Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Nanotechnology ; 35(38)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38861960

RESUMEN

Magneto-controlling micro-nano materials' motion is a promising way that enable the noncontact, remote, and nondestructive controlling of their macrostructure as well as functionalities. Here, an optical microscope with an electromagnet was constructed toin-situmonitor the magneto-controlled motion process microscopically. Taking micro-nano graphite flake (MGF) as a model system, we experimentally demonstrate the key factors that influence the magneto-controlling of materials' motion. First, the product of intensity and gradient of the magnetic field (B∇B) has been confirmed as the dominant driving force and the flipping direction of the MGFs is accordingly determined by the vector direction ofB×∇B. Second, quantitatively comparative experiments further revealed that the threshold driving force has an exponential relationship with the structural aspect ratio (b/a) of MGFs. Third, the critical magneto-driving force is found as proportional to the viscosity of the solvent. Accordingly, a dynamic model is developed that describes the flip of the diamagnetic flake under external magnetic field excitation considering the shape factor. It is shown experimentally that the model accurately predicts the flip dynamics of the flake under different magnetic field conditions. In addition, we also discovered the delay effect, multiple cycle acceleration effect, and the fatigue effects due to gas adsorption in magneto-controlled MGFs flipping. These findings can be used to achieve magneto-controlling materials' macrostructure as well as their functionalities.

2.
Nano Lett ; 23(11): 4931-4937, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37265387

RESUMEN

Magnetic skyrmions are real-space topological spin textures, which have attracted increasing attention from the nanospintronics community. Toward functional skyrmionics, the efficient manipulation of skyrmions is a prerequisite, which has been successfully demonstrated through electrical, thermal, optical, and other means. Here, through integrating an interfacially asymmetric Ta/CoFeB/MgO multilayer with an on-chip wire that induces Oersted fields and their gradients, we show experimentally the generation and topology-dependent motion of Néel type skyrmions at room temperature. In particular, an opposite longitudinal motion for skyrmions with opposite topological charges along the gradient direction is observed. Through comparing with the well-known Stern-Gerlach experiment, in which the splitting of atomic spins under magnetic field gradients was observed, our work identifies another interesting aspect of the topological character of skyrmions. The present study could also be implemented for designing novel on-chip skyrmionic devices in which the manipulation of skyrmions cannot be done by electrical means.

3.
Magn Reson Med ; 88(3): 1282-1291, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35510691

RESUMEN

PURPOSE: Conventional current density imaging method, which relies on the detection of the magnetic field induced by the current in an image phase, is demanding and difficult to perform. In this study, a much simpler signal-magnitude-decay (SMD)-based current detection method is proposed. METHODS: Conductive test and biological samples were imaged at various TE times using the gradient- or spin-echo imaging sequences with superimposed constant or bipolar currents, respectively. The SMD curve was sampled for each image voxel, which enabled voxel-vise current density calculation by fitting an appropriate SMD model curve to the measured SMD curve. Effect of the voxel size on the signal decay and precision of the current density calculation was studied as well. RESULTS: It was shown theoretically, as well as verified by experiments on test and biological samples, that the current flowing though the sample creates an inhomogeneous magnetic field, which, as a consequence has a faster signal decay. Estimated current density from the measured signal decay increase agreed reasonably well with the actual current density, especially with the larger voxel sizes and longer times to signal acquisition. The sensitivity of the SMD method is up to 1/6$$ 1/\sqrt{6} $$ the sensitivity of the current density imaging method. CONCLUSION: SMD method of current detection is not limited to any particular sample orientation or geometry, and any pulse sequence capable of acquisition of the current-induced signal evolution in a voxel can be used for it. This widens the scope of its application from tissues to in vivo studies on animals and humans.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Conductividad Eléctrica , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos
4.
Environ Res ; 214(Pt 2): 113907, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35870506

RESUMEN

Earphones (EP) are a worldwide, massively adopted product, assumed to be innocuous provided the recommendations on sound doses limits are followed. Nevertheless, sound is not the only physical stimulus that derives from EP use, since they include a built-in permanent magnet from which a static magnetic field (SMF) originates. We performed 2D maps of the SMF at several distances from 6 models of in-ear EP, showing that they produce an exposure that spans from ca. 20 mT on their surface down to tens of µT in the inner ear. The numerous reports of bioeffects elicited by SMF in that range of intensities (applied both acutely and chronically), together with the fact that there is no scientific consensus over the possible mechanisms of interaction with living tissues, suggest that caution could be recommendable. In addition, more research is warranted on the possible effects of the combination of SMF with extremely low frequency and radiofrequency fields, which has so far been scarcely studied. Overall, while several open questions about bioeffects of SMF remain to be addressed by the scientific community, we find sensible to suggest that the use of air-tube earphones is probably the more conservative, cautious choice.


Asunto(s)
Campos Magnéticos
5.
Nanotechnology ; 32(49)2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34399411

RESUMEN

Trapping/separating bio-entities via magnetic field gradients created a vast number of possibilities to develop biosensors for the early detection of diseases without the need for expensive equipment or physician/lab technicians. Thus, opening a window for at-home disposable rapid test kits. In the scope of the current work, an innovative and cost-effective technique to form well-organized arrays of Nd-Fe-B patterns was successfully developed. High aspect ratio Nd-Fe-B flakes were synthesized by surfactant-assisted ball milling technique. Nd-Fe-B flakes were distributed and patterned into a PDMS matrix by the aforementioned technique. A microfluidic channel was integrated on the fabricated Nd-Fe-B/PDMS patch with a high magnetic field gradient to form a microfluidic device. Fe nanoparticles, suspended in hexane, were flowed through the microfluidic channel, and trapping of the magnetic nanoparticles was observed. More experiments would be needed to quantitatively study efficiency. Ergo, the microfluidic device with high trapping efficiency was developed. The established technique has the potential to outperform the precedents in trapping efficiency, cost, and ease of production. The developed device could be integrated into disposable test kits for the early detection of various diseases.

6.
Sensors (Basel) ; 20(20)2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33050148

RESUMEN

This paper proposes an advanced solution to improve the inertial velocity estimation of a rigid body, for indoor navigation, through implementing a magnetic field gradient-based Extended Kalman Filter (EKF). The proposed estimation scheme considers a set of data from a triad of inertial sensors (accelerometer and gyroscope), as well as a determined arrangement of magnetometers array. The inputs for the estimation scheme are the spatial derivatives of the magnetic field, from the magnetometers array, and the attitude, from the inertial sensors. As shown in the literature, there is a strong relation between the velocity and the measured magnetic field gradient. However, the latter usually suffers from high noises. Then, the novelty of the proposed EKF is to develop a specific equation to describe the dynamics of the magnetic field gradient. This contribution helps to filter, first, the magnetic field and its gradient and second, to better estimate the inertial velocity. Some numerical simulations that are based on an open source database show the targeted improvements. At the end of the paper, this approach is extended to position estimation in the case of a foot-mounted application and the results are very promising.

7.
Sensors (Basel) ; 18(2)2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-29443920

RESUMEN

A novel gradient-type magnetoelectric (ME) current sensor operating in magnetic field gradient (MFG) detection and conversion mode is developed based on a pair of ME composites that have a back-to-back capacitor configuration under a baseline separation and a magnetic biasing in an electrically-shielded and mechanically-enclosed housing. The physics behind the current sensing process is the product effect of the current-induced MFG effect associated with vortex magnetic fields of current-carrying cables (i.e., MFG detection) and the MFG-induced ME effect in the ME composite pair (i.e., MFG conversion). The sensor output voltage is directly obtained from the gradient ME voltage of the ME composite pair and is calibrated against cable current to give the current sensitivity. The current sensing performance of the sensor is evaluated, both theoretically and experimentally, under multisource noises of electric fields, magnetic fields, vibrations, and thermals. The sensor combines the merits of small nonlinearity in the current-induced MFG effect with those of high sensitivity and high common-mode noise rejection rate in the MFG-induced ME effect to achieve a high current sensitivity of 0.65-12.55 mV/A in the frequency range of 10 Hz-170 kHz, a small input-output nonlinearity of <500 ppm, a small thermal drift of <0.2%/℃ in the current range of 0-20 A, and a high common-mode noise rejection rate of 17-28 dB from multisource noises.

8.
MAGMA ; 30(6): 567-577, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28631204

RESUMEN

OBJECTIVE: We describe a new real-time filter to reduce artefacts on electrocardiogram (ECG) due to magnetic field gradients during MRI. The proposed filter is a least mean square (LMS) filter able to continuously adapt its step size according to the gradient signal of the ongoing MRI acquisition. MATERIALS AND METHODS: We implemented this filter and compared it, within two databases (at 1.5 and 3 T) with over 6000 QRS complexes, to five real-time filtering strategies (no filter, low pass filter, standard LMS, and two other filters optimized within the databases: optimized LMS, and optimized Kalman filter). RESULTS: The energy of the remaining noise was significantly reduced (26 vs. 68%, p < 0.001) with the new filter vs. standard LMS. The detection error of our ventricular complex (QRS) detector was: 11% with our method vs. 25% with raw ECG, 35% with low pass filter, 17% with standard LMS, 12% with optimized Kalman filter, and 11% with optimized LMS filter. CONCLUSION: The adaptive step size LMS improves ECG denoising during MRI. QRS detection has the same F1 score with this filter than with filters optimized within the database.


Asunto(s)
Electrocardiografía/métodos , Imagen por Resonancia Magnética/métodos , Algoritmos , Artefactos , Electrocardiografía/estadística & datos numéricos , Humanos , Análisis de los Mínimos Cuadrados , Imagen por Resonancia Magnética/estadística & datos numéricos , Procesamiento de Señales Asistido por Computador , Relación Señal-Ruido
9.
Sensors (Basel) ; 17(11)2017 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-29068428

RESUMEN

We report, theoretically and experimentally, the realization of a high detection performance in a novel magnetoelectric (ME) transverse gradient sensor based on the large ME effect and the magnetic field gradient (MFG) technique in a pair of magnetically-biased, electrically-shielded, and mechanically-enclosed ME composites having a transverse orientation and an axial separation. The output voltage of the gradient sensor is directly obtained from the transverse MFG-induced difference in ME voltage between the two ME composites and is calibrated against transverse MFGs to give a high detection sensitivity of 0.4-30.6 V/(T/m), a strong common-mode magnetic field noise rejection rate of <-14.5 dB, a small input-output nonlinearity of <10 ppm, and a low gradient noise of 0.16-620 nT/m/ Hz in a broad frequency range of 1 Hz-170 kHz under a small baseline of 35 mm. An analysis of experimental gradient noise spectra obtained in a magnetically-unshielded laboratory environment reveals the domination of the pink (1/f) noise, dielectric loss noise, and power-frequency noise below 3 kHz, in addition to the circuit noise above 3 kHz, in the gradient sensor. The high detection performance, together with the added merit of passive and direct ME conversion by the large ME effect in the ME composites, makes the gradient sensor suitable for the passive, direct, and broadband detection of transverse MFGs.

10.
Nano Lett ; 15(3): 1673-8, 2015 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-25650698

RESUMEN

Heterostructures containing high-mobility two-dimensional electron gas were rolled into freestanding helically shaped contacted Hall bars. Magnetotransport measurements in these structures at high magnetic fields revealed minima in the longitudinal magnetoresistance corresponding to integer and fractional filling factors. A strong asymmetry of the longitudinal magnetoresistance with respect to the external magnetic field direction was observed. For this new type of structures, an edge state picture was considered, and calculations based on the Landauer-Büttiker formalism are performed.

11.
Sci Rep ; 14(1): 9607, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671044

RESUMEN

One of the most appealing quantum communication protocols is quantum teleportation, which involves sharing entanglement between the sender and receiver of the quantum state. We address the two-qubit quantum teleportation based on the Heisenberg XYZ chain with a magnetic-field gradient affected by intrinsic decoherence. An atomic spin chain is primarily coupled to the linear gradient of the magnetic field in the x-direction, with the assumption that the magnetic field varies linearly with the position of the atom. By using the concepts of fidelity and average fidelity in the presence of the magnetic field gradient and under the effect of intrinsic decoherence in the current model, and considering the variables of the system, an improved quantum teleportation can be achieved. In addition, using the concept of remote quantum estimation, we examine remote quantum sensing in this article, which is very useful in quantum communication.

12.
Magn Reson Imaging ; 101: 76-89, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37044168

RESUMEN

Accurate tracking involuntary head movements is fairly a challenging problem in MR imaging of the brain. Though there are few techniques available to monitor the head movement of the subject for a prospective motion correction, it is still an unsolved problem in MRI. In this theoretical study, we aim to describe an analytical investigation to track head movement inside an MR scanner by calculating the change in induced voltage in the head-mounted coils during the execution of time-varying gradients. We derive an expression to calculate the change in induced voltage in a coil placed in a time-varying gradient. We also derive a general equation to investigate the changes in the induced voltage in a set of coils mounted onto the head for the planar position and orientation of the coils. Each coil is considered as a magnetic dipole with location and sensitivity vectors. The changes of the vectors can track the head movement in the MR scanner by measuring the changes in the induced voltage in the coils. The dipole concept is valid for a wide range of coils. The changes in induced voltage in the coils are linear due to small changes in pose of the head. Movement parameters are estimated from the induced voltage changes. If the random noise voltage is less than 100 µV, it does not significantly affect movement parameters because the change in induced voltage in the coils dominates over the small noise voltage. This method and array of the coils may provide a real-life solution to the long-standing problem of head motion during MRI.


Asunto(s)
Movimientos de la Cabeza , Imagen por Resonancia Magnética , Estudios de Factibilidad , Estudios Prospectivos , Imagen por Resonancia Magnética/métodos , Encéfalo , Diseño de Equipo , Fantasmas de Imagen
13.
Micromachines (Basel) ; 14(11)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-38004842

RESUMEN

The miniaturization of quantum sensors is a popular trend for the development of quantum technology. One of the key components of these sensors is a coil which is used for spin modulation and manipulation. The bi-planar coils have the advantage of producing three-dimensional magnetic fields with only two planes of current confinement, whereas the traditional Helmholtz coils require three-dimensional current distribution. Thus, the bi-planar coils are compatible with the current micro-fabrication process and are quite suitable for the compact design of the chip-scale atomic devices that require stable or modulated magnetic fields. This paper presents a design of a miniature bi-planar coil. Both the magnetic fields produced by the coils and their inhomogeneities were designed theoretically. The magnetic field gradient is a crucial parameter for the coils, especially for generating magnetic fields in very small areas. We used a NMR (Nuclear Magnetic Resonance) method based on the relaxation of 131Xe nuclear spins to measure the magnetic field gradient in situ. This is the first time that the field inhomogeneities of the field of such small bi-planar coils have been measured. Our results indicate that the designed gradient caused error is 0.08 for the By and the Bx coils, and the measured gradient caused error using the nuclear spin relaxation method is 0.09±0.02, suggesting that our method is suitable for measuring gradients. Due to the poor sensitivity of our magnetometer under a large Bz bias field, we could not measure the Bz magnetic field gradient. Our method also helps to improve the gradients of the miniature bi-planar coil design, which is critical for chip-scale atomic devices.

14.
Cells ; 11(5)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35269379

RESUMEN

Magnetic resonance imaging (MRI) is widely used in diagnostic medicine. MRI uses the static magnetic field to polarize nuclei spins, fast-switching magnetic field gradients to generate temporal and spatial resolution, and radiofrequency (RF) electromagnetic waves to control the spin orientation. All these forms of magnetic static and electromagnetic RF fields interact with human tissue and cells. However, reports on the MRI technique's effects on the cells and human body are often inconsistent or contradictory. In both research and clinical MRI, recent progress in improving sensitivity and resolution is associated with the increased magnetic field strength of MRI magnets. Additionally, to improve the contrast of the images, the MRI technique often employs contrast agents, such as gadolinium-based Dotarem, with effects on cells and organs that are still disputable and not fully understood. Application of higher magnetic fields requires revisiting previously observed or potentially possible bio-effects. This article focuses on the influence of a static magnetic field gradient with and without a gadolinium-based MRI contrast agent (Dotarem) and the cellular and molecular effects of Dotarem on macrophages.


Asunto(s)
Medios de Contraste , Gadolinio , Animales , Gadolinio/farmacología , Macrófagos , Campos Magnéticos , Imagen por Resonancia Magnética/métodos , Meglumina , Ratones , Compuestos Organometálicos
15.
J Magn Reson ; 337: 107167, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35217380

RESUMEN

The motional dynamics of nuclear magnetic resonance (NMR) logging tools can significantly influence the measurement performance of such tools. NMR logging is used for geophysical evaluation in geological environments, primarily quantifying formation porosity and fluid volumes, as well as providing a qualitative estimation of permeability. NMR logging tools are conveyed via two main mechanisms; wireline logging and logging while drilling (LWD). We conduct detailed simulations to quantify the impact of tool motion on NMR measurements during logging. This involves conducting electromagnetic simulations which quantify the magnetic fields generated by a logging tool, and subsequently introducing motion profiles within the relevant spin dynamic calculations. This enables tool motional dynamics to be imposed on the signal acquisition. Several movement profiles are considered: linear axial movement to replicate wireline logging tool motion, as well as axial harmonic and lateral harmonic movement to simulate the shocks and vibrations experienced during logging while drilling. Lateral motion is observed to cause a greater degree of signal attenuation relative to axial motion due to the cylindrical shape of the excited volume. The magnitude of motion (e.g. the velocity of linear motion or the amplitude of harmonic motion) is demonstrated to increase the severity of signal attenuation, as expected. However, the frequency of harmonic motion demonstrates a more complex effect on the measured signal. The harmonic interaction between the motion frequency and measurement frequency (determined by the echo spacing) can cause wave interference which results in enhanced or diminished signal attenuation. Finally, we demonstrate that reducing both the magnetic field gradient as well as the echo spacing reduce the degree of signal attenuation observed during measurement. The results presented in this work demonstrate how the optimisation of key design parameters can be used to control the sensitivity of NMR logging tools towards motion.


Asunto(s)
Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética/métodos , Movimiento (Física) , Porosidad
16.
Artículo en Inglés | MEDLINE | ID: mdl-35356802

RESUMEN

This papers reports a magnetic field gradient-based imaging system for in-body devices which takes inspiration from the localization principles of magnetic resonance imaging. By applying three orthogonal magnetic field gradients, the location of a device inside the body can be determined by measuring the magnetic fields in the device and transmitting this information to an external reader. The proposed system consists of one pair of Helmholtz coils and two pairs of saddle coils and is capable of generating the three orthogonal gradient fields. To emulate an implantable device, a miniature sensor module was designed using off-the-shelf components and semi-passive UHF RFID. The proposed localization system produces magnetic field gradients up to 187.4 G/m while consuming 1 A and achieves an average localization error of 80 µm.

17.
Polymers (Basel) ; 11(6)2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-31242626

RESUMEN

Although new drug delivery systems have been intensely developed in the past decade, no significant increase in the efficiency of drug delivery by nanostructure carriers has been achieved. The reasons are the lack of information about acute toxicity, the influence of the submicron size of the carrier and difficulties with the study of biodistribution in vivo. Here we propose, for the first time in vivo, new nanocomposite submicron carriers made of bovine serum albumin (BSA) and tannic acid (TA) and containing magnetite nanoparticles with sufficient content for navigation in a magnetic field gradient on mice. We examined the efficacy of these submicron carriers as a delivery vehicle in combination with magnetite nanoparticles which were systemically administered intravenously. In addition, the systemic toxicity of this carrier for intravenous administration was explicitly studied. The results showed that (BSA/TA) carriers in the given doses were hemocompatible and didn't cause any adverse effect on the respiratory system, kidney or liver functions. A combination of gradient-magnetic-field controllable biodistribution of submicron carriers with fluorescence tomography/MRI imaging in vivo provides a new opportunity to improve drug delivery efficiency.

18.
J Magn Reson ; 276: 51-59, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28110117

RESUMEN

The modified CPMG (Carr-Purcell-Meiboom-Gill) pulse sequence is a common sequence used for measuring the internal magnetic field gradient distribution of formation rocks, for which t0 (the duration of the first window) is a key acquisition parameter. In order to obtain the optimal t0, an adaptive method is proposed in this paper. By studying the factors influencing discriminant factor σ and its variation trend using T2-G forward numerical simulation, it is found that the optimal t0 corresponds to the maximum value of σ. Then combining the constraint condition of SNR (Signal Noise Ratio) of spin echo, an optimal t0 in modified CPMG pulse sequence is determined. This method can reduce the difficulties of operating T2-G experiments. Finally, the adaptive method is verified by the results of the T2-G experiments for four water-saturated sandstone samples.

19.
J Magn Reson ; 238: 70-6, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24316188

RESUMEN

The time-varying magnetic fields used in magnetic resonance applications result in the induction of eddy currents on conductive structures in the vicinity of both the sample under investigation and the gradient coils. These eddy currents typically result in undesired degradations of image quality for MRI applications. Their ubiquitous nature has resulted in the development of various approaches to characterize and minimize their impact on image quality. This paper outlines a method that utilizes the magnetic field gradient waveform monitor method to directly measure the temporal evolution of the magnetic field gradient from a step-like input function and extracts the system impulse response. With the basic assumption that the gradient system is sufficiently linear and time invariant to permit system theory analysis, the impulse response is used to determine a pre-equalized (optimized) input waveform that provides a desired gradient response at the output of the system. An algorithm has been developed that calculates a pre-equalized waveform that may be accurately reproduced by the amplifier (is physically realizable) and accounts for system limitations including system bandwidth, amplifier slew rate capabilities, and noise inherent in the initial measurement. Significant improvements in magnetic field gradient waveform fidelity after pre-equalization have been realized and are summarized.


Asunto(s)
Campos Electromagnéticos , Imagen por Resonancia Magnética/métodos , Algoritmos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/instrumentación , Magnetismo , Fantasmas de Imagen , Relación Señal-Ruido
20.
Bone ; 57(1): 155-63, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23899635

RESUMEN

INTRODUCTION: Bone mineral density (BMD) result has a low predictive value on patients' risk for future fractures. Thus, new approaches for examining patients at risk for developing osteoporosis would be desirable. Magnetic resonance (MR) investigations in cancellous bone have been shown to yield useful quantitative information on both trabecular-bone microstructure and bone marrow composition. This work was undertaken to address the hypothesis that the effective internal magnetic field gradient (IMFG), a new MR parameter, discriminates between healthy, osteopenic and osteoporotic postmenopausal women, classified on the basis of bone mineral density (BMD) criteria. The work builds on preliminary results indicating that IMFG, measured in trabecular-bone pores and quantified by spin-echo decay and water diffusion MR near the bone-bone marrow interface depends on both the bone marrow water rate of diffusion and the magnetic susceptibility difference (ΔX) between water and bone. MATERIALS AND METHODS: MR relaxometry, MR spectroscopy and diffusion-weighted MR imaging of the heel was performed in fifty-five women (mean age, 62.9±6.6years) at 3T. Moreover, in order to study the reproducibility of IMFG measurement, five young women (mean age 31.0±3.2years; age range, 28-36years) were scanned and rescanned. The study protocol was approved by the local Ethics Committee. Quantitative Computer Tomography (QCT) of the L1-L3 vertebral segments was performed to classify the postmenopausal women into three groups according to QCT BMD: healthy (n=8); osteopenic (n=25); and osteoporotic (n=22). In all subjects, BMD T-scores, marrow fat content (Mfc), T2*, apparent diffusion coefficient (ADC) and IMFG (estimated from the additional spin-echo decay due to diffusion of water in local magnetic field gradients), were assessed in the whole calcaneus as well as in three calcaneal subregions: subtalar, tuber calcaneus, and cavum calcaneus. Between-group comparisons to assess group differences and Pearson correlation analysis were performed. Short and long-term coefficients of variation (CVS and CVL, respectively) were evaluated in young subjects. RESULTS: Reproducibility of the IMFG measurement was satisfactory. No significant difference was found in the IMFG measurement performed in both calcaneus and subtalar calcaneal region between the two separate sessions comprised of five young women. Mfc did not significantly differ between groups. The IMFG in the subtalar region was significantly different between all three groups (P<0.01), being greatest in healthy women, intermediate in those with osteopenia, and lowest in osteoporotic subjects. Conversely neither T2* nor ADC is able to discriminate healthy subjects from those with osteopenia and osteoporosis. Increased inter-trabecular space, as it typically occurs in patients with osteoporosis, modifies water diffusion, conferring higher ADC values, thereby lowering the IMFG. CONCLUSION: The IMFG measured in the calcaneal subtalar region shows a high ability in identifying healthy subjects. The new quantitative MR method based on measurement of the IMFG may provide a new means for assessing patients with osteoporosis.


Asunto(s)
Calcáneo/patología , Espectroscopía de Resonancia Magnética/métodos , Osteoporosis Posmenopáusica/diagnóstico , Anciano , Femenino , Humanos , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda