Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 343
Filtrar
1.
Proc Biol Sci ; 291(2021): 20240524, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38628123

RESUMEN

Philopatric kin-based societies encourage a narrow breadth of conservative behaviours owing to individuals primarily learning from close kin, promoting behavioural homogeneity. However, weaker social ties beyond kin, and across a behaviourally diverse social landscape, could be sufficient to induce variation and a greater ecological niche breadth. We investigated a network of 457 photo-identified killer whales from Norway (548 encounters in 2008-2021) with diet data available (46 mixed-diet individuals feeding on both fish and mammals, and 411 exclusive fish-eaters) to quantify patterns of association within and between diet groups, and to identify underlying correlates. We genotyped a subset of 106 whales to assess patterns of genetic differentiation. Our results suggested kinship as main driver of social bonds within and among cohesive social units, while diet was most likely a consequence reflective of cultural diffusion, rather than a driver. Flexible associations within and between ecologically diverse social units led to a highly connected network, reducing social and genetic differentiation between diet groups. Our study points to a role of social connectivity, in combination with individual behavioural variation, in influencing population ecology in killer whales.


Asunto(s)
Orca , Animales , Orca/genética , Conducta Social , Ecosistema , Conducta Predatoria , Dieta
2.
Proc Biol Sci ; 291(2018): 20240314, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38471549

RESUMEN

North Atlantic right whales are Critically Endangered and declining, with entanglements in fishing gear a key contributor to their decline. Entanglement events can result in lethal and sub-lethal (i.e. increased energetic demands and reduced foraging ability) impacts, with the latter influencing critical life-history states, such as reproduction. Using a multi-event framework, we developed a Bayesian mark-recapture model to investigate the influence of entanglement severity on survival and recruitment for female right whales. We used information from 199 known-aged females sighted between 1977 and 2018, combined with known entanglements of varying severity that were classified as minor, moderate or severe. Severe entanglements resulted in an average decline in survival of 27% for experienced non-breeders, 9% for breeders and 26% for pre-breeding females compared with other entanglements and unentangled individuals. Surviving individuals with severe entanglements had low transitional probabilities to breeders, but surprisingly, individuals with minor entanglements had the lowest transitional probabilities, contrary to expectations underpinning current management actions. Management actions are needed to address the lethal and sub-lethal impacts of entanglements, regardless of severity classification.


Asunto(s)
Reproducción , Ballenas , Humanos , Animales , Femenino , Anciano , Teorema de Bayes , Cruzamiento , Océano Atlántico
3.
J Evol Biol ; 37(8): 960-966, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38766701

RESUMEN

Intraspecific variation in vertebrate eye size is well known. Ecological factors such as light availability are often correlated with shifts in relative eye size. However, experimental tests of selection on eye size are lacking. Trinidadian killifish (Anablepsoides hartii) are found in sites that differ in predation intensity. Sites that lack predators are characterized by lower light, high killifish densities, low resource availability, and intense competition for food. We previously found that killifish in sites that lack predators have evolved a larger "relative" eye size (eye size corrected for body size) than fish from sites with predators. Here, we used transplant experiments to test how selection operates on eye size when fish that are adapted to sites with predators are translocated into sites where predators are absent. We observed a significant "population × relative eye size" interaction; the relationship between relative eye size and a proxy for fitness (rates of individual growth) was positive in the transplanted fish. The trend was the opposite for resident fish. Such results provide experimental support that larger eyes enhance fitness and are favoured in environments characterized by low light and high competition.


Asunto(s)
Ojo , Peces Killi , Animales , Conducta Competitiva , Ojo/anatomía & histología , Peces Killi/fisiología , Luz , Tamaño de los Órganos , Conducta Predatoria , Selección Genética
4.
J Anim Ecol ; 93(7): 796-811, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38561901

RESUMEN

Many populations migrate between two different habitats (e.g. wintering/foraging to breeding area, mainstem-tributary, river-lake, river-ocean, river-side channel) as part of their life history. Detection technologies, such as passive integrated transponder (PIT) antennas or sonic receivers, can be placed at boundaries between habitats (e.g. near the confluence of rivers) to detect migratory movements of marked animals. Often, these detection systems have high detection probabilities and detect many individuals but are limited in their ability to make inferences about abundance because only marked individuals can be detected. Here, we introduce a mark-recapture modelling approach that uses detections from a double-array PIT antenna system to imply movement directionality from arrays and estimate migration timing. Additionally, when combined with physical captures, the model can be used to estimate abundances for both migratory and non-migratory groups and help quantify partial migration. We first test our approach using simulation, and results indicate our approach displayed negligible bias for total abundance (less than ±1%) and slight biases for state-specific abundance estimates (±1%-6%). We fit our model to array detections and physical captures of three native fishes (humpback chub [Gila cypha], flannelmouth sucker [Catostomus latipinnis] and bluehead sucker [Catostomus discobolus]) in the Little Colorado River (LCR) in Grand Canyon, AZ, a system that exhibits partial migration (i.e. includes residents and migrants). Abundance estimates from our model confirm that, for all three species, migratory individuals are much more numerous than residents. There was little difference in movement timing between 2021 (a year without preceding winter/spring floods) and 2022 (a year with a small flood occurring in early April). In both years, flannelmouth sucker arrived in mid-March whereas humpback chub and bluehead sucker arrivals occurred early- to mid-April. With humpback chub and flannelmouth sucker, movement timing was influenced by body size so that large individuals were more likely to arrive early compared to smaller individuals. With more years of data, this model framework could be used to evaluate ecological questions pertaining to flow cues and movement timing or intensity, relative trends in migrants versus residents and ecological drivers of skipped spawning.


Asunto(s)
Migración Animal , Animales , Modelos Biológicos , Sistemas de Identificación Animal , Densidad de Población , Ríos , Estaciones del Año
5.
J Anim Ecol ; 93(2): 196-207, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38102795

RESUMEN

Despite numerous studies examining the fitness consequences of animal personalities, predictions concerning the relationship between personality and survival are not consistent with empirical observations. Theory predicts that individuals who are risky (i.e. bold, active and aggressive) should have higher rates of mortality; however, empirical evidence shows high levels of variation in behaviour-survival relationships in wild populations. We suggest that this mismatch between predictions under theory and empirical observations results from environmental contingencies that drive heterogeneity in selection. This uncertainty may constrain any universal directional relationships between personality traits and survival. Specifically, we hypothesize that spatiotemporal fluctuations in perceived risk that arise from variability in refuge abundance and competitor density alter the relationship between personality traits and survival. In a large-scale manipulative experiment, we trapped four small mammal species in five subsequent years across six forest stands treated with different management practices in Maine, United States. Stands all occur within the same experimental forest but contain varying amounts of refuge and small mammal densities fluctuate over time and space. We quantified the effects of habitat structure and competitor density on the relationship between personality traits and survival to assess whether directional relationships differed depending on environmental contingencies. In the two most abundant species, deer mice and southern red-backed voles, risky behaviours (i.e. higher aggression and boldness) predicted apparent monthly survival probability. Mice that were more aggressive (less docile) had higher survival. Voles that were bolder (less timid) had higher survival, but in the risky forest stands only. Additionally, traits associated with stress coping and de-arousal increased survival probability in both species at high small mammal density but decreased survival at low density. In the two less abundant study species, there was no evidence for an effect of personality traits on survival. Our field experiment provides partial support for our hypothesis: that spatiotemporal fluctuations in refuge abundance and competitor density alter the relationship between personality traits and survival. Our findings also suggest that behaviours associated with stress coping and de-arousal may be subject to density-dependent selection and should be further assessed and incorporated into theory.


Asunto(s)
Conducta Animal , Personalidad , Animales , Mamíferos , Ecosistema , Arvicolinae
6.
J Anim Ecol ; 93(10): 1567-1581, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39219166

RESUMEN

Population dynamic and eco-evolutionary responses to environmental variation and change fundamentally depend on combinations of within- and among-cohort variation in the phenotypic expression of key life-history traits, and on corresponding variation in selection on those traits. Specifically, in partially migratory populations, spatio-seasonal dynamics depend on the degree of adaptive phenotypic expression of seasonal migration versus residence, where more individuals migrate when selection favours migration. Opportunity for adaptive (or, conversely, maladaptive) expression could be particularly substantial in early life, through the initial development of migration versus residence. However, within- and among-cohort dynamics of early-life migration, and of associated survival selection, have not been quantified in any system, preventing any inference on adaptive early-life expression. Such analyses have been precluded because data on seasonal movements and survival of sufficient young individuals, across multiple cohorts, have not been collected. We undertook extensive year-round field resightings of 9359 colour-ringed juvenile European shags Gulosus aristotelis from 11 successive cohorts in a partially migratory population. We fitted Bayesian multi-state capture-mark-recapture models to quantify early-life variation in migration versus residence and associated survival across short temporal occasions through each cohort's first year from fledging, thereby quantifying the degree of adaptive phenotypic expression of migration within and across years. All cohorts were substantially partially migratory, but the degree and timing of migration varied considerably within and among cohorts. Episodes of strong survival selection on migration versus residence occurred both on short timeframes within years, and cumulatively across entire first years, generating instances of instantaneous and cumulative net selection that would be obscured at coarser temporal resolutions. Further, the magnitude and direction of selection varied among years, generating strong fluctuating survival selection on early-life migration across cohorts, as rarely evidenced in nature. Yet, the degree of migration did not strongly covary with the direction of selection, indicating limited early-life adaptive phenotypic expression. These results reveal how dynamic early-life expression of and selection on a key life-history trait, seasonal migration, can emerge across seasonal, annual, and multi-year timeframes, yet be substantially decoupled. This restricts the potential for adaptive phenotypic, microevolutionary, and population dynamic responses to changing seasonal environments.


Asunto(s)
Migración Animal , Animales , Estaciones del Año , Selección Genética , Dinámica Poblacional , Teorema de Bayes , Charadriiformes/fisiología , Rasgos de la Historia de Vida
7.
J Anim Ecol ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107996

RESUMEN

Marine ecosystems are experiencing growing pressure from multiple threats caused by human activities, with far-reaching consequences for marine food webs. Determining the effects of multiple stressors is complex, in part, as they can affect different aspects of biological organisation (behaviour, individual traits and demographic rates). Determining the combined effects of stressors, through different biological pathways, is key to predict the consequences for the viability of populations threatened by global change. Due to their position in the food chain, top predators such as seabirds are considered more sensitive to environmental changes. Climate change is affecting the prey resources available for seabirds, through bottom-up effects, while organic pollutants can bioaccumulate in food chains with the greatest impacts on top predators. However, knowledge of their combined effects on population dynamics is scarce. Using a path analysis, we quantify the effects of climate change and pollution on the survival of adult great black-backed gulls, both directly and through effects of individuals' body mass. Warmer ocean temperatures in gulls' winter foraging areas in the North Sea were correlated with higher survival, potentially explained by shifts in prey availability associated with global climate change. We also found support for indirect negative effects of organochlorines, highly toxic pollutants to seabirds, on survival, which acted, in part, through a negative effect on body mass. The results from this path analysis highlight how, even for such long-lived species where variance in survival tends to be limited, two stressors still have had a marked influence on adult survival and illustrate the potential of path models to improve predictions of population variability under multiple stressors.

8.
Naturwissenschaften ; 111(4): 34, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913166

RESUMEN

With ongoing insect declines, species expanding in distribution and abundance deserve attention, as understanding their success may help design conservation strategies for less successful species. Common causes of these successes include warmer climates, novel resources, and exploiting land use change, including land abandonment. These factors affect the nymphalid butterfly Neptis rivularis, developing on Spiraea spp. shrubs and reaching the north-western limits of its trans-Palearctic distribution in Central Europe. We combined mark-recapture, behaviour analysis, and distribution modelling to study N. rivularis in wetlands of the Trebonsko Protected Landscape (IUCN category V). The long-living adults (up to 4 weeks) spent a considerable amount of time searching for partners, ovipositing and nectaring at Spiraea shrubs, alternating this with stays in tree crowns, where they located cool shelters, spent nights, and presumably fed on honeydew. They formed high-density populations (310 adults/ha), exploiting high host plant abundance. They adhered to floodplains and to conditions of relatively mild winters. The ongoing Spiraea encroachment of abandoned alluvial grasslands is, thus, a transient situation, ultimately followed by forest encroachment. Rewilding the habitats by introducing native ungulates presents an opportunity to restore the disturbance regime of the sites. The increased resource supply combined with a warming climate has opened up temperate Europe to colonization by N. rivularis.


Asunto(s)
Mariposas Diurnas , Humedales , Animales , Mariposas Diurnas/fisiología , República Checa
9.
J Insect Sci ; 24(3)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38913611

RESUMEN

Tracking of soil-dwelling insects poses greater challenges compared to aboveground-dwelling animals in terrestrial systems. A metal detector system consisting of a commercially available detector and aluminum tags was developed for detecting dung beetle, Copris ochus Motschulsky (Coleoptera: Scarabaeidae). First, detection efficacy of the system was evaluated by varying volumes of aluminum tags attached on a plastic model of the insect and also by varying angles. Then, detection efficacy was evaluated by varying depths of aluminum-tagged models under soil in 2 vegetation types. Finally, the effects of tag attachment on C. ochus adults were assessed for survivorship, burrowing depth, and horizontal movement. Generally, an increase in tag volume resulted in greater detection distance in semi-field conditions. Maximum detection distance of aluminum tag increased up to 17 cm below soil surface as the tag size (0.5 × 1.0 cm [width × length]) and thickness (16 layers) were maximized, resulting in a tag weight of 31.4 mg, comprising ca. 9% of average weight of C. ochus adult. Furthermore, the detection efficacy did not vary among angles except for 90°. In the field, metal detectors successfully detected 5 aluminum-tagged models in 20 × 10 m (W × L) arena within 10 min with detection rates ≥85% for up to depth of 10 cm and 45%-60% at depth of 20 cm. Finally, aluminum tagging did not significantly affect survivorship and behaviors of C. ochus. Our study indicates the potential of metal detector system for tracking C. ochus under soil.


Asunto(s)
Aluminio , Escarabajos , Animales , Aluminio/análisis , Suelo/química , Entomología/métodos , Entomología/instrumentación , Sistemas de Identificación Animal/instrumentación
10.
J Fish Biol ; 104(4): 1122-1135, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38193568

RESUMEN

Population estimates are required for effective conservation of many rare marine species, but can be difficult to obtain. The critically endangered red handfish (Thymichthys politus) is a coastal anglerfish known only from two fragmented populations in southeast Tasmania, Australia. It is at a high risk of extinction due to low numbers, loss of habitat, and the impacts of climate change. To aid conservation efforts, we provide the first empirical population size estimates of red handfish and investigate other important aspects of the species' life history, such as growth, habitat association, and movement. We surveyed both red handfish local populations via underwater visual census on scuba over 3 years and used photographic mark-recapture techniques to estimate biological parameters. In 2020, the local adult population size was estimated to be 94 (95% confidence interval [CI] 40-231) adults at one site, and 7 (95% CI 5-10) at the other site, suggesting an estimated global population of 101 adults. Movement of individuals was extremely limited at 48.5 m (± 77.7 S.D.) per year. We also found evidence of declining fish density, a declining proportion of juveniles, and increasing average fish size during the study. These results provide a serious warning that red handfish are likely sliding toward extinction, and highlight the urgent need to expand efforts for ex situ captive breeding to bolster numbers in the wild and maintain captive insurance populations, and to protect vital habitat to safeguard the species' ongoing survival in the wild.


Asunto(s)
Conservación de los Recursos Naturales , Especies en Peligro de Extinción , Animales , Conservación de los Recursos Naturales/métodos , Extinción Biológica , Peces , Ecosistema
11.
J Fish Biol ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126270

RESUMEN

Estimates of abundance are essential to manage and conserve marine species. Numerous methods are available to determine population size, but the suitability of methods for schooling fishes and the associated precision can vary depending on the species and system. Here, we developed and compared three mark-recapture/resight methods to assess the most robust method to estimate the abundance of silver trevally (Pseudocaranx georgianus). While the recapture rate was similar across the methods, the swim pass method (resighting) recorded the largest number of individuals (mean ± standard error 211 ± 14.9) and had the lowest coefficient of variation (CV; 4.5%-12%) compared to 360-video (resighting, 45 ± 2.1 individuals surveyed, 14.8%-22.2% CV) and large-scale capture methods (recapture, 30 ± 3.8 individuals surveyed, 17.3%-26.5% CV). The inclusion of individual identification into the abundance estimator models for large-scale capture did not change the abundance estimates and showed similar resolution between the models (CV 18.2%-26.7%). We showed that the swim pass method is logistically easy to implement and generates precise estimates of silver trevally abundance. This new method provides a low-cost, time-efficient resighting method that can be adapted to suit similar aggregating pelagic species interacting with wildlife tourism operations, enabling researchers to rapidly estimate the abundance of species that have been previously difficult to count.

12.
J Fish Biol ; 104(3): 681-697, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37837280

RESUMEN

Population monitoring of Atlantic salmon (Salmo salar L.) abundance is an essential element to understand annual stock variability and inform fisheries management processes. Smolts are the life stage marking the transition from the freshwater to the marine phase of anadromous Atlantic salmon. Estimating smolt abundance allows for subsequent inferences on freshwater and marine survival rates. Annual abundances of out-migrating Atlantic salmon smolts were estimated using Bayesian models and an 18-year capture-mark-recapture time series from two to five trapping locations within the Restigouche River (Canada) catchment. Some of the trapping locations were at the outlet of large upstream tributaries, and these sampled a portion of the total out-migrating population of smolts for the watershed, whereas others were located just above the head of tide of the Restigouche River and sampled the entire run of salmon smolts. Due to logistic and environmental conditions, not all trapping locations were operational each year. Additionally, recapture rates were relatively low (<5%), and the absolute number of recaptures was relatively few (most often a few dozen), leading to incoherent and highly uncertain estimates of tributary-specific and whole catchment abundance estimates when the data were modeled independently among trapping locations and years. Several models of increasing complexity were tested using simulated data, and the best-performing model in terms of bias and precision incorporated a hierarchical structure among years on the catchability parameters and included an explicit spatial structure to account for the annual variations in the number of sampled locations within the watershed. When the best model was applied to the Restigouche River catchment dataset, the annual smolt abundance estimates varied from 250,000 to 1 million smolts, and the subbasin estimates of abundance were consistent with the spatial structure of the monitoring programme. Ultimately, increasing the probabilities of capture and the absolute number of recaptures at the different traps will be required to improve the precision and reduce the bias of the estimates of smolt abundance for the entire basin and within subbasins of the watershed. The model and approach provide a significant improvement in the models used to date based on independent estimates of abundance by trapping location and year. Total abundance and relative production in discrete spawning, nesting, or rearing areas provide critical information to appropriately understand and manage the threats to species that can occur at subpopulation spatial scales.


Asunto(s)
Salmo salar , Animales , Teorema de Bayes , Migración Animal , Canadá , Agua Dulce , Ríos
13.
Ecol Lett ; 26(1): 53-62, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36262097

RESUMEN

The extent to which the evolution of a larger brain is adaptive remains controversial. Trinidadian killifish (Anablepsoides hartii) are found in sites that differ in predation intensity; fish that experience decreased predation and increased intraspecific competition exhibit larger brains. We evaluated the connection between brain size and fitness (survival and growth) when killifish are found in their native habitats and when fish are transplanted from sites with predators to high-competition sites that lack predators. Selection for a larger brain was absent within locally adapted populations. Conversely, there was a strong positive relationship between brain size and growth in transplanted but not resident fish in high-competition environments. We also observed significantly larger brain sizes in the transplanted fish that were recaptured at the end of the experiment versus those that were not. Our results provide experimental support that larger brains increase fitness and are favoured in high-competition environments.


Asunto(s)
Fundulidae , Animales , Ecosistema , Encéfalo
14.
Am Nat ; 202(3): 351-367, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37606942

RESUMEN

AbstractIndividual quality and environmental conditions may mask or interact with energetic trade-offs in life history evolution. Deconstructing these sources of variation is especially difficult in long-lived species that are rarely observed on timescales long enough to disentangle these effects. Here, we investigated relative support for variation in female quality and costs of reproduction as factors shaping differences in life history trajectories using a 32-year dataset of repeated reproductive measurements from 273 marked, known-age female gray seals (Halichoerus grypus). We defined individual reproductive investment using two traits, reproductive frequency (a female's probability of breeding) and provisioning performance (offspring weaning mass). Fitted hierarchical Bayesian models identified individual investment relative to conspecifics (over a female's entire life and in three age classes) and subsequently estimated how these investment metrics and the Atlantic Multidecadal Oscillation are associated with longevity. Individual differences (i.e., quality) contributed a large portion of the variance in reproductive traits. Females that consistently invest well in their offspring relative to other females survive longer. The best-supported model estimated survival as a function of age class-specific provisioning performance, where late-life performance was particularly variable and had the greatest impact on survival, possibly indicating individual variation in senescence. There was no evidence to support a trade-off in reproductive performance and survival at the individual level. Overall, these results suggest that in gray seals, individual quality is a stronger driver in life history variation than individual strategies resulting from energetic trade-offs.


Asunto(s)
Rasgos de la Historia de Vida , Phocidae , Femenino , Animales , Teorema de Bayes , Longevidad , Fenotipo
15.
Proc Biol Sci ; 290(1996): 20221421, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37015272

RESUMEN

Some mammal species inhabiting high-latitude biomes have evolved a seasonal moulting pattern that improves camouflage via white coats in winter and brown coats in summer. In many high-latitude and high-altitude areas, the duration and depth of snow cover has been substantially reduced in the last five decades. This reduction in depth and duration of snow cover may create a mismatch between coat colour and colour of the background environment, and potentially reduce the survival rate of species that depend on crypsis. We used long-term (1977-2020) field data and capture-mark-recapture models to test the hypothesis that whiteness of the coat influences winter apparent survival in a cyclic population of snowshoe hares (Lepus americanus) at Kluane, Yukon, Canada. Whiteness of the snowshoe hare coat in autumn declined during this study, and snowshoe hares with a greater proportion of whiteness in their coats in autumn survived better during winter. However, whiteness of the coat in spring did not affect subsequent summer survival. These results are consistent with the hypothesis that the timing of coat colour change in autumn can reduce overwinter survival. Because declines in cyclic snowshoe hare populations are strongly affected by low winter survival, the timing of coat colour change may adversely affect snowshoe hare population dynamics as climate change continues.


Asunto(s)
Liebres , Animales , Color , Ecosistema , Canadá , Dinámica Poblacional , Estaciones del Año
16.
Ecol Appl ; 33(8): e2918, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37688800

RESUMEN

Mark-recapture surveys are commonly used to monitor translocated populations globally. Data gathered are then used to estimate demographic parameters, such as abundance and survival, using Jolly-Seber (JS) models. However, in translocated populations initial population size is known and failure to account for this may bias parameter estimates, which are important for informing conservation decisions during population establishment. Here, we provide methods to account for known initial population size in JS models by incorporating a separate component likelihood for translocated individuals, using a maximum-likelihood estimation, with models that can be fitted using either R or MATLAB. We use simulated data and a case study of a threatened lizard species with low capture probability to demonstrate that unconstrained JS models may overestimate the size of translocated populations, especially in the early stages of post-release monitoring. Our approach corrects this bias; we use our simulations to demonstrate that overestimates of population size between 78% and 130% can occur in the unconstrained JS models when the detection probability is below 0.3 compared to 1%-8.9% for our constrained model. Our case study did not show an overestimate; however accounting for the initial population size greatly reduced error in all parameter estimates and prevented boundary estimates. Adopting the corrected JS model for translocations will help managers to obtain more robust estimates of the population sizes of translocated animals, better informing future management including reinforcement decisions, and ultimately improving translocation success.


Asunto(s)
Especies en Peligro de Extinción , Animales , Densidad de Población , Probabilidad
17.
Ecol Appl ; 33(1): e2724, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36054297

RESUMEN

Novel infectious diseases, particularly those caused by fungal pathogens, pose considerable risks to global biodiversity. The amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd) has demonstrated the scale of the threat, having caused the greatest recorded loss of vertebrate biodiversity attributable to a pathogen. Despite catastrophic declines on several continents, many affected species have experienced population recoveries after epidemics. However, the potential ongoing threat of endemic Bd in these recovered or recovering populations is still poorly understood. We investigated the threat of endemic Bd to frog populations that recovered after initial precipitous declines, focusing on the endangered rainforest frog Mixophyes fleayi. We conducted extensive field surveys over 4 years at three independent sites in eastern Australia. First, we compared Bd infection prevalence and infection intensities within frog communities to reveal species-specific infection patterns. Then, we analyzed mark-recapture data of M. fleayi to estimate the impact of Bd infection intensity on apparent mortality rates and Bd infection dynamics. We found that M. fleayi had lower infection intensities than sympatric frogs across the three sites, and cleared infections at higher rates than they gained infections throughout the study period. By incorporating time-varying individual infection intensities, we show that healthy M. fleayi populations persist despite increased apparent mortality associated with infrequent high Bd loads. Infection dynamics were influenced by environmental conditions, with Bd prevalence, infection intensity, and rates of gaining infection associated with lower temperatures and increased rainfall. However, mortality remained constant year-round despite these fluctuations in Bd infections, suggesting major mortality events did not occur over the study period. Together, our results demonstrate that while Bd is still a potential threat to recovered populations of M. fleayi, high rates of clearing infections and generally low average infection loads likely minimize mortality caused by Bd. Our results are consistent with pathogen resistance contributing to the coexistence of M. fleayi with endemic Bd. We emphasize the importance of incorporating infection intensity into disease models rather than infection status alone. Similar population and infection dynamics likely exist within other recovered amphibian-Bd systems around the globe, promising longer-term persistence in the face of endemic chytridiomycosis.


Asunto(s)
Quitridiomicetos , Micosis , Animales , Batrachochytrium , Anuros , Micosis/epidemiología , Micosis/veterinaria , Micosis/microbiología , Biodiversidad
18.
J Anim Ecol ; 92(3): 774-785, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36633069

RESUMEN

Actuarial senescence, the decline of survival with age, is well documented in the wild. Rates of senescence vary widely between taxa, to some extent also between sexes, with the fastest life histories showing the highest rates of senescence. Few studies have investigated differences in senescence among populations of the same species, although such variation is expected from population-level differences in environmental conditions, leading to differences in vital rates and thus life histories. We predict that, within species, populations differing in productivity (suggesting different paces of life) should experience different rates of senescence, but with little or no sexual difference in senescence within populations of monogamous, monomorphic species where the sexes share breeding duties. We compared rates of actuarial senescence among three contrasting populations of the Atlantic puffin Fratercula arctica. The dataset comprised 31 years (1990-2020) of parallel capture-mark-recapture data from three breeding colonies, Isle of May (North Sea), Røst (Norwegian Sea) and Hornøya (Barents Sea), showing contrasting productivities (i.e. annual breeding success) and population trends. We used time elapsed since first capture as a proxy for bird age, and productivity and the winter North Atlantic Oscillation Index (wNAO) as proxies for the environmental conditions experienced by the populations within and outside the breeding season, respectively. In accordance with our predictions, we found that senescence rates differed among the study populations, with no evidence for sexual differences. There was no evidence for an effect of wNAO, but the population with the lowest productivity, Røst, showed the lowest rate of senescence. As a consequence, the negative effect of senescence on the population growth rate (λ) was up to 3-5 times smaller on Røst (Δλ = -0.009) than on the two other colonies. Our findings suggest that environmentally induced differences in senescence rates among populations of a species should be accounted for when predicting effects of climate variation and change on species persistence. There is thus a need for more detailed information on how both actuarial and reproductive senescence influence vital rates of populations of the same species, calling for large-scale comparative studies.


Asunto(s)
Charadriiformes , Animales , Envejecimiento , Aves , Clima , Estaciones del Año
19.
Oecologia ; 202(2): 445-454, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37349661

RESUMEN

The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has caused catastrophic frog declines on several continents, but disease outcome is mediated by a number of factors. Host life stage is an important consideration and many studies have highlighted the vulnerability of recently metamorphosed or juvenile frogs compared to adults. The majority of these studies have taken place in a laboratory setting, and there is a general paucity of longitudinal field studies investigating the influence of life stage on disease outcome. In this study, we assessed the effect of endemic Bd on juvenile Mixophyes fleayi (Fleay's barred frog) in subtropical eastern Australian rainforest. Using photographic mark-recapture, we made 386 captures of 116 individuals and investigated the effect of Bd infection intensity on the apparent mortality rates of frogs using a multievent model correcting for infection state misclassification. We found that neither Bd infection status nor infection intensity predicted mortality in juvenile frogs, counter to the expectation that early life stages are more vulnerable to disease, despite average high infection prevalence (0.35, 95% HDPI [0.14, 0.52]). Additionally, we found that observed infection prevalence and intensity were somewhat lower for juveniles than adults. Our results indicate that in this Bd-recovered species, the realized impacts of chytridiomycosis on juveniles were apparently low, likely resulting in high recruitment contributing to population stability. We highlight the importance of investigating factors relating to disease outcome in a field setting and make recommendations for future studies.


Asunto(s)
Quitridiomicetos , Micosis , Humanos , Animales , Australia , Anuros/microbiología , Micosis/veterinaria , Micosis/microbiología
20.
Proc Natl Acad Sci U S A ; 117(30): 18119-18126, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32631981

RESUMEN

Seasonal environmental conditions shape the behavior and life history of virtually all organisms. Climate change is modifying these seasonal environmental conditions, which threatens to disrupt population dynamics. It is conceivable that climatic changes may be beneficial in one season but result in detrimental conditions in another because life-history strategies vary between these time periods. We analyzed the temporal trends in seasonal survival of yellow-bellied marmots (Marmota flaviventer) and explored the environmental drivers using a 40-y dataset from the Colorado Rocky Mountains (USA). Trends in survival revealed divergent seasonal patterns, which were similar across age-classes. Marmot survival declined during winter but generally increased during summer. Interestingly, different environmental factors appeared to drive survival trends across age-classes. Winter survival was largely driven by conditions during the preceding summer and the effect of continued climate change was likely to be mainly negative, whereas the likely outcome of continued climate change on summer survival was generally positive. This study illustrates that seasonal demographic responses need disentangling to accurately forecast the impacts of climate change on animal population dynamics.


Asunto(s)
Cambio Climático , Hibernación , Mamíferos , Estaciones del Año , Animales , Demografía , Ambiente , Mortalidad , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda