Asunto(s)
1-(5-Isoquinolinesulfonil)-2-Metilpiperazina , Ratones Endogámicos C57BL , Microglía , Neuronas Motoras , Animales , Microglía/efectos de los fármacos , Microglía/metabolismo , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Ratones , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Productos del Gen env , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas Gestacionales/metabolismo , Masculino , Citocinas/metabolismo , Modelos Animales de Enfermedad , Actividad Motora/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/efectos de los fármacosRESUMEN
Profibrotic and prohomeostatic macrophage phenotypes remain ill-defined, both in vivo and in vitro, impeding the successful development of drugs that reprogram macrophages as an attractive therapeutic approach to manage fibrotic disease. The goal of this study was to reveal profibrotic and prohomeostatic macrophage phenotypes that could guide the design of new therapeutic approaches targeting macrophages to treat fibrotic disease. This study used nintedanib, a broad kinase inhibitor approved for idiopathic pulmonary fibrosis, to dissect lung macrophage phenotypes during fibrosis-linked inflammation by combining in vivo and in vitro bulk and single-cell RNA-sequencing approaches. In the bleomycin model, nintedanib drove the expression of IL-4/IL-13-associated genes important for tissue regeneration and repair at early and late time points in lung macrophages. These findings were replicated in vitro in mouse primary bone marrow-derived macrophages exposed to IL-4/IL-13 and nintedanib. In addition, nintedanib promoted the expression of IL-4/IL-13 pathway genes in human macrophages in vitro. The molecular mechanism was connected to inhibition of the colony stimulating factor 1 (CSF1) receptor in both human and mouse macrophages. Moreover, nintedanib counterbalanced the effects of TNF on IL-4/IL-13 in macrophages to promote expression of IL-4/IL-13-regulated tissue repair genes in fibrotic contexts in vivo and in vitro. This study demonstrates that one of nintedanib's antifibrotic mechanisms is to increase IL-4 signaling in macrophages through inhibition of the CSF1 receptor, resulting in the promotion of tissue repair phenotypes.
Asunto(s)
Fibrosis Pulmonar Idiopática , Indoles , Macrófagos , Indoles/farmacología , Animales , Ratones , Factor Estimulante de Colonias de Macrófagos/antagonistas & inhibidores , Interleucina-4/metabolismo , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismoRESUMEN
Pro-inflammatory and anti-inflammatory types are the main phenotypes of the macrophage, which are commonly notified as M1 and M2, respectively. The alteration of macrophage phenotypes and the progression of inflammation are intimately associated; both phenotypes usually coexist throughout the whole inflammation stage, involving the transduction of intracellular signals and the secretion of extracellular cytokines. This paper aims to address the interaction of macrophages and surrounding cells and tissues with inflammation-related diseases and clarify the crosstalk of signal pathways relevant to the phenotypic metamorphosis of macrophages. On these bases, some novel therapeutic methods are proposed for regulating inflammation through monitoring the transition of macrophage phenotypes so as to prevent the negative effects of antibiotic drugs utilized in the long term in the clinic. This information will be quite beneficial for the diagnosis and treatment of inflammation-related diseases like pneumonia and other disorders involving macrophages.
Asunto(s)
Productos Biológicos , Macrófagos , Humanos , Macrófagos/metabolismo , Citocinas/metabolismo , Fenotipo , Inflamación/metabolismo , Productos Biológicos/farmacologíaRESUMEN
Duchenne Muscular Dystrophy (DMD) is a very severe X-linked dystrophinopathy. It is due to a mutation in the DMD gene and causes muscular degeneration in conjunction with several secondary co-morbidities, such cardiomyopathy and respiratory failure. DMD is characterized by a chronic inflammatory state, and corticosteroids represent the main therapy for these patients. To contradict drug-related side effects, there is need for novel and more safe therapeutic strategies. Macrophages are immune cells stringently involved in both physiological and pathological inflammatory processes. They express the CB2 receptor, one of the main elements of the endocannabinoid system, and have been proposed as an anti-inflammatory target in several inflammatory and immune diseases. We observed a lower expression of the CB2 receptor in DMD-associated macrophages, hypothesizing its involvement in the pathogenesis of this pathology. Therefore, we analyzed the effect of JWH-133, a CB2 receptor selective agonist, on DMD-associated primary macrophages. Our study describes the beneficial effect of JWH-133 in counteracting inflammation by inhibiting pro-inflammatory cytokines release and by directing macrophages' phenotype toward the M2 anti-inflammatory one.
Asunto(s)
Cardiomiopatías , Distrofia Muscular de Duchenne , Humanos , Antiinflamatorios , Cardiomiopatías/complicaciones , Inflamación/metabolismo , Distrofia Muscular de Duchenne/genética , Receptor Cannabinoide CB2RESUMEN
Macrophages are important cells of the innate immune system that play many different roles in host defense, a fact that is reflected by their polarization into many distinct subtypes. Depending on their function and phenotype, macrophages can be grossly classified into classically activated macrophages (pro-inflammatory M1 cells), alternatively activated macrophages (anti-inflammatory M2 cells), and non-activated cells (resting M0 cells). A fast, label-free and non-destructive characterization of macrophage phenotypes could be of importance for studying the contribution of the various subtypes to numerous pathologies. In this work, single cell Raman spectroscopic imaging was applied to visualize the characteristic phenotype as well as to discriminate between different human macrophage phenotypes without any label and in a non-destructive manner. Macrophages were derived by differentiation of peripheral blood monocytes of human healthy donors and differently treated to yield M0, M1 and M2 phenotypes, as confirmed by marker analysis using flow cytometry and fluorescence imaging. Raman images of chemically fixed cells of those three macrophage phenotypes were processed using chemometric methods of unmixing (N-FINDR) and discrimination (PCA-LDA). The discrimination models were validated using leave-one donor-out cross-validation. The results show that Raman imaging is able to discriminate between pro- and anti-inflammatory macrophage phenotypes with high accuracy in a non-invasive, non-destructive and label-free manner. The spectral differences observed can be explained by the biochemical characteristics of the different phenotypes.
Asunto(s)
Macrófagos , Espectrometría Raman , Humanos , Monocitos , Activación de Macrófagos , AntiinflamatoriosRESUMEN
Duchenne muscular dystrophy (DMD) is characterized by chronic skeletal muscle necrosis, leading to muscle regeneration failure and fibrosis. Although macrophages (MPs) are normally essential for muscle regeneration, dysregulated MP function promotes pathological muscle remodelling. Infiltrating MPs can be predominantly pro-inflammatory (M1 biased), anti-inflammatory (M2 biased) or of a mixed phenotype and can originate from the adult bone marrow (monocyte dependent) or embryonic precursors (monocyte independent). In mdx mice (genetic model of DMD) lacking either Toll-like receptor (Tlr) 2 or Tlr4, it is found that MP infiltration of dystrophic muscle is significantly reduced and that the MP phenotype is shifted toward a more anti-inflammatory profile. This is accompanied by significant improvements in muscle histology and force production. Lack of the chemokine receptor CCR2, which impedes monocyte release from the bone marrow, leads to similar beneficial effects in mdx mice. Evidence was also found for Tlr4-regulated induction of trained innate immunity in MPs cultured from the bone marrow of mdx mice before their entry into the muscle. These MPs exhibit epigenetic and metabolic alterations, accompanied by non-specific hyper-responsiveness to multiple stimuli, which is manifested by potentiated upregulation of both pro- and anti-inflammatory genes. In summary, exaggerated recruitment of monocyte-derived MPs and signs of trained innate immunity at the level of the bone marrow are features of the immunophenotype associated with dystrophic muscle disease. These phenomena are regulated by Toll-like receptors that bind endogenous damage-associated molecular pattern (DAMP) molecules, suggesting that DAMP release from dystrophic muscles modulates MP plasticity at the bone marrow level through Toll-like receptor-driven mechanisms.
Asunto(s)
Distrofia Muscular de Duchenne , Animales , Macrófagos , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Receptor Toll-Like 4/metabolismoRESUMEN
Macrophages are essential components of the immune system and play a role in the normal functioning of the cardiovascular system. Depending on their origin and phenotype, cardiac macrophages perform various functions. In a steady-state, these cells play a beneficial role in maintaining cardiac homeostasis by defending the body from pathogens and eliminating apoptotic cells, participating in electrical conduction, vessel patrolling, and arterial tone regulation. However, macrophages also take part in adverse cardiac remodeling that could lead to the development and progression of heart failure (HF) in such HF comorbidities as hypertension, obesity, diabetes, and myocardial infarction. Nevertheless, studies on detailed mechanisms of cardiac macrophage function are still in progress, and could enable potential therapeutic applications of these cells. This review aims to present the latest reports on the origin, heterogeneity, and functions of cardiac macrophages in the healthy heart and in cardiovascular diseases leading to HF. The potential therapeutic use of macrophages is also briefly discussed.
Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Corazón , Homeostasis , Humanos , Macrófagos , MiocardioRESUMEN
Clusterin (CLU) is a multifunctional protein localized extracellularly and intracellularly. Although CLU-knockout (KO) mice are more susceptible to renal ischemia-reperfusion injury (IRI), the mechanisms underlying the actions of CLU in IRI are not fully understood. Macrophages are key regulators of IRI severity and tissue repair. Therefore, we investigated the role of CLU in macrophage polarization and phagocytosis. Renal IRI was induced in wild-type (WT) or CLU-KO C57BL/6 mice by clamping the renal pedicles for 30 min at 32°C. Peritoneal macrophages were activated via an intraperitoneal injection of lipopolysaccharide (LPS). Renal tissue damage was examined using histology, whereas leukocyte phenotypes were assessed using flow cytometry and immunohistochemistry. We found that monocytes/macrophages expressed the CLU protein that was upregulated by hypoxia. The percentages of macrophages (F4/80+ , CD11b+ or MAC3+ ) infiltrating the kidneys of WT mice were significantly less than those in CLU-KO mice after IRI. The M1/M2 phenotype ratio of the macrophages in WT kidneys decreased at day 7 post-IRI when the injury was repaired, whereas that in KO kidneys increased consistently as tissue injury persisted. In response to LPS stimulation, WT mice produced fewer M1 macrophages, but not M2, than the control did. Phagocytosis was stimulated by CLU expression in macrophages compared with the CLU null controls and by the exogenous CLU protein. In conclusion, CLU suppresses macrophage infiltration and proinflammatory M1 polarization during the recovery period following IRI, and enhances phagocytic activity, which may be partly responsible for tissue repair in the kidneys of WT mice after injury.
Asunto(s)
Clusterina , Riñón , Animales , Clusterina/genética , Inflamación , Macrófagos , Ratones , Ratones Endogámicos C57BL , Ratones NoqueadosRESUMEN
BACKGROUND: Sex and age are emerging as influential variables that affect spinal cord injury (SCI) recovery. Despite a changing demographic towards older age at the time of SCI, the effects of sex or age on inflammation remain to be elucidated. This study determined the sex- and age-dependency of the innate immune response acutely after SCI. METHODS: Male and female mice of ages 4- and 14-month-old received T9 contusion SCI and the proportion of microglia, monocyte-derived macrophages (MDM), and neutrophils surrounding the lesion were determined at 3- and 7-day post-injury (DPI) using flow cytometry. Cell counts of microglia and MDMs were obtained using immunohistochemistry to verify flow cytometry results at 3-DPI. Microglia and MDMs were separately isolated using fluorescence-activated cell sorting (FACS) at 3-day post-injury (DPI) to assess RNA expression of 27 genes associated with activation, redox, and debris metabolism/clearance. RESULTS: Flow cytometry revealed that being female and older at the time of injury significantly increased MDMs relative to other phagocytes, specifically increasing the ratio of MDMs to microglia at 3-DPI. Cell counts using immunohistochemistry revealed that male mice have more total microglia within SCI lesions that can account for a lower MDM/microglia ratio. With NanoString analyses of 27 genes, only 1 was differentially expressed between sexes in MDMs; specifically, complement protein C1qa was increased in males. No genes were affected by age in MDMs. Only 2 genes were differentially regulated in microglia between sexes after controlling for false discovery rate, specifically CYBB (NOX2) as a reactive oxygen species (ROS)-associated marker as well as MRC1 (CD206), a gene associated with reparative phenotypes. Both genes were increased in female microglia. No microglial genes were differentially regulated between ages. Differences between microglia and MDMs were found in 26 of 27 genes analyzed, all expressed higher in MDMs with three exceptions. Specifically, C1qa, cPLA2, and CD86 were expressed higher in microglia. CONCLUSIONS: These findings indicate that inflammatory responses to SCI are sex-dependent at both the level of cellular recruitment and gene expression.
Asunto(s)
Reacción de Fase Aguda/metabolismo , Envejecimiento , Macrófagos/metabolismo , Microglía/metabolismo , Caracteres Sexuales , Traumatismos de la Médula Espinal/metabolismo , Factores de Edad , Animales , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Factores SexualesRESUMEN
OBJECTIVE AND DESIGN: The omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) has been reported to suppress inflammation. Pulmonary inflammation can be directly linked to exposure of various occupational and man-made particles leading to pulmonary diseases. Therapeutic treatments are lacking for particle-induced pulmonary inflammation. These studies evaluated DHA as a therapeutic treatment for semi-acute and chronic particle-induced pulmonary inflammation. METHODS: Balb/c mice were oropharyngeal instilled with hydrophobic multi-walled carbon nanotube (MWCNT) or hydrophilic crystalline silica (SiO2) either as one instillation (semi-acute) or once a week for 4 weeks (chronic). One week later, the mice were placed on either a control or 1% DHA-containing diet for 3 weeks (semi-acute) or 12 weeks (chronic). Mice were assessed for inflammatory signaling within the lung lavage fluid, impact on phagolysosomal membrane permeability, shifts of macrophage phenotype gene expression (M1, M2a, M2b, and M2c), and pulmonary histopathology. RESULTS: DHA increased pulmonary inflammatory markers and lung pathology when mice were exposed to SiO2. There were trending decreases of inflammatory markers for MWCNT-exposed mice with DHA treatment, however, mostly not statistically significant. CONCLUSION: The anti-inflammatory benefits of DHA treatment depend upon the type of inflammatory particle, magnitude of inflammation, and duration of treatment.
Asunto(s)
Antiinflamatorios/uso terapéutico , Suplementos Dietéticos , Ácidos Docosahexaenoicos/uso terapéutico , Inflamación/dietoterapia , Enfermedades Pulmonares/dietoterapia , Animales , Células Cultivadas , Citocinas/inmunología , Femenino , Inflamación/inducido químicamente , Inflamación/inmunología , Inflamación/patología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Enfermedades Pulmonares/inducido químicamente , Enfermedades Pulmonares/inmunología , Enfermedades Pulmonares/patología , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/inmunología , Masculino , Ratones Endogámicos BALB C , Nanotubos de Carbono , Fenotipo , Dióxido de SilicioRESUMEN
Inhalation of particles results in pulmonary inflammation; however, treatments are currently lacking. Docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid shown to exhibit anti-inflammatory capabilities. The impact of DHA on particle-induced inflammation is unclear; therefore, the aim of this study was to examine the hypothesis that DHA downregulates macrophage inflammatory responses by altering phagolysosomal membrane permeability (LMP) and shifting macrophage phenotype. Isolated Balb/c alveolar macrophages (AM) were polarized into M1, M2a, M2b, or M2c phenotypes in vitro, treated with DHA, and exposed to a multi-walled carbon nanotube (MWNCT) or crystalline silica (SiO2). Results showed minimal cytotoxicity, robust effects for silica particle uptake, and LMP differences between phenotypes. Docosahexaenoic acid prevented these effects to the greatest extent in M2c phenotype. To determine if DHA affected inflammation similarly in vivo, Balb/c mice were placed on a control or 1% DHA diet for 3 weeks, instilled with the same particles, and assessed 24 hr following instillation. Data demonstrated that in contrast to in vitro findings, DHA increased pulmonary inflammation and LMP. These results suggest that pulmonary responses in vivo may not necessarily be predicted from single-cell responses in vitro.
Asunto(s)
Antiinflamatorios/farmacología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Ácidos Docosahexaenoicos/farmacología , Lisosomas/efectos de los fármacos , Macrófagos/efectos de los fármacos , Material Particulado/toxicidad , Fagosomas/efectos de los fármacos , Animales , Permeabilidad de la Membrana Celular/fisiología , Regulación hacia Abajo , Femenino , Lisosomas/fisiología , Macrófagos/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C , Fagosomas/fisiologíaRESUMEN
Phospholipases A2 (PLA2s) catalyze hydrolysis of the sn-2 substituent from glycerophospholipids to yield a free fatty acid (i.e., arachidonic acid), which can be metabolized to pro- or anti-inflammatory eicosanoids. Macrophages modulate inflammatory responses and are affected by Ca2+-independent phospholipase A2 (PLA2)ß (iPLA2ß). Here, we assessed the link between iPLA2ß-derived lipids (iDLs) and macrophage polarization. Macrophages from WT and KO (iPLA2ß-/-) mice were classically M1 pro-inflammatory phenotype activated or alternatively M2 anti-inflammatory phenotype activated, and eicosanoid production was determined by ultra-performance LC ESI-MS/MS. As a genotypic control, we performed similar analyses on macrophages from RIP.iPLA2ß.Tg mice with selective iPLA2ß overexpression in ß-cells. Compared with WT, generation of select pro-inflammatory prostaglandins (PGs) was lower in iPLA2ß-/- , and that of a specialized pro-resolving lipid mediator (SPM), resolvin D2, was higher; both changes are consistent with the M2 phenotype. Conversely, macrophages from RIP.iPLA2ß.Tg mice exhibited an opposite landscape, one associated with the M1 phenotype: namely, increased production of pro-inflammatory eicosanoids (6-keto PGF1α, PGE2, leukotriene B4) and decreased ability to generate resolvin D2. These changes were not linked with secretory PLA2 or cytosolic PLA2α or with leakage of the transgene. Thus, we report previously unidentified links between select iPLA2ß-derived eicosanoids, an SPM, and macrophage polarization. Importantly, our findings reveal for the first time that ß-cell iPLA2ß-derived signaling can predispose macrophage responses. These findings suggest that iDLs play critical roles in macrophage polarization, and we posit that they could be targeted therapeutically to counter inflammation-based disorders.
Asunto(s)
Calcio/metabolismo , Eicosanoides/metabolismo , Fosfolipasas A2 Grupo IV/metabolismo , Macrófagos/metabolismo , Transducción de Señal , Animales , Fosfolipasas A2 Grupo IV/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones TransgénicosRESUMEN
Overactivation and persistent chronic inflammation are the major pathogenic characteristics of diabetic-impaired healing, and diabetic wound healing can be promoted by stimulating the transition of macrophage phenotype from pro-inflammatory (M1) to anti-inflammatory (M2). Our previous studies found that the application of insulin induced an advanced initiation and resolution of inflammatory response. To further explore the mechanism, we have investigated the effect of insulin on macrophage phenotype switch utilizing a diabetic rat model and a human monocytic THP-1 cell. We have utilized the high glucose (HG) and HG plus insulin to stimulate the M1 macrophages derived from lipopolysaccharide-treated THP-1 cells. We studied the secretion of inflammatory mediator and related signaling pathways by using western blot test, immunofluorescence, and Rac1 pull-down assay. We have found that the production of pro-inflammatory mediators, which thereafter induced macrophage polarization toward M1 phenotype, has been elevated due to consistent HG exposure. HG plus insulin stimulation, on the other hand, promoted anti-inflammatory effects. Experiments performed on diabetic burn wounds indicated that the insulin modulated macrophages transition from M1 to M2 phenotype. We found that PI3K/Akt/Rac-1 and PPAR-γ signaling pathways are involved in the anti-inflammatory effect of insulin. Insulin inhibited HG-induced activation of p38, NF-κB, and STAT1 transcriptional activity by activating Akt-Rac-1 signaling. Moreover, insulin performs anti-inflammatory effects through upregulation of PPAR-γ expression and induced P38-mediated dephosphorylation of PPAR-γ (Ser112). In conclusion, insulin downregulates inflammatory response, regulates M1 macrophage transition in response to HG, and thus improves chronic wound healing.
Asunto(s)
Quemaduras/tratamiento farmacológico , Plasticidad de la Célula/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/farmacología , Insulina Isófana/farmacología , Macrófagos/efectos de los fármacos , PPAR gamma/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piel/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Animales , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Quemaduras/complicaciones , Quemaduras/enzimología , Quemaduras/patología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/enzimología , Humanos , Mediadores de Inflamación/metabolismo , Macrófagos/enzimología , Macrófagos/patología , Masculino , Fenotipo , Ratas Wistar , Transducción de Señal , Piel/enzimología , Piel/patología , Células THP-1 , Factores de Tiempo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteína de Unión al GTP rac1/metabolismoRESUMEN
After renal ischemic reperfusion injury, a series of pathological changes, such as impaired intestinal barrier function, intestinal flora, and endotoxin translocation, are caused by intestinal ischemia and hypoxia, which then trigger systemic inflammatory responses and affect the condition and prognosis of the patients. In this study, a rat model of ischemia-reperfusion injury was established by examining changes in renal function, intestinal barrier function, inflammatory index, oxidative stress, and macrophage phenotypes to evaluate the effect of probiotic VSL#3 on renal ischemia-reperfusion injury. The results showed that, after VSL#3 intervention, the levels of BUN, Scr, Cys C, PRO, and NGAL were all significantly decreased compared with the I/R group, while the value of Ccr showed a significant increase. In addition, the concentrations of MPO, IL-1ß, TNF-α, IL-6, ED-1, and PCNA were all significantly lower than those in the I/R group, while the levels of endotoxin, DOA, and D-lactic acid were significantly decreased. Furthermore, the proteins associated with intestinal barrier functions, such as ZO-1, Occludin, and Claudin-1, were significantly upregulated compared with the I/R group. Overall, the VSL#3 intervention group was able to maintain the required number of beneficial intestinal flora and to inhibit the proliferation of harmful bacteria. At the same time, the VSL#3 intervention could also prevent the decrease in the levels of CAT, GSH-PX, H2O2, and T-SOD, while downregulating the expression of Keap1 and Nrf2. After the intervention with the VSL#3, the expression levels of CD68 and CD86 proteins were significantly decreased, while the expression levels of CD163 and CD206 proteins were significantly higher. Further experiments confirmed that the expression of iNOS protein was significantly decreased after the VSL#3 intervention, and the expression of Arg-1 and Ym1 proteins was significantly increased. The VSL#3 was able to induce high expressions of p-GSK-3ß and p-PTEN proteins, while the use of IL-10 antibody impaired the effect of the VSL#3. In summary, this research confirms that probiotics can alleviate renal dysfunction caused by ischemia and reperfusion by protecting the intestinal barrier function and maintaining the functions of intestinal flora. The pathway screening test of this study suggests that IL-10/GSK3ß/PTEN may play an important role in the process of the prototypic VSL#3 inducing M2 transformation of macrophages.
Asunto(s)
Riñón/efectos de los fármacos , Macrófagos/efectos de los fármacos , Probióticos/farmacología , Daño por Reperfusión/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Animales , Regulación hacia Abajo/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Interleucina-10/metabolismo , Riñón/metabolismo , Masculino , Fosfohidrolasa PTEN/metabolismo , Fenotipo , Ratas , Ratas Wistar , Daño por Reperfusión/metabolismo , Regulación hacia Arriba/efectos de los fármacosRESUMEN
Surfactant protein-D (SP-D) is a regulator of pulmonary innate immunity whose oligomeric state can be altered through S-nitrosylation to regulate its signaling function in macrophages. Here, we examined how nitrosylation of SP-D alters the phenotypic response of macrophages to stimuli both in vivo and in vitro. Bronchoalveolar lavage (BAL) from C57BL6/J and SP-D-overexpressing (SP-D OE) mice was incubated with RAW264.7 cells ± LPS. LPS induces the expression of the inflammatory genes Il1b and Nos2, which is reduced 10-fold by SP-D OE-BAL. S-nitrosylation of the SP-D OE-BAL (SNO-SP-D OE-BAL) abrogated this inhibition. SNO-SP-D OE-BAL alone induced Il1b and Nos2 expression. PCR array analysis of macrophages incubated with SP-D OE-BAL (±LPS) shows increased expression of repair genes, Ccl20, Cxcl1, and Vcam1, that was accentuated by LPS. LPS increases inflammatory gene expression, Il1a, Nos2, Tnf, and Ptgs2, which was accentuated by SNO-SP-D OE-BAL but inhibited by SP-D OE-BAL. The transcription factor NF-κB was identified as a target for SNO-SP-D by IPA, which was confirmed by Trans-AM ELISA in vitro. In vivo, SP-D overexpression increases the burden of infection in a Pneumocystis model while increasing cellular recruitment. Expression of iNOS and the production of NO metabolites were significantly reduced in SP-D OE mice relative to C57BL6/J. Inflammatory gene expression was increased in infected C57BL6/J mice but decreased in SP-D OE. SP-D oligomeric structure was disrupted in C57BL6/J infected mice but unaltered within SP-D OE. Thus SP-D modulates macrophage phenotype and the balance of multimeric to trimeric SP-D is critical to this regulation.
Asunto(s)
Macrófagos Alveolares/inmunología , Compuestos Nitrosos/metabolismo , Infecciones por Pneumocystis/genética , Procesamiento Proteico-Postraduccional , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Animales , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/inmunología , Quimiocina CCL20/genética , Quimiocina CCL20/inmunología , Quimiocina CXCL1/genética , Quimiocina CXCL1/inmunología , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/inmunología , Femenino , Inmunidad Innata , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Lipopolisacáridos/farmacología , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/microbiología , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/genética , FN-kappa B/inmunología , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/inmunología , Compuestos Nitrosos/inmunología , Fenotipo , Pneumocystis/crecimiento & desarrollo , Pneumocystis/patogenicidad , Infecciones por Pneumocystis/inmunología , Infecciones por Pneumocystis/metabolismo , Infecciones por Pneumocystis/microbiología , Proteína D Asociada a Surfactante Pulmonar/genética , Proteína D Asociada a Surfactante Pulmonar/inmunología , Células RAW 264.7 , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/inmunologíaRESUMEN
Chronic respiratory diseases, including chronic obstructive pulmonary disease (COPD), cystic fibrosis, and asthma, are some of the leading causes of illness and fatalities worldwide. The search for novel treatments led to the exploration of marine natural products as drug candidates to combat the debilitating effects of mucus accumulation and chronic inflammation. Previous research showed that an alga-derived compound, brevenal, could attenuate the effects of inflammatory agents, but the mechanisms by which it exerted its effects remained unclear. We investigated the effects of brevenal on lipopolysaccharide (LPS) induced cytokine/chemokine production from murine macrophages and human lung epithelial cells. It was found that brevenal reduces proinflammatory mediator secretion while preserving anti-inflammatory secretion from these cells. Furthermore, we found that brevenal does not alter cell surface Toll-like receptor 4 (TLR4) expression, thereby maintaining the cells' ability to respond to bacterial infection. However, brevenal does alter macrophage activation states, as demonstrated by reduced expression of both M1 and M2 phenotype markers, indicating this putative anti-inflammatory drug shifts innate immune cells to a less active state. Such a mechanism of action would be ideal for reducing inflammation in the lung, especially with patients suffering from chronic respiratory diseases, where inflammation can be lethal.
Asunto(s)
Antiinflamatorios/farmacología , Organismos Acuáticos/química , Dinoflagelados/química , Éteres/farmacología , Factores Inmunológicos/farmacología , Polímeros/farmacología , Animales , Antiinflamatorios/uso terapéutico , Línea Celular Tumoral , Enfermedad Crónica/terapia , Evaluación Preclínica de Medicamentos , Células Epiteliales/efectos de los fármacos , Éteres/uso terapéutico , Humanos , Factores Inmunológicos/uso terapéutico , Pulmón/citología , Macrófagos/efectos de los fármacos , Ratones , Polímeros/uso terapéutico , Mucosa Respiratoria/citología , Enfermedades Respiratorias/tratamiento farmacológico , Enfermedades Respiratorias/inmunologíaRESUMEN
The pathogenesis of hypertrophic scar (HS) is still poorly understood. Macrophages, especially the polarisation of that to M1 or M2, play a pivotal role in control of the degree of scar formation. Profiling of macrophage phenotypes in human specimens during long-term period of wound healing and HS formation may provide valuable clinical evidence for understanding the pathology of human scars. Human wound and HS specimens were collected, the macrophage phenotype was identified by immunofluorescence, and biomarkers and cytokines associated with M1 and M2 macrophages were detected by RT-PCR. The correlation between the macrophage phenotype and HS characteristics was analysed by linear regression analyses. We found excessive and persistent infiltration by M1 macrophages around the blood vessels in the superficial layer of the dermis at early wound tissues, whereas M2 macrophages predominated in later wound tissues and the proliferative phase of HS and were scattered throughout the dermis. The density of M1 macrophages was positively correlated with mRNA expression levels of tumour necrosis factor-alpha (TNF-α) and IL-6. The density of M2 macrophages was positively correlated with ARG1 and negatively correlated with the duration of HS. The sequential infiltration by M1 macrophage and M2 macrophages in human wound and HS tissues was confirmed.