Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 8.502
Filtrar
Más filtros

Publication year range
1.
Cell ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39094569

RESUMEN

The inheritance of parental histones across the replication fork is thought to mediate epigenetic memory. Here, we reveal that fission yeast Mrc1 (CLASPIN in humans) binds H3-H4 tetramers and operates as a central coordinator of symmetric parental histone inheritance. Mrc1 mutants in a key connector domain disrupted segregation of parental histones to the lagging strand comparable to Mcm2 histone-binding mutants. Both mutants showed clonal and asymmetric loss of H3K9me-mediated gene silencing. AlphaFold predicted co-chaperoning of H3-H4 tetramers by Mrc1 and Mcm2, with the Mrc1 connector domain bridging histone and Mcm2 binding. Biochemical and functional analysis validated this model and revealed a duality in Mrc1 function: disabling histone binding in the connector domain disrupted lagging-strand recycling while another histone-binding mutation impaired leading strand recycling. We propose that Mrc1 toggles histones between the lagging and leading strand recycling pathways, in part by intra-replisome co-chaperoning, to ensure epigenetic transmission to both daughter cells.

2.
Annu Rev Immunol ; 34: 449-78, 2016 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-27168243

RESUMEN

Hematopoietic stem cells (HSCs) and downstream progenitors have long been studied based on phenotype, cell purification, proliferation, and transplantation into myeloablated recipients. These experiments, complemented by data on expression profiles, mouse mutants, and humans with hematopoietic defects, are the foundation for the current hematopoietic differentiation tree. However, there are fundamental gaps in our knowledge of the quantitative and qualitative operation of the HSC/progenitor system under physiological and pathological conditions in vivo. The hallmarks of HSCs, self-renewal and multipotency, are observed in in vitro assays and cell transplantation experiments; however, the extent to which these features occur naturally in HSCs and progenitors remains uncertain. We focus here on work that strives to address these unresolved questions, with emphasis on fate mapping and modeling of the hematopoietic flow from stem cells toward myeloid and lymphoid lineages during development and adult life.


Asunto(s)
Envejecimiento/inmunología , Diferenciación Celular , Hematopoyesis , Células Madre Hematopoyéticas/fisiología , Células Progenitoras Linfoides/fisiología , Animales , Linaje de la Célula , Autorrenovación de las Células , Humanos , Ratones , Modelos Teóricos , Transcriptoma
3.
Cell ; 184(3): 643-654.e13, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33482082

RESUMEN

Epstein-Barr virus (EBV) is an oncogenic human herpesvirus that persists as a multicopy episome in proliferating host cells. Episome maintenance is strictly dependent on EBNA1, a sequence-specific DNA-binding protein with no known enzymatic activities. Here, we show that EBNA1 forms a cell cycle-dependent DNA crosslink with the EBV origin of plasmid replication oriP. EBNA1 tyrosine 518 (Y518) is essential for crosslinking to oriP and functionally required for episome maintenance and generation of EBV-transformed lymphoblastoid cell lines (LCLs). Mechanistically, Y518 is required for replication fork termination at oriP in vivo and for formation of SDS-resistant complexes in vitro. EBNA1-DNA crosslinking corresponds to single-strand endonuclease activity specific to DNA structures enriched at replication-termination sites, such as 4-way junctions. These findings reveal that EBNA1 forms tyrosine-dependent DNA-protein crosslinks and single-strand cleavage at oriP required for replication termination and viral episome maintenance.


Asunto(s)
Ciclo Celular , Reactivos de Enlaces Cruzados/química , ADN Viral/metabolismo , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Plásmidos/metabolismo , Origen de Réplica , Replicación Viral/fisiología , Secuencia de Aminoácidos , Linfocitos B/metabolismo , Línea Celular , Aductos de ADN/metabolismo , Replicación del ADN , Endonucleasas/metabolismo , Antígenos Nucleares del Virus de Epstein-Barr/química , Antígenos Nucleares del Virus de Epstein-Barr/genética , Humanos , Mutación/genética , Unión Proteica , Recombinación Genética/genética , Tirosina/metabolismo
4.
Annu Rev Biochem ; 88: 221-245, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-30917004

RESUMEN

Mutations in the BRCA1 and BRCA2 genes predispose afflicted individuals to breast, ovarian, and other cancers. The BRCA-encoded products form complexes with other tumor suppressor proteins and with the recombinase enzyme RAD51 to mediate chromosome damage repair by homologous recombination and also to protect stressed DNA replication forks against spurious nucleolytic attrition. Understanding how the BRCA tumor suppressor network executes its biological functions would provide the foundation for developing targeted cancer therapeutics, but progress in this area has been greatly hampered by the challenge of obtaining purified BRCA complexes for mechanistic studies. In this article, we review how recent effort begins to overcome this technical challenge, leading to functional and structural insights into the biochemical attributes of these complexes and the multifaceted roles that they fulfill in genome maintenance. We also highlight the major mechanistic questions that remain.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/genética , Redes Reguladoras de Genes , Recombinasa Rad51/genética , Reparación del ADN por Recombinación , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Proteína BRCA1/química , Proteína BRCA1/metabolismo , Proteína BRCA2/química , Proteína BRCA2/metabolismo , Sitios de Unión , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , ADN/química , ADN/genética , ADN/metabolismo , Roturas del ADN de Doble Cadena , Replicación del ADN , Femenino , Genoma Humano , Inestabilidad Genómica , Humanos , Modelos Moleculares , Unión Proteica , Estructura Secundaria de Proteína , Recombinasa Rad51/química , Recombinasa Rad51/metabolismo , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo
5.
Cell ; 176(1-2): 56-72.e15, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30612743

RESUMEN

Local translation regulates the axonal proteome, playing an important role in neuronal wiring and axon maintenance. How axonal mRNAs are localized to specific subcellular sites for translation, however, is not understood. Here we report that RNA granules associate with endosomes along the axons of retinal ganglion cells. RNA-bearing Rab7a late endosomes also associate with ribosomes, and real-time translation imaging reveals that they are sites of local protein synthesis. We show that RNA-bearing late endosomes often pause on mitochondria and that mRNAs encoding proteins for mitochondrial function are translated on Rab7a endosomes. Disruption of Rab7a function with Rab7a mutants, including those associated with Charcot-Marie-Tooth type 2B neuropathy, markedly decreases axonal protein synthesis, impairs mitochondrial function, and compromises axonal viability. Our findings thus reveal that late endosomes interact with RNA granules, translation machinery, and mitochondria and suggest that they serve as sites for regulating the supply of nascent pro-survival proteins in axons.


Asunto(s)
Endosomas/fisiología , Biosíntesis de Proteínas/fisiología , Proteínas de Unión al GTP rab/metabolismo , Animales , Axones/metabolismo , Endosomas/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , ARN/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/fisiología , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/fisiología , Ribosomas/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/fisiología , Proteínas de Unión a GTP rab7
6.
Cell ; 178(4): 887-900.e14, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398342

RESUMEN

Variable, glutamine-encoding, CAA interruptions indicate that a property of the uninterrupted HTT CAG repeat sequence, distinct from the length of huntingtin's polyglutamine segment, dictates the rate at which Huntington's disease (HD) develops. The timing of onset shows no significant association with HTT cis-eQTLs but is influenced, sometimes in a sex-specific manner, by polymorphic variation at multiple DNA maintenance genes, suggesting that the special onset-determining property of the uninterrupted CAG repeat is a propensity for length instability that leads to its somatic expansion. Additional naturally occurring genetic modifier loci, defined by GWAS, may influence HD pathogenesis through other mechanisms. These findings have profound implications for the pathogenesis of HD and other repeat diseases and question the fundamental premise that polyglutamine length determines the rate of pathogenesis in the "polyglutamine disorders."


Asunto(s)
Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Péptidos/genética , Expansión de Repetición de Trinucleótido/genética , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Alelos , Secuencia de Bases/genética , Femenino , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Haplotipos/genética , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Adulto Joven
7.
Annu Rev Biochem ; 87: 1015-1027, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29494240

RESUMEN

Central to the classical hematopoietic stem cell (HSC) paradigm is the concept that the maintenance of blood cell numbers is exclusively executed by a discrete physical entity: the transplantable HSC. The HSC paradigm has served as a stereotypic template in stem cell biology, yet the search for rare, hardwired professional stem cells has remained futile in most other tissues. In a more open approach, the focus on the search for stem cells as a physical entity may need to be replaced by the search for stem cell function, operationally defined as the ability of an organ to replace lost cells. The nature of such a cell may be different under steady state conditions and during tissue repair. We discuss emerging examples including the renewal strategies of the skin, gut epithelium, liver, lung, and mammary gland in comparison with those of the hematopoietic system. While certain key housekeeping and developmental signaling pathways are shared between different stem cell systems, there may be no general, deeper principles underlying the renewal mechanisms of the various individual tissues.


Asunto(s)
Células Madre Adultas/citología , Células Madre Adultas/fisiología , Animales , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Autorrenovación de las Células , Femenino , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/fisiología , Humanos , Masculino , Modelos Biológicos , Fenotipo , Transducción de Señal
8.
Cell ; 173(4): 972-988.e23, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29656893

RESUMEN

Repair of damaged DNA is essential for maintaining genome integrity and for preventing genome-instability-associated diseases, such as cancer. By combining proximity labeling with quantitative mass spectrometry, we generated high-resolution interaction neighborhood maps of the endogenously expressed DNA repair factors 53BP1, BRCA1, and MDC1. Our spatially resolved interaction maps reveal rich network intricacies, identify shared and bait-specific interaction modules, and implicate previously concealed regulators in this process. We identified a novel vertebrate-specific protein complex, shieldin, comprising REV7 plus three previously uncharacterized proteins, RINN1 (CTC-534A2.2), RINN2 (FAM35A), and RINN3 (C20ORF196). Recruitment of shieldin to DSBs, via the ATM-RNF8-RNF168-53BP1-RIF1 axis, promotes NHEJ-dependent repair of intrachromosomal breaks, immunoglobulin class-switch recombination (CSR), and fusion of unprotected telomeres. Shieldin functions as a downstream effector of 53BP1-RIF1 in restraining DNA end resection and in sensitizing BRCA1-deficient cells to PARP inhibitors. These findings have implications for understanding cancer-associated PARPi resistance and the evolution of antibody CSR in higher vertebrates.


Asunto(s)
Reparación del ADN por Unión de Extremidades/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas Adaptadoras Transductoras de Señales , Proteína BRCA1/antagonistas & inhibidores , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Humanos , Cambio de Clase de Inmunoglobulina/efectos de los fármacos , Proteínas Mad2/antagonistas & inhibidores , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas de Unión a Telómeros/antagonistas & inhibidores , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/antagonistas & inhibidores , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
9.
Mol Cell ; 82(21): 4145-4159.e7, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36206765

RESUMEN

Self versus non-self discrimination is a key element of innate and adaptive immunity across life. In bacteria, CRISPR-Cas and restriction-modification systems recognize non-self nucleic acids through their sequence and their methylation state, respectively. Here, we show that the Wadjet defense system recognizes DNA topology to protect its host against plasmid transformation. By combining cryoelectron microscopy with cross-linking mass spectrometry, we show that Wadjet forms a complex similar to the bacterial condensin complex MukBEF, with a novel nuclease subunit similar to a type II DNA topoisomerase. Wadjet specifically cleaves closed-circular DNA in a reaction requiring ATP hydrolysis by the structural maintenance of chromosome (SMC) ATPase subunit JetC, suggesting that the complex could use DNA loop extrusion to sense its substrate's topology, then specifically activate the nuclease subunit JetD to cleave plasmid DNA. Overall, our data reveal how bacteria have co-opted a DNA maintenance machine to specifically recognize and destroy foreign DNAs through topology sensing.


Asunto(s)
ADN Circular , Complejos Multiproteicos , Complejos Multiproteicos/genética , Complejos Multiproteicos/química , Microscopía por Crioelectrón , Proteínas de Unión al ADN/metabolismo , Cromosomas/metabolismo , Plásmidos/genética , ADN/genética , Bacterias/genética
10.
Mol Cell ; 81(6): 1260-1275.e12, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33561390

RESUMEN

DNA methylation is implicated in neuronal biology via the protein MeCP2, the mutation of which causes Rett syndrome. MeCP2 recruits the NCOR1/2 co-repressor complexes to methylated cytosine in the CG dinucleotide, but also to sites of non-CG methylation, which are abundant in neurons. To test the biological significance of the dual-binding specificity of MeCP2, we replaced its DNA binding domain with an orthologous domain from MBD2, which can only bind mCG motifs. Knockin mice expressing the domain-swap protein displayed severe Rett-syndrome-like phenotypes, indicating that normal brain function requires the interaction of MeCP2 with sites of non-CG methylation, specifically mCAC. The results support the notion that the delayed onset of Rett syndrome is due to the simultaneous post-natal accumulation of mCAC and its reader MeCP2. Intriguingly, genes dysregulated in both Mecp2 null and domain-swap mice are implicated in other neurological disorders, potentially highlighting targets of relevance to the Rett syndrome phenotype.


Asunto(s)
Metilación de ADN , Proteína 2 de Unión a Metil-CpG/metabolismo , Neuronas/metabolismo , Animales , Islas de CpG , Técnicas de Sustitución del Gen , Células HeLa , Humanos , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Transgénicos , Mutación , Células 3T3 NIH , Neuronas/patología , Dominios Proteicos , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/patología
11.
Mol Cell ; 81(13): 2778-2792.e4, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33932350

RESUMEN

DNA polymerase ε (Polε) carries out high-fidelity leading strand synthesis owing to its exonuclease activity. Polε polymerase and exonuclease activities are balanced, because of partitioning of nascent DNA strands between catalytic sites, so that net resection occurs when synthesis is impaired. In vivo, DNA synthesis stalling activates replication checkpoint kinases, which act to preserve the functional integrity of replication forks. We show that stalled Polε drives nascent strand resection causing fork functional collapse, averted via checkpoint-dependent phosphorylation. Polε catalytic subunit Pol2 is phosphorylated on serine 430, influencing partitioning between polymerase and exonuclease active sites. A phosphormimetic S430D change reduces exonucleolysis in vitro and counteracts fork collapse. Conversely, non-phosphorylatable pol2-S430A expression causes resection-driven stressed fork defects. Our findings reveal that checkpoint kinases switch Polε to an exonuclease-safe mode preventing nascent strand resection and stabilizing stalled replication forks. Elective partitioning suppression has implications for the diverse Polε roles in genome integrity maintenance.


Asunto(s)
ADN Polimerasa II/química , Exonucleasas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Sustitución de Aminoácidos , Dominio Catalítico , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , ADN de Hongos/biosíntesis , ADN de Hongos/química , ADN de Hongos/genética , Exonucleasas/genética , Exonucleasas/metabolismo , Mutación Missense , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Genes Dev ; 35(3-4): 261-272, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33446573

RESUMEN

SUMO modification regulates diverse cellular processes by targeting hundreds of proteins. However, the limited number of sumoylation enzymes raises the question of how such a large number of substrates are efficiently modified. Specifically, how genome maintenance factors are dynamically sumoylated at DNA replication and repair sites to modulate their functions is poorly understood. Here, we demonstrate a role for the conserved yeast Esc2 protein in this process by acting as a SUMO E2 cofactor. Esc2 is required for genome stability and binds to Holliday junctions and replication fork structures. Our targeted screen found that Esc2 promotes the sumoylation of a Holliday junction dissolution complex and specific replisome proteins. Esc2 does not elicit these effects via stable interactions with substrates or their common SUMO E3. Rather, we show that a SUMO-like domain of Esc2 stimulates sumoylation by exploiting a noncovalent SUMO binding site on the E2 enzyme. This role of Esc2 in sumoylation is required for Holliday junction clearance and genome stability. Our findings thus suggest that Esc2 acts as a SUMO E2 cofactor at distinct DNA structures to promote the sumoylation of specific substrates and genome maintenance.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Genoma Fúngico/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sumoilación/genética , Coenzimas/metabolismo , Inestabilidad Genómica/genética , Unión Proteica , Recombinación Genética , Enzimas Ubiquitina-Conjugadoras/metabolismo
13.
Annu Rev Neurosci ; 43: 297-314, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32097575

RESUMEN

An enduring problem in neuroscience is determining whether cases of amnesia result from eradication of the memory trace (storage impairment) or if the trace is present but inaccessible (retrieval impairment). The most direct approach to resolving this question is to quantify changes in the brain mechanisms of long-term memory (BM-LTM). This approach argues that if the amnesia is due to a retrieval failure, BM-LTM should remain at levels comparable to trained, unimpaired animals. Conversely, if memories are erased, BM-LTM should be reduced to resemble untrained levels. Here we review the use of BM-LTM in a number of studies that induced amnesia by targeting memory maintenance or reconsolidation. The literature strongly suggests that such amnesia is due to storage rather than retrieval impairments. We also describe the shortcomings of the purely behavioral protocol that purports to show recovery from amnesia as a method of understanding the nature of amnesia.


Asunto(s)
Amnesia/fisiopatología , Encéfalo/fisiopatología , Disfunción Cognitiva/fisiopatología , Memoria a Largo Plazo/fisiología , Animales , Humanos , Mantenimiento , Memoria a Corto Plazo/fisiología
14.
Mol Cell ; 79(1): 127-139.e4, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32437639

RESUMEN

C.neoformans Dnmt5 is an unusually specific maintenance-type CpG methyltransferase (DNMT) that mediates long-term epigenome evolution. It harbors a DNMT domain and SNF2 ATPase domain. We find that the SNF2 domain couples substrate specificity to an ATPase step essential for DNA methylation. Coupling occurs independent of nucleosomes. Hemimethylated DNA preferentially stimulates ATPase activity, and mutating Dnmt5's ATP-binding pocket disproportionately reduces ATPase stimulation by hemimethylated versus unmethylated substrates. Engineered DNA substrates that stabilize a reaction intermediate by mimicking a "flipped-out" conformation of the target cytosine bypass the SNF2 domain's requirement for hemimethylation. This result implies that ATP hydrolysis by the SNF2 domain is coupled to the DNMT domain conformational changes induced by preferred substrates. These findings establish a new role for a SNF2 ATPase: controlling an adjoined enzymatic domain's substrate recognition and catalysis. We speculate that this coupling contributes to the exquisite specificity of Dnmt5 via mechanisms related to kinetic proofreading.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , ADN de Hongos/metabolismo , Proteínas Fúngicas/metabolismo , Nucleosomas/metabolismo , Adenosina Trifosfatasas/genética , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN de Hongos/química , ADN de Hongos/genética , Proteínas Fúngicas/genética , Hidrólisis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Mol Cell ; 77(3): 571-585.e4, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31901448

RESUMEN

Сhromatin is critical for genome compaction and gene expression. On a coarse scale, the genome is divided into euchromatin, which harbors the majority of genes and is enriched in active chromatin marks, and heterochromatin, which is gene-poor but repeat-rich. The conserved molecular hallmark of heterochromatin is the H3K9me3 modification, which is associated with gene silencing. We found that in Drosophila, deposition of most of the H3K9me3 mark depends on SUMO and the SUMO ligase Su(var)2-10, which recruits the histone methyltransferase complex SetDB1/Wde. In addition to repressing repeats, H3K9me3 influences expression of both hetero- and euchromatic host genes. High H3K9me3 levels in heterochromatin are required to suppress spurious transcription and ensure proper gene expression. In euchromatin, a set of conserved genes is repressed by Su(var)2-10/SetDB1-induced H3K9 trimethylation, ensuring tissue-specific gene expression. Several components of heterochromatin are themselves repressed by this pathway, providing a negative feedback mechanism to ensure chromatin homeostasis.


Asunto(s)
Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica/genética , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Animales , Proteínas Cromosómicas no Histona/metabolismo , Metilación de ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Eucromatina/metabolismo , Retroalimentación Fisiológica , Expresión Génica/genética , Silenciador del Gen/fisiología , Heterocromatina/genética , Heterocromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Histonas/metabolismo , Ligasas/genética , Metiltransferasas/genética , Proteínas Inhibidoras de STAT Activados/genética , Proteínas Represoras/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética
16.
Genes Dev ; 34(23-24): 1637-1649, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33184219

RESUMEN

Germ cells specified during fetal development form the foundation of the mammalian germline. These primordial germ cells (PGCs) undergo rapid proliferation, yet the germline is highly refractory to mutation accumulation compared with somatic cells. Importantly, while the presence of endogenous or exogenous DNA damage has the potential to impact PGCs, there is little known about how these cells respond to stressors. To better understand the DNA damage response (DDR) in these cells, we exposed pregnant mice to ionizing radiation (IR) at specific gestational time points and assessed the DDR in PGCs. Our results show that PGCs prior to sex determination lack a G1 cell cycle checkpoint. Additionally, the response to IR-induced DNA damage differs between female and male PGCs post-sex determination. IR of female PGCs caused uncoupling of germ cell differentiation and meiotic initiation, while male PGCs exhibited repression of piRNA metabolism and transposon derepression. We also used whole-genome single-cell DNA sequencing to reveal that genetic rescue of DNA repair-deficient germ cells (Fancm-/- ) leads to increased mutation incidence and biases. Importantly, our work uncovers novel insights into how PGCs exposed to DNA damage can become developmentally defective, leaving only those genetically fit cells to establish the adult germline.


Asunto(s)
Daño del ADN , ADN/efectos de la radiación , Células Germinales Embrionarias/efectos de la radiación , Células Germinativas/efectos de la radiación , Mutación/genética , Radiación Ionizante , Animales , Puntos de Control del Ciclo Celular/genética , Diferenciación Celular/genética , Diferenciación Celular/efectos de la radiación , Elementos Transponibles de ADN/efectos de la radiación , Células Germinales Embrionarias/citología , Femenino , Masculino , Meiosis/genética , Meiosis/efectos de la radiación , Ratones , Oocitos/citología , Oocitos/efectos de la radiación , Embarazo , ARN Interferente Pequeño/metabolismo , Factores Sexuales
17.
Genes Dev ; 34(15-16): 1065-1074, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32561545

RESUMEN

RTEL1 helicase is a component of DNA repair and telomere maintenance machineries. While RTEL1's role in DNA replication is emerging, how RTEL1 preserves genomic stability during replication remains elusive. Here we used a range of proteomic, biochemical, cell, and molecular biology and gene editing approaches to provide further insights into potential role(s) of RTEL1 in DNA replication and genome integrity maintenance. Our results from complementary human cell culture models established that RTEL1 and the Polδ subunit Poldip3 form a complex and are/function mutually dependent in chromatin binding after replication stress. Loss of RTEL1 and Poldip3 leads to marked R-loop accumulation that is confined to sites of active replication, enhances endogenous replication stress, and fuels ensuing genomic instability. The impact of depleting RTEL1 and Poldip3 is epistatic, consistent with our proposed concept of these two proteins operating in a shared pathway involved in DNA replication control under stress conditions. Overall, our data highlight a previously unsuspected role of RTEL1 and Poldip3 in R-loop suppression at genomic regions where transcription and replication intersect, with implications for human diseases including cancer.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN , Estructuras R-Loop , Proteínas de Unión al ARN/metabolismo , Línea Celular , Cromatina/metabolismo , Humanos , Estrés Fisiológico , Inhibidores de Topoisomerasa I/farmacología
18.
Trends Biochem Sci ; 48(10): 860-872, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37586999

RESUMEN

Telomere maintenance is essential for the genome integrity of eukaryotes, and this function is underpinned by the two-step telomeric DNA synthesis process: telomere G-overhang extension by telomerase and complementary strand fill-in by DNA polymerase alpha-primase (polα-primase). Compared to the telomerase step, the telomere C-strand fill-in mechanism is less understood. Recent studies have provided new insights into how telomeric single-stranded DNA-binding protein CTC1-STN1-TEN1 (CST) and polα-primase coordinate to synthesize the telomeric C-strand for telomere overhang fill-in. Cryogenic electron microscopy (cryo-EM) structures of CST-polα-primase complexes have provided additional insights into how they assemble at telomeric templates and de novo synthesize the telomere C-strand. In this review, we discuss how these latest findings coalesce with existing understanding to develop a human telomere C-strand fill-in mechanism model.


Asunto(s)
ADN Primasa , Telomerasa , Humanos , Telómero , Complejo Shelterina , Eucariontes
19.
EMBO J ; 42(18): e112305, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37609947

RESUMEN

Nanog and Oct4 are core transcription factors that form part of a gene regulatory network to regulate hundreds of target genes for pluripotency maintenance in mouse embryonic stem cells (ESCs). To understand their function in the pluripotency maintenance, we visualised and quantified the dynamics of single molecules of Nanog and Oct4 in a mouse ESCs during pluripotency loss. Interestingly, Nanog interacted longer with its target loci upon reduced expression or at the onset of differentiation, suggesting a feedback mechanism to maintain the pluripotent state. The expression level and interaction time of Nanog and Oct4 correlate with their fluctuation and interaction frequency, respectively, which in turn depend on the ESC differentiation status. The DNA viscoelasticity near the Oct4 target locus remained flexible during differentiation, supporting its role either in chromatin opening or a preferred binding to uncondensed chromatin regions. Based on these results, we propose a new negative feedback mechanism for pluripotency maintenance via the DNA condensation state-dependent interplay of Nanog and Oct4.


Asunto(s)
Células Madre Embrionarias de Ratones , Imagen Individual de Molécula , Animales , Ratones , Retroalimentación , Cromatina/genética , Diferenciación Celular
20.
Development ; 151(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39007366

RESUMEN

Many tissue-specific adult stem cell lineages maintain a balance between proliferation and differentiation. Here, we study how the H3K4me3 methyltransferase Set1 regulates early-stage male germ cells in Drosophila. Early-stage germline-specific knockdown of Set1 results in temporally progressive defects, arising as germ cell loss and developing into overpopulated early-stage germ cells. These germline defects also impact the niche architecture and cyst stem cell lineage non-cell-autonomously. Additionally, wild-type Set1, but not the catalytically inactive Set1, rescues the Set1 knockdown phenotypes, highlighting the functional importance of the methyltransferase activity of Set1. Further, RNA-sequencing experiments reveal key signaling pathway components, such as the JAK-STAT pathway gene Stat92E and the BMP pathway gene Mad, which are upregulated upon Set1 knockdown. Genetic interaction assays support the functional relationships between Set1 and JAK-STAT or BMP pathways, as both Stat92E and Mad mutations suppress the Set1 knockdown phenotypes. These findings enhance our understanding of the balance between proliferation and differentiation in an adult stem cell lineage. The phenotype of germ cell loss followed by over-proliferation when inhibiting a histone methyltransferase also raises concerns about using their inhibitors in cancer therapy.


Asunto(s)
Diferenciación Celular , Proteínas de Drosophila , Drosophila melanogaster , Células Germinativas , N-Metiltransferasa de Histona-Lisina , Transducción de Señal , Animales , Masculino , Diferenciación Celular/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Transducción de Señal/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Células Germinativas/metabolismo , Células Germinativas/citología , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Células Madre/metabolismo , Células Madre/citología , Factores de Transcripción STAT/metabolismo , Factores de Transcripción STAT/genética , Quinasas Janus/metabolismo , Quinasas Janus/genética , Proliferación Celular/genética , Linaje de la Célula/genética , Regulación del Desarrollo de la Expresión Génica
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda