Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Plant J ; 114(1): 23-38, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35574650

RESUMEN

Bean leaf crumple virus (BLCrV) is a novel begomovirus (family Geminiviridae, genus Begomovirus) infecting common bean (Phaseolus vulgaris L.), threatening bean production in Latin America. Genetic resistance is required to ensure yield stability and reduce the use of insecticides, yet the available resistance sources are limited. In this study, three common bean populations containing a total of 558 genotypes were evaluated in different yield and BLCrV resistance trials under natural infection in the field. A genome-wide association study identified the locus BLC7.1 on chromosome Pv07 at 3.31 Mbp, explaining 8 to 16% of the phenotypic variation for BLCrV resistance. In comparison, whole-genome regression models explained 51 to 78% of the variation and identified the same region on Pv07 to confer resistance. The most significantly associated markers were located within the gene model Phvul.007G040400, which encodes a leucine-rich repeat receptor-like kinase subfamily III member and is likely to be involved in the innate immune response against the virus. The allelic diversity within this gene revealed five different haplotype groups, one of which was significantly associated with BLCrV resistance. As the same genome region was previously reported to be associated with resistance against other geminiviruses affecting common bean, our study highlights the role of previous breeding efforts for virus resistance in the accumulation of positive alleles against newly emerging viruses. In addition, we provide novel diagnostic single-nucleotide polymorphism markers for marker-assisted selection to exploit BLC7.1 for breeding against geminivirus diseases in one of the most important food crops worldwide.


Asunto(s)
Estudio de Asociación del Genoma Completo , Phaseolus , Resistencia a la Enfermedad/genética , Fitomejoramiento , Genotipo , Phaseolus/genética , Hojas de la Planta , Enfermedades de las Plantas/genética
2.
BMC Plant Biol ; 24(1): 509, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38844865

RESUMEN

BACKGROUND: Among the Citrus species, lemon (Citrus limon Burm f.) is one of the most affected by the two-spotted spider mite (Tetranychus urticae Koch). Moreover, chemical control is hampered by the mite's ability to develop genetic resistance against acaricides. In this context, the identification of the genetic basis of the host resistance could represent a sustainable strategy for spider mite control. In the present study, a marker-trait association analysis was performed on a lemon population employing an association mapping approach. An inter-specific full-sib population composed of 109 accessions was phenotyped through a detached-leaf assays performed in modified Huffaker cells. Those individuals, complemented with two inter-specific segregating populations, were genotyped using a target-sequencing approach called SPET (Single Primer Enrichment Technology), the resulting SNPs were employed for the generation of an integrated genetic map. RESULTS: The percentage of damaged area in the full-sib population showed a quantitative distribution with values ranging from 0.36 to 9.67%. A total of 47,298 SNPs were selected for an association mapping study and a significant marker linked with resistance to spider mite was detected on linkage group 5. In silico gene annotation of the QTL interval enabled the detection of 13 genes involved in immune response to biotic and abiotic stress. Gene expression analysis showed an over expression of the gene encoding for the ethylene-responsive transcription factor ERF098-like, already characterized in Arabidopsis and in rice for its involvement in defense response. CONCLUSION: The identification of a molecular marker linked to the resistance to spider mite attack can pave the way for the development of marker-assisted breeding plan for the development of novel selection coupling favorable agronomical traits (e.g. fruit quality, yield) with a higher resistance toward the mite.


Asunto(s)
Citrus , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Tetranychidae , Animales , Tetranychidae/genética , Tetranychidae/fisiología , Citrus/genética , Citrus/parasitología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Mapeo Cromosómico , Resistencia a la Enfermedad/genética
3.
Mol Breed ; 43(4): 26, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37313526

RESUMEN

A high-throughput genotyping platform with customized flexibility, high genotyping accuracy, and low cost is critical for marker-assisted selection and genetic mapping in soybean. Three assay panels were selected from the SoySNP50K, 40K, 20K, and 10K arrays, containing 41,541, 20,748, and 9670 SNP markers, respectively, for genotyping by target sequencing (GBTS). Fifteen representative accessions were used to assess the accuracy and consistency of the SNP alleles identified by the SNP panels and sequencing platform. The SNP alleles were 99.87% identical between technical replicates and 98.86% identical between the 40K SNP GBTS panel and 10× resequencing analysis. The GBTS method was also accurate in the sense that the genotypic dataset of the 15 representative accessions correctly revealed the pedigree of the accessions, and the biparental progeny datasets correctly constructed the linkage maps of the SNPs. The 10K panel was also used to genotype two parent-derived populations and analyze QTLs controlling 100-seed weight, resulting in the identification of the stable associated genetic locus Locus_OSW_06 on chromosome 06. The markers flanking the QTL explained 7.05% and 9.83% of the phenotypic variation, respectively. Compared with GBS and DNA chips, the 40K, 20K, and 10K panels reduced costs by 5.07% and 58.28%, 21.44% and 65.48%, and 35.74% and 71.76%, respectively. Low-cost genotyping panels could facilitate soybean germplasm assessment, genetic linkage map construction, QTL identification, and genomic selection. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01372-6.

4.
Anim Biotechnol ; : 1-9, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37870116

RESUMEN

Fibroblast growth factor 7 (FGF7) is involved in lipid metabolism, which is considered as a candidate gene with close relation with muscle development by eGWAs and RNA-Seq analyses. To date, limited research has been conducted on the relationship between FGF7 gene and growth traits. The main objective of this work was to further investigate the association between novel InDel within FGF7 gene and growth traits in goat. Herein, FGF7 mRNA expression levels were investigated in various Fuqing goat tissues. We found that FGF7 gene was expressed in six adult goat tissues with the highest mRNA levels in adipose tissue. This result suggested that FGF7 gene might play a critical role in fat deposition. We also detected potential polymorphisms in Fuqing, Nubian and Jianyang Daer breeds. A 22-bp InDel polymorphism in FGF7 gene was detected in 396 goats and the three genotypes were designated as II, ID, and DD. Correlation analysis revealed that InDel polymorphism was significantly associated with growth traits (P < 0.05). Goats with genotypes ID and/or II had superior growth traits compared to those with genotype DD. In summary, our findings suggested that the 22-bp InDel within FGF7 gene could act as a molecular marker to improve the growth traits of goats in breeding programs.

5.
Int J Mol Sci ; 24(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37240329

RESUMEN

Breeding fruit species is time-consuming and expensive. With few exceptions, trees are likely the worst species to work with in terms of genetics and breeding. Most are characterized by large trees, long juvenile periods, and intensive agricultural practice, and environmental variability plays an important role in the heritability evaluations of every single important trait. Although vegetative propagation allows for the production of a significant number of clonal replicates for the evaluation of environmental effects and genotype × environment interactions, the spaces required for plant cultivation and the intensity of work necessary for phenotypic surveys slow down the work of researchers. Fruit breeders are very often interested in fruit traits: size, weight, sugar and acid content, ripening time, fruit storability, and post-harvest practices, among other traits relevant to each individual species. The translation of trait loci and whole-genome sequences into diagnostic genetic markers that are effective and affordable for use by breeders, who must choose genetically superior parents and subsequently choose genetically superior individuals among their progeny, is one of the most difficult tasks still facing tree fruit geneticists. The availability of updated sequencing techniques and powerful software tools offered the opportunity to mine tens of fruit genomes to find out sequence variants potentially useful as molecular markers. This review is devoted to analysing what has been the role of molecular markers in assisting breeders in selection processes, with an emphasis on the fruit traits of the most important fruit crops for which examples of trustworthy molecular markers have been developed, such as the MDo.chr9.4 marker for red skin colour in apples, the CCD4-based marker CPRFC1, and LG3_13.146 marker for flesh colour in peaches, papayas, and cherries, respectively.


Asunto(s)
Frutas , Sitios de Carácter Cuantitativo , Humanos , Mapeo Cromosómico/métodos , Frutas/genética , Fitomejoramiento , Fenotipo , Polimorfismo de Nucleótido Simple
6.
BMC Plant Biol ; 22(1): 618, 2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36577935

RESUMEN

BACKGROUND: During the last few decades, the diverse sources of resistance, several genes and QTLs for spot blotch resistance have been identified. However, a large set of germplasm lines are still unexplored that have the potential to develop highly resistant wheat cultivars for the target environments. Therefore, the identification of new sources of resistance to spot blotch is essential for breeding programmes to develop spot blotch resistant cultivars and sustain wheat production. The association mapping panel of 294 diverse bread wheat accessions was used to explore new sources of spot blotch disease resistance and to identify genomic regions using genome wide association analysis (GWAS). The genotypes were tested in replicated trials for spot blotch disease at three major hot spots in India (Varanasi in UP, Pusa in Bihar, and Cooch Behar in West Bengal). The area under the disease progress curve (AUDPC) was calculated to assess the level of resistance in each genotype. RESULTS: A total of 19 highly and 76 moderately resistant lines were identified. Three accessions (EC664204, IC534306 and IC535188) were nearly immune to spot blotch disease. The genotyping of all accessions resulted in a total of 16,787 high-quality polymorphic SNPs. The GWAS was performed using a Compressed Mixed Linear Model (CMLM) and a Mixed Linear Model (MLM). A total of seven significant MTAs, common in both the models and consistent across the environment, were further validated to develop KASP markers. Four MTAs (AX-94710084, AX-94865722, AX-95135556, and AX-94529408) on three chromosomes (2AL, 2BL, and 3BL) have been successfully validated through the KASP marker. CONCLUSIONS: The new source of resistance was identified from unexplored germplasm lines. The genomic regions identified through GWAS were validated through KASP markers. The marker information and the highly resistant sources are valuable resources to rapidly develop immune or near immune wheat varieties.


Asunto(s)
Ascomicetos , Resistencia a la Enfermedad , Resistencia a la Enfermedad/genética , Triticum/genética , Estudio de Asociación del Genoma Completo , Alelos , Ascomicetos/genética , Fitomejoramiento , Polimorfismo de Nucleótido Simple/genética , Enfermedades de las Plantas/genética
7.
Anim Biotechnol ; : 1-10, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36421983

RESUMEN

GATA binding protein 4 (GATA4) is a typical transcription binding factor, and its main functions include regulating the proliferation, differentiation and apoptosis of ovarian granulosa cells, promoting spermatogenesis and sex differentiation, implying that this gene have possibly roles in animal reproduction. This study aims to detect five potential insertion/deletions (indels) of the GATA4 gene in 606 healthy unrelated Shaanbei white cashmere (SBWC) goats and analyze its association with the litter size. The electrophoresis and DNA sequencing identified two polymorphic indels (e.g., P4-Del-8bp and P5-Ins-9bp indel). Then T-test analysis showed that P4-Del-8bp was significantly correlated with litter size (p = 0.022) because of two different genotypes detected, e.g., insertion-deletion (ID) and deletion-deletion (DD), and the average litter size of individuals with DD genotype goats was higher than that of others. However, there was no correlation between P5-Ins-9bp and lambing of goats. Chi-square (X2) test found that the distribution of and P4-Del-8bp genotypes (X2 = 6.475, p = 0.011) was significantly different between single and multiple-lamb groups, while P5-Ins-9bp (X2 = 0.030, p = 0.862) was not. Therefore, these findings revealed that P4-Del-8bp polymorphism of goat GATA4 gene was a potential molecular marker significantly associated with litter size, which can be used for the marker-assisted selection (MAS) breeding to improve goat industry.

8.
Anim Biotechnol ; 33(7): 1459-1465, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33825658

RESUMEN

Pleiomorphic adenoma gene 1 (PLAG1) is mainly expressed in embryonic development, and it is reported to take an effect on the growth performance of mice, cattle, pigs, and sheep. To explore how conservative the PLAG1 is in different sheep breeds, the effects of the two indel variants on the growth traits of the Chinese Luxi blackhead (LXBH) sheep were firstly detected. The P2-del 30 bp and P4-del 45 bp indel loci of the sheep PLAG1 gene were significantly related to 15 growth traits (P < 0.05). Genotype ID and genotype II were dominant for the P2-del 30 bp and P4-del 45 bp loci, respectively. The above findings indicated that the two indel mutations in the ovine PLAG1 gene were suggested to become the molecular markers for the selection of economic traits in sheep.


Asunto(s)
Proteínas de Unión al ADN , Mutación INDEL , Ovinos , Animales , Proteínas de Unión al ADN/genética , Genotipo , Fenotipo , Ovinos/genética
9.
Anim Biotechnol ; 33(2): 214-222, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32615865

RESUMEN

The growth hormone is important in the regulation of metabolism and energy homeostasis and acts through a growth hormone receptor (GHR). In this work, genetic variations within the ovine GHR gene were identified and tested for associations with body morphometric traits in Chinese Luxi Blackhead (LXBH) sheep. Novel deletion loci in the LXBH GHR gene included P2-del-23 bp and P8-del-23 bp indel variants. The polymorphic information content (PIC) was 0.329 in P2-del-23 bp and 0.257 in P8-del-23 bp. Moreover, both indel polymorphisms were not at Hardy-Weinberg equilibrium (p < 0.05) in the LXBH population. Statistical analyses revealed that the P2-del-23 bp and P8-del-23 bp indels were significantly associated (p < 0.05) with several growth traits in rams and ewes, including body weight, body height, chest depth, chest width, chest circumference, cannon circumference, paunch girth and hip width. Among the tested sheep, the body traits of those with genotype DD were superior to those with II and ID genotypes, suggesting that the 'D' allele was responsible for the positive effects on growth traits. Thus, these results indicate that the P2-del-23 bp and P8-del-23 bp indel sites and the DD genotype can be useful in marker-assisted selection in sheep.


Asunto(s)
Mutación INDEL , Oveja Doméstica , Alelos , Animales , Femenino , Genotipo , Mutación INDEL/genética , Masculino , Fenotipo , Ovinos/genética , Oveja Doméstica/genética
10.
BMC Plant Biol ; 21(1): 36, 2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33422012

RESUMEN

BACKGROUND: Rice growth is frequently affected by salinity. When exposed to high salinity, rice seed germination and seedling establishment are significantly inhibited. With the promotion of direct-seeding in Asia, improving rice seed germination under salt stress is crucial for breeding. RESULTS: In this study, an indica landrace Wujiaozhan (WJZ) was identified with high germinability under salt stress. A BC1F2 population derived from the crossing WJZ/Nip (japonica, Nipponbare)//Nip, was used to quantitative trait loci (QTL) mapping for the seed germination rate (GR) and germination index (GI) under H2O and 300 mM NaCl conditions. A total of 13 QTLs were identified, i.e. ten QTLs under H2O conditions and nine QTLs under salt conditions. Six QTLs, qGR6.1, qGR8.1, qGR8.2, qGR10.1, qGR10.2 and qGI10.1 were simultaneously identified under two conditions. Under salt conditions, three QTLs, qGR6.2, qGR10.1 and qGR10.2 for GR were identified at different time points during seed germination, which shared the same chromosomal region with qGI6.2, qGI10.1 and qGI10.2 for GI respectively. The qGR6.2 accounted for more than 20% of phenotypic variation under salt stress, as the major effective QTL. Furthermore, qGR6.2 was verified via the BC2F2 population and narrowed to a 65.9-kb region with eleven candidate genes predicted. Based on the microarray database, five candidate genes were found with high transcript abundances at the seed germination stage, of which LOC_Os06g10650 and LOC_Os06g10710 were differentially expressed after seed imbibition. RT-qPCR results showed the expression of LOC_Os06g10650 was significantly up-regulated in two parents with higher levels in WJZ than Nip during seed germination under salt conditions. Taken together, it suggests that LOC_Os06g10650, encoding tyrosine phosphatase family protein, might be the causal candidate gene for qGR6.2. CONCLUSIONS: In this study, we identified 13 QTLs from a landrace WJZ that confer seed germination traits under H2O and salt conditions. A major salt-tolerance-specific QTL qGR6.2 was fine mapped to a 65.9-kb region. Our results provide information on the genetic basis of improving rice seed germination under salt stress by marker-assisted selection (MAS).


Asunto(s)
Mapeo Cromosómico , Germinación/genética , Germinación/fisiología , Oryza/genética , Oryza/fisiología , Tolerancia a la Sal/genética , Tolerancia a la Sal/fisiología , Regulación de la Expresión Génica de las Plantas , Fenotipo , Sitios de Carácter Cuantitativo , Estrés Salino
11.
Mol Breed ; 41(6): 42, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37309440

RESUMEN

The present study involved incorporation of two major QTLs for pre-harvest sprouting tolerance (PHST) in an Indian wheat cultivar named Lok1, which happens to be PHS susceptible. For transfer of two QTLs, two independent programmes with two different donors (AUS1408, CN19055) were utilized. The recipient cv. Lok1 was crossed with each of the two donors, followed by a number of backcrosses. Each backcross progeny was subjected to foreground and background selections. KASP assay was also used for confirming the presence of PHST QTL. In one case, PHST QTL was later also pyramided with a gene for high grain protein content (Gpc-B1) and a gene for leaf rust resistance (Lr24). The MAS derived lines were screened for PHS using simulated rain chambers leading to selection of 10 PHST lines. Four of these advanced lines carried all the three QTL/genes and exhibited high level of PHST (PHS score 2-3) associated with significant improvement in GPC and resistance against leaf rust. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01234-z.

12.
Anim Biotechnol ; 32(6): 740-747, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32293991

RESUMEN

Prolactin is a highly versatile pituitary hormone with multiple biological functions. PRL expression is regulated by POU1F1 and the prophet of POU1F1 (PROP1). The aim of this study was to investigate the indel variations in ovine PRL and the directly related (PROP1 and POU1F1) genes, and their associations with growth traits in Luxi Blackhead (LXBH) sheep. A monomorphism in PROP1 and POU1F1 genes, and one novel 23-bp insertion mutation in the PRL gene, were identified in LXBH sheep. The 23 bp insertion mutation within PRL gene was significantly associated with several body measurements (e.g., body weight, body height) in sheep of different ages (p < 0.05). Ram lambs (p = 0.036) of genotype insertion/insertion (II) had significantly higher body weights. Weaners (p = 0.018) of genotypes insertion/insertion (II) and insertion/deletion (ID) also had significantly higher body weights compared with male sheep of deletion/deletion (DD) genotype. Moreover, among ewe lambs, individuals of genotype insertion/insertion (II) had a higher paunch girth compared to those with other genotypes (p = 0.044). These findings indicate that a 23 bp indel variant of the ovine PRL gene is correlated with body measurements in LXBH sheep. The findings have potential utility for sheep breeding programs based on marker-assisted selection.


Asunto(s)
Mutación INDEL , Prolactina/genética , Ovinos , Animales , Peso Corporal/genética , Femenino , Genotipo , Mutación INDEL/genética , Masculino , Fenotipo , Ovinos/genética , Ovinos/crecimiento & desarrollo
13.
Breed Sci ; 71(3): 354-364, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34776742

RESUMEN

Occurrence of pale potato cyst nematode, Globodera pallida (Stone) Behrens, was first recorded in Japan in 2015. Among several control measures, cultivation of resistant potato (Solanum tuberosum L.) varieties is the most effective in cost and environmental impact. As no G. pallida-resistant varieties have yet been developed in Japan, great emphasis is being placed on screening of germplasm possessing the resistance and development of the resistant varieties. In this study, we first improved previously reported DNA markers linked to the G. pallida resistance loci (GpaIVs adg and Gpa5) and then used these to screen more than 1,000 germplasms to select several candidate germplasms with resistance. We performed inoculation testing on the selected candidates and identified several resistant germplasms to the Japanese G. pallida population. Furthermore, we developed a simultaneous detection method combining three DNA markers linked to G. pallida and Globodera rostochiensis (Wollenweber) Behrens resistance loci. We validated the ability of C237-I marker to select resistant allele of GpaIVs adg and predict the presence of resistance in a Japanese breeding population. Resistant germplasms identified in this study could potentially be used to develop G. pallida-resistant varieties. The marker evaluation methods developed in this study will contribute to the efficient development of resistant varieties.

14.
Plant Dis ; 105(12): 3858-3868, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34181437

RESUMEN

Rice blast is a serious threat to global rice production. Large-scale and long-term cultivation of rice varieties with a single blast resistance gene usually leads to breakdown of resistance. To effectively control rice blast in Taiwan, marker-assisted backcrossing was conducted to develop monogenic lines carrying different blast resistance genes in the genetic background of an elite japonica rice cultivar, Kaohsiung 145 (KH145). Eleven International Rice Research Institute (IRRI)-bred blast-resistant lines (IRBLs) showing broad-spectrum resistance to local Pyricularia oryzae isolates were used as resistance donors. Sequencing analysis revealed that the recurrent parent, KH145, does not carry known resistance alleles at the target Pi2/9, Pik, Pita, and Ptr loci. For each IRBL × KH145 cross, we screened 21 to 370 (average of 108) plants per generation from the BC1F1 to BC3F1/BC4F1 generation. A total of 1,499 BC3F2/BC4F2 lines carrying homozygous resistance alleles were selected and self-crossed for four to six successive generations. The derived lines were also evaluated for background genotype using genotyping by sequencing, for blast resistance under artificial inoculation and natural infection conditions, and for agronomic performance in multiple field trials. In Chiayi and Taitung blast nurseries in 2018 to 2020, Pi2, Pi9, and Ptr conferred high resistance, Pi20 and Pik-h moderate resistance, and Pi1, Pi7, Pik-p, and Pik susceptibility to leaf blast; only Pi2, Pi9, and Ptr conferred effective resistance against panicle blast. The monogenic lines showed agronomic traits, yield, and grain quality similar to those of KH145, suggesting the potential of growing a mixture of lines to achieve durable resistance in the field.


Asunto(s)
Resistencia a la Enfermedad/genética , Magnaporthe , Oryza , Enfermedades de las Plantas , Genotipo , Oryza/genética , Oryza/microbiología , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
15.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34769104

RESUMEN

Soil salinization caused by the accumulation of sodium can decrease rice yield and quality. Identification of rice salt tolerance genes and their molecular mechanisms could help breeders genetically improve salt tolerance. We studied QTL mapping of populations for rice salt tolerance, period and method of salt tolerance identification, salt tolerance evaluation parameters, identification of salt tolerance QTLs, and fine-mapping and map cloning of salt tolerance QTLs. We discuss our findings as they relate to other genetic studies of salt tolerance association.


Asunto(s)
Oryza/genética , Sitios de Carácter Cuantitativo , Tolerancia a la Sal/genética , Mapeo Cromosómico , Clonación Molecular , Fitomejoramiento , Carácter Cuantitativo Heredable
16.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34502081

RESUMEN

Eggplant berries are rich in anthocyanins like delphinidin-3-rutinoside (D3R) and nasunin (NAS), which are accumulated at high amounts in the peel. NAS is derived by D3R through acylation and glycosylation steps. The presence of D3R or NAS is usually associated with black-purple or lilac fruit coloration of the most cultivated varieties, respectively. Building on QTL mapping position, a candidate gene approach was used to investigate the involvement of a BAHD anthocyanin acyltransferase (SmelAAT) in determining anthocyanin type. The cDNA sequence comparison revealed the presence of a single-base deletion in D3R-type line '305E40' (305E40_aat) with respect to the NAS-type reference line '67/3'. This is predicted to cause a frame shift mutation, leading to a loss of SmelAAT function and, thus, D3R retention. RT-qPCR analyses confirmed SmelAAT and 305E40_aat expression during berry maturation. In D3R-type lines, '305E40' and 'DR2', overexpressing the functional SmelAAT allele from '67/3', the transcript levels of the transgene correlated with the accumulation of NAS in fruit peel. Furthermore, it was also found a higher expression of the transcript for glucosyltransferase Smel5GT1, putatively involved with SmelAAT in the last steps of anthocyanin decoration. Finally, an indel marker matching with anthocyanin type in the '305E40' × '67/3' segregating population was developed and validated in a wide number of accessions, proving its usefulness for breeding purposes.


Asunto(s)
Aciltransferasas/genética , Antocianinas/metabolismo , Proteínas de Plantas/genética , Solanum melongena/genética , Aciltransferasas/metabolismo , Antocianinas/genética , Frutas/genética , Frutas/metabolismo , Mutación , Pigmentación , Proteínas de Plantas/metabolismo , Solanum melongena/metabolismo
17.
Breed Sci ; 70(2): 183-192, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32523400

RESUMEN

Maize rough dwarf disease (MRDD) is caused by viruses in the Fijivirus genus in the family Reoviridae. MRDD resistance can be improved by a combination of marker-assisted selection (MAS) and conventional breeding strategies. In our previous study, we fine-mapped a major QTL qMrdd8 and developed the functional Indel marker IDP25K. In the present study, qMrdd8 from the donor parent X178 was introgressed into elite inbred lines derived from the three corn heterotic groups using multi-generation backcrossing and MAS. Recipient lines included Huangzao4, Chang7-2, Ye478, Zheng58, Zhonghuang68, B73, and Ji846. Markers used for foreground selection included IDRQ4, IDRQ47, IDP25K, and IDP27K. Background selection was carried out in the BC3 or BC4 using 107 SSR markers to select lines with the highest rate of recovery of the particular recurrent parent genome. Plants from BC4F2 and BC3F2 that carried the shortest qMrdd8 interval from X178 and those with the highest rate of recovery of the recurrent parent genome were then selected to create converted homozygous inbred lines. In 2017, seven converted inbred lines and five hybrids exhibited enhanced resistance to MRDD, while other agronomic traits were not affected under nonpathogenic stress conditions. Thus, the MRDD resistance allele at the qMrdd8 locus, or IDP25K, should be valuable for maize breeding programs in China.

18.
Int J Mol Sci ; 21(4)2020 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-32102419

RESUMEN

The chilling requirement (CR) is the main factor controlling the peach floral bud break and subsequent reproductive growth. To date, several peach CR quantitative trait loci (QTLs) have been identified. To improve the accessibility and convenience of this genetic information for peach breeders, the aim of this study was to establish an easy-to-use genotype screening system using peach CR molecular markers as a toolkit for marker-assisted selection. Here, we integrated 22 CR-associated markers from three published QTLs and positioned them on the Prunus persica physical map. Then, we built a PCR-based genotyping platform by using high-resolution melting (HRM) analysis with specific primers and trained this platform with 27 peach cultivars. Due to ambiguous variant calls from a commercial HRM software, we developed an R-based pipeline using principal component analysis (PCA) to accurately differentiate genotypes. Based on the PCA results, this toolkit was able to determine the genotypes at the CR-related single nucleotide polymorphisms (SNPs) in all tested peach cultivars. In this study, we showed that this HRM-PCA pipeline served as a low-cost, high-throughput, and non-gel genotyping solution. This system has great potential to accelerate CR-focused peach breeding.


Asunto(s)
Frío , Técnicas de Genotipaje/métodos , Reacción en Cadena de la Polimerasa/métodos , Prunus persica/genética , Sitios de Carácter Cuantitativo/genética , Temperatura de Transición , Flores/genética , Genotipo , Fitomejoramiento/métodos , Polimorfismo de Nucleótido Simple , Análisis de Componente Principal , Prunus persica/clasificación , Especificidad de la Especie
19.
BMC Genomics ; 20(1): 798, 2019 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31672122

RESUMEN

BACKGROUND: Southern stem canker (SSC), caused by Diaporthe aspalathi (E. Jansen, Castl. & Crous), is an important soybean disease that has been responsible for severe losses in the past. The main strategy for controlling this fungus involves the introgression of resistance genes. Thus far, five main loci have been associated with resistance to SSC. However, there is a lack of information about useful allelic variation at these loci. In this work, a genome-wide association study (GWAS) was performed to identify allelic variation associated with resistance against Diaporthe aspalathi and to provide molecular markers that will be useful in breeding programs. RESULTS: We characterized the response to SSC infection in a panel of 295 accessions from different regions of the world, including important Brazilian elite cultivars. Using a GBS approach, the panel was genotyped, and we identified marker loci associated with Diaporthe aspalathi resistance through GWAS. We identified 19 SNPs associated with southern stem canker resistance, all on chromosome 14. The peak SNP showed an extremely high degree of association (p-value = 6.35E-27) and explained a large amount of the observed phenotypic variance (R2 = 70%). This strongly suggests that a single major gene is responsible for resistance to D. aspalathi in most of the lines constituting this panel. In resequenced soybean materials, we identified other SNPs in the region identified through GWAS in the same LD block that clearly differentiate resistant and susceptible accessions. The peak SNP was selected and used to develop a cost-effective molecular marker assay, which was validated in a subset of the initial panel. In an accuracy test, this SNP assay demonstrated 98% selection efficiency. CONCLUSIONS: Our results suggest relevance of this locus to SSC resistance in soybean cultivars and accessions from different countries, and the SNP marker assay developed in this study can be directly applied in MAS studies in breeding programs to select materials that are resistant against this pathogen and support its introgression.


Asunto(s)
Ascomicetos/fisiología , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Sitios Genéticos/genética , Glycine max/genética , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Alelos , Marcadores Genéticos/genética , Fenotipo , Enfermedades de las Plantas/inmunología , Glycine max/inmunología , Glycine max/microbiología
20.
Breed Sci ; 69(2): 316-322, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31481841

RESUMEN

The Mutsu-Isuzu cytoplasmic male sterility (MI CMS) system is one of the three-line hybrid systems used in China. As we know, the hybrid system is tightly associated with the yield variation in F1 heterosis, while the restorer gene for the MI CMS (Rfm) has not been finely mapped for further application in marker-assisted selection (MAS). In this study, the sets of near-isogenic lines (NILs) of Rfm in two different genetic backgrounds were hybridized with the genome-wide 60 K single-nucleotide polymorphism (SNP) chip of Brassica for screening the possible associated genomic region of Rfm. Through screening genotypes with SNP loci and sequencing the candidate loci, one 2.5 Mb physical region (covering three scaffolds) on chrA09 was identified as the candidate for the Rfm region. Then, the SSR markers for the target scaffolds were used to detect the recombination in an F2 population and narrowed the Rfm gene within the genetic distance of 0.52 cM, equivalent to a 350 kb physical segment. Moreover, the markers were tested to improve new elite restoration lines and to assess the percentage of hybrid seeds. Our results could potentially accelerate the map-based cloning of the Rfm gene to benefit rapeseed breeding.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda