Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Mol Pain ; 20: 17448069241242982, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38485252

RESUMEN

Itch is a somatosensory sensation to remove potential harmful stimulation with a scratching desire, which could be divided into mechanical and chemical itch according to diverse stimuli, such as wool fiber and insect biting. It has been reported that neuropeptide Y (NPY) neurons, a population of spinal inhibitory interneurons, could gate the transmission of mechanical itch, with no effect on chemical itch. In our study, we verified that chemogenetic activation of NPY neurons could inhibit the mechanical itch as well as the chemical itch, which also attenuated the alloknesis phenomenon in the chronic dry skin model. Afterwards, intrathecal administration of NPY1R agonist, [Leu31, Pro34]-NPY (LP-NPY), showed the similar inhibition effect on mechanical itch, chemical itch and alloknesis as chemo-activation of NPY neurons. Whereas, intrathecal administration of NPY1R antagonist BIBO 3304 enhanced mechanical itch and reversed the alloknesis phenomenon inhibited by LP-NPY treatment. Moreover, selectively knocking down NPY1R by intrathecal injection of Npy1r siRNA enhanced mechanical and chemical itch behavior as well. These results indicate that NPY neurons in spinal cord regulate mechanical and chemical itch, and alloknesis in dry skin model through NPY1 receptors.


Asunto(s)
Neuropéptido Y , Receptores de Neuropéptido Y , Animales , Prurito/inducido químicamente , Transducción de Señal , Médula Espinal
2.
Exp Dermatol ; 32(2): 226-234, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36208286

RESUMEN

Itch is a common sensation which is amenable to disabling patients' life under pathological and chronic conditions. Shared assertion easily limits itch to chemical itch, without considering mechanical itch and alloknesis, its pathological counterpart. However, in recent years, our understanding of the mechanical itch pathway, particularly in the central nervous system, has been enhanced. In addition, Merkel complexes, conventionally considered as tactile end organs only responsible for light touch perception due to Piezo2 expressed by both Merkel cells and SA1 Aß-fibres - low threshold mechanical receptors (LTMRs) -, have recently been identified as modulators of mechanical itch. However, the tactile end organs responsible for initiating mechanical itch remain unexplored. The consensus is that some LTMRs, either SA1 Aß- or A∂- and C-, are cutaneous initiators of mechanical itch, even though they are not self-sufficient to finely detect and encode light mechanical stimuli into sensory perceptions, which depend on the entire hosting tactile end organ. Consequently, to enlighten our understanding of mechanical itch initiation, this article discusses the opportunity to consider Merkel complexes as potential tactile end organs responsible for initiating mechanical itch, under both healthy and pathological conditions. Their unsuspected modulatory abilities indeed show that they are tuned to detect and encode light mechanical stimuli leading to mechanical itch, especially as they host not only SA1 Aß-LTMRs but also A∂- and C-fibres.


Asunto(s)
Mecanotransducción Celular , Percepción del Tacto , Humanos , Mecanotransducción Celular/fisiología , Células de Merkel/metabolismo , Piel , Prurito/metabolismo
3.
J Allergy Clin Immunol ; 149(3): 1085-1096, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34411589

RESUMEN

BACKGROUND: Mechanical alloknesis (or innocuous mechanical stimuli-evoked itch) often occurs in dry skin-based disorders such as atopic dermatitis and psoriasis. However, the molecular and cellular mechanisms underlying mechanical alloknesis remain unclear. We recently reported the involvement of CD26 in the regulation of psoriatic itch. This molecule exhibits dipeptidyl peptidase IV (DPPIV) enzyme activity and exerts its biologic effects by processing various substances, including neuropeptides. OBJECTIVE: The aim of the present study was to investigate the peripheral mechanisms of mechanical alloknesis by using CD26/DPPIV knockout (CD26KO) mice. METHODS: We applied innocuous mechanical stimuli to CD26KO or wild-type mice. The total number of scratching responses was counted as the alloknesis score. Immunohistochemical and behavioral pharmacologic analyses were then performed to examine the physiologic activities of CD26/DPPIV or endomorphins (EMs), endogenous agonists of µ-opioid receptors. RESULTS: Mechanical alloknesis was more frequent in CD26KO mice than in wild-type mice. The alloknesis score in CD26KO mice was significantly reduced by the intradermal administration of recombinant DPPIV or naloxone methiodide, a peripheral µ-opioid receptor antagonist, but not by that of mutant DPPIV without enzyme activity. EMs (EM-1 and EM-2), selective ligands for µ-opioid receptors, are substrates for DPPIV. Immunohistochemically, EMs were located in keratinocytes, fibroblasts, and peripheral sensory nerves. Behavioral analyses revealed that EMs preferentially provoked mechanical alloknesis over chemical itch. DPPIV-digested forms of EMs did not induce mechanical alloknesis. CONCLUSION: The present results suggest that EMs induce mechanical alloknesis at the periphery under the enzymatic control of CD26/DPPIV.


Asunto(s)
Dermatitis Atópica , Dipeptidil Peptidasa 4 , Psoriasis , Animales , Dipeptidil Peptidasa 4/genética , Queratinocitos , Ratones , Prurito
4.
Allergy ; 76(11): 3422-3432, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33884632

RESUMEN

BACKGROUND: Itch is a common cutaneous symptom in a variety of dermatological diseases, but detailed neuropathological mechanisms remain to be fully elucidated. This study aimed to assess in vivo ERK2 functions in the nervous system for itch responses. METHODS: We generated conditional knockout mice deficient in ERK2 of the central nervous system (CNS) or peripheral nervous system (PNS), respectively, and assessed chemical and mechanical itch responses in vivo. RESULTS: Chemical itch responses to histamine, but not to BAM8-22, were alleviated in CNS Erk2-deficient mice. In contrast, both histamine- and BAM8-22-induced mechanical itch (alloknesis) were alleviated in CNS Erk2-deficient mice. Neither chemical itch nor mechanical itch induced by these pruritogens was affected by PNS ERK2 deficiency. Spontaneous scratching behaviors during acute and chronic contact hypersensitivity were impaired in CNS Erk2-deficient mice, but not PNS Erk2-deficient mice. In addition, CNS ERK2 deficiency attenuated mechanical itch responses during chronic contact hypersensitivity. Again, PNS Erk2-deficient mice showed comparable responses of mechanical itch to control mice. In addition, alleviated mechanical itch in CNS Erk2-deficient mice was observed in IgE-mediated prurigo-like allergic skin inflammation. Mechanical itch induced by IL-31 was also alleviated by CNS ERK2 deficiency. Phosphorylated ERK1/2 was detected in neurokinin B-expressing cells of the spinal dorsal horn of control mice; these cells accumulated during the induction of chronic contact hypersensitivity. Notably, phosphorylated ERK1/2 was also localized in spinal urocortin3-expressing neurons that are known to transmit mechanical itch. CONCLUSIONS: Spinal cord ERK2 could be a potential therapeutic target for intractable itch in pruritic skin diseases.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Proteína Quinasa 1 Activada por Mitógenos , Prurito , Animales , Modelos Animales de Enfermedad , Inflamación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/genética , Sistema Nervioso Periférico , Piel
5.
J Allergy Clin Immunol ; 152(1): 32-35, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37178728

Asunto(s)
Prurito , Piel , Humanos
6.
J Invest Dermatol ; 144(7): 1449-1453, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38206270

RESUMEN

Mechanical itch, which is defined as an itch sensation caused by innocuous mechanical force, may warn of the potential risk in the skin. The increased mechanosensitivity in sensory neurons may cause scratch-induced itch and promote the transition from acute itch to chronic itch. Recent studies have not only expanded our knowledge about the neuronal circuits in the CNS but have also highlighted the importance of the peripheral epithelia-immune-neuronal crosstalk in the development of mechanical itch. In this review, we will summarize related findings about the molecular and cellular mechanisms of mechanical itch in the skin.


Asunto(s)
Prurito , Células Receptoras Sensoriales , Piel , Prurito/inmunología , Prurito/fisiopatología , Prurito/etiología , Humanos , Células Receptoras Sensoriales/fisiología , Animales , Piel/inmunología , Piel/patología , Mecanotransducción Celular
7.
J Pain ; 25(8): 104504, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38442838

RESUMEN

The dorsal spinal cord is crucial for the transmission and modulation of multiple somatosensory modalities, such as itch, pain, and touch. Despite being essential for the well-being and survival of an individual, itch and pain, in their chronic forms, have increasingly been recognized as clinical problems. Although considerable progress has been made in our understanding of the neurochemical processing of nociceptive and chemical itch sensations, the neural substrate that is crucial for mechanical itch processing is still unclear. Here, using genetic and functional manipulation, we identified a population of spinal neurons expressing neuromedin U receptor 2 (Nmur2+) as critical elements for mechanical itch. We found that spinal Nmur2+ neurons are predominantly excitatory neurons, and are enriched in the superficial laminae of the dorsal horn. Pharmacogenetic activation of cervical spinal Nmur2+ neurons evoked scratching behavior. Conversely, the ablation of these neurons using a caspase-3-based method decreased von Frey filament-induced scratching behavior without affecting responses to other somatosensory modalities. Similarly, suppressing the excitability of cervical spinal Nmur2+ neurons via the overexpression of functional Kir2.1 potassium channels reduced scratching in response to innocuous mechanical stimuli, but not to pruritogen application. At the lumbar level, pharmacogenetic activation of these neurons evoked licking and lifting behaviors. However, ablating these neurons did not affect the behavior associated with acute pain. Thus, these results revealed the crucial role of spinal Nmur2+ neurons in mechanical itch. Our study provides important insights into the neural basis of mechanical itch, paving the way for developing novel therapies for chronic itch. PERSPECTIVE: Excitatory Nmur2+ neurons in the superficial dorsal spinal cord are essential for mechanical but not chemical itch information processing. These spinal Nmur2+ neurons represent a potential cellular target for future therapeutic interventions against chronic itch. Spinal and supraspinal Nmur2+ neurons may play different roles in pain signal processing.


Asunto(s)
Neuronas , Prurito , Médula Espinal , Prurito/fisiopatología , Prurito/metabolismo , Animales , Médula Espinal/metabolismo , Ratones , Neuronas/metabolismo , Neuronas/fisiología , Masculino , Ratones Endogámicos C57BL
8.
Neuron ; 111(11): 1812-1829.e6, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37023756

RESUMEN

The sensation of itch is a protective response that is elicited by either mechanical or chemical stimuli. The neural pathways for itch transmission in the skin and spinal cord have been characterized previously, but the ascending pathways that transmit sensory information to the brain to evoke itch perception have not been identified. Here, we show that spinoparabrachial neurons co-expressing Calcrl and Lbx1 are essential for generating scratching responses to mechanical itch stimuli. Moreover, we find that mechanical and chemical itch are transmitted by separate ascending pathways to the parabrachial nucleus, where they engage separate populations of FoxP2PBN neurons to drive scratching behavior. In addition to revealing the architecture of the itch transmission circuitry required for protective scratching in healthy animals, we identify the cellular mechanisms underlying pathological itch by showing the ascending pathways for mechanical and chemical itch function cooperatively with the FoxP2PBN neurons to drive chronic itch and hyperknesis/alloknesis.


Asunto(s)
Prurito , Piel , Ratones , Animales , Ratones Endogámicos C57BL , Prurito/metabolismo , Piel/metabolismo , Neuronas/fisiología , Sensación
9.
Front Mol Neurosci ; 16: 1278151, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37771556

RESUMEN

Itch is a sensation in the skin which provokes the desire to scratch. In the past few decades there has been a significant elucidation of the immune and neural pathways which underly the sensation of itch. An interesting divergence in the itch pathway relates to the type of stimulation used to evoke an itchy sensation. Commonly, chemical mediators of itch such as histamine are injected into the skin where they activate their cognate receptors on sensory neurons. Another way to evoke itch, particularly in patients with chronic itch, is to use light mechanical stimulation. Investigation into these pathways utilizing the mouse model have shown that the neuronal pathways which underly chemical itch are distinct from those which mediate itch in response to mechanical stimulation. Specific populations of primary sensory neurons, spinal interneurons and transmission neurons have been identified which suggests a labeled line for itch transmission. Additionally, Piezo channels, which underly mechanosensation, were discovered to play an important role in the mechanical itch pathway. Given these novel findings relating to the mechanical itch pathway, the purpose of this review is to summarize the reports from human subjects and animal studies to highlight the advances in our understanding of mechanical itch and alloknesis.

10.
Front Aging Neurosci ; 13: 654761, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34122040

RESUMEN

Neuropeptide Y (NPY) signaling plays an essential role in gating the pruritic afferent information in the spinal cord. Recent studies revealed that the aging process down-regulated the expression of NPY in the central nervous system. We propose that the lack of spinal NPY may be involved in certain types of pruritus in the elderly population. This study was designed to investigate the role of NPY in aging-induced itch using the senile mouse model. The expression of NPY in the spinal dorsal horn was compared between young (2 months old) and aged (24 months old) mice. Western blotting and immunohistochemistry showed that the expression of NPY was significantly reduced in the spinal dorsal horn in aged mice. In addition, a neuronal maker of apoptosis, TUNEL, was detected in the NPY positive neurons only in the aged spinal cord. Behavioral assay indicated that light mechanical stimulus evoked significantly more scratching in the aged than in the young mice, whereas chemical-evoked itch and pain-related behaviors were not altered. Intrathecal injection of either NPY or LP-NPY, a NPY receptor 1 (NPY1R) agonist, significantly alleviated the mechanically evoked itch in aged mice without altering the responses to chemical pruritogens. Our study suggested that downregulation of spinal NPY in the aged mice might play a role in the higher incidence of the mechanically evoked itch than that in the young mice. Therapies targeting the NPY system might serve as a potential strategy for alleviating the pruritic symptoms among the elderly population.

11.
Prog Neurobiol ; 196: 101894, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32777329

RESUMEN

An accelerating basic science literature is providing key insights into the mechanisms by which spinal neuropeptide Y (NPY) inhibits chronic pain. A key target of pain inhibition is the Gi-coupled neuropeptide Y1 receptor (Y1). Y1 is located in key sites of pain transmission, including the peptidergic subpopulation of primary afferent neurons and a dense subpopulation of small, excitatory, glutamatergic/somatostatinergic interneurons (Y1-INs) that are densely expressed in the dorsal horn, particularly in superficial lamina I-II. Selective ablation of spinal Y1-INs with an NPY-conjugated saporin neurotoxin attenuates the development of peripheral nerve injury-induced mechanical and cold hypersensitivity. Conversely, conditional knockdown of NPY expression or intrathecal administration of Y1 antagonists reinstates hypersensitivity in models of chronic latent pain sensitization. These and other results indicate that spinal NPY release and the consequent inhibition of pain facilitatory Y1-INs represent an important mechanism of endogenous analgesia. This mechanism can be mimicked with exogenous pharmacological approaches (e.g. intrathecal administration of Y1 agonists) to inhibit mechanical and thermal hypersensitivity and spinal neuron activity in rodent models of neuropathic, inflammatory, and postoperative pain. Pharmacological activation of Y1 also inhibits mechanical- and histamine-induced itch. These immunohistochemical, pharmacological, and cell type-directed lesioning data, in combination with recent transcriptomic findings, point to Y1-INs as a promising therapeutic target for the development of spinally directed NPY-Y1 agonists to treat both chronic pain and itch.


Asunto(s)
Dolor Crónico , Interneuronas , Neuropéptido Y , Prurito , Receptores de Neuropéptido Y , Médula Espinal , Animales , Dolor Crónico/tratamiento farmacológico , Dolor Crónico/metabolismo , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Neuropéptido Y/efectos de los fármacos , Neuropéptido Y/metabolismo , Prurito/tratamiento farmacológico , Prurito/metabolismo , Receptores de Neuropéptido Y/efectos de los fármacos , Receptores de Neuropéptido Y/metabolismo , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo
12.
Neuron ; 103(6): 952-954, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31557456

RESUMEN

Mechanical itch is a desire to scratch due to light mechanical stimuli. In this issue of Neuron, Pan et al. (2019) identify a feedforward inhibition circuit in the spinal cord dorsal horn that processes mechanical itch as well as spontaneous itch.


Asunto(s)
Prurito , Accidente Cerebrovascular , Humanos , Neuronas
14.
Cell Rep ; 28(3): 625-639.e6, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31315043

RESUMEN

Acute itch can be generated by either chemical or mechanical stimuli, which activate separate pathways in the periphery and spinal cord. While substantial progress has been made in mapping the transmission pathway for chemical itch, the central pathway for mechanical itch remains obscure. Using complementary genetic and pharmacological manipulations, we show that excitatory neurons marked by the expression of the neuropeptide Y1 receptor (Y1Cre neurons) form an essential pathway in the dorsal spinal cord for the transmission of mechanical but not chemical itch. Ablating or silencing the Y1Cre neurons abrogates mechanical itch, while chemogenetic activation induces scratching. Moreover, using Y1 conditional knockout mice, we demonstrate that endogenous neuropeptide Y (NPY) acts via dorsal-horn Y1-expressing neurons to suppress light punctate touch and mechanical itch stimuli. NPY-Y1 signaling thus regulates the transmission of innocuous tactile information by establishing biologically relevant thresholds for touch discrimination and mechanical itch reflexes.


Asunto(s)
Interneuronas/fisiología , Mecanorreceptores/fisiología , Neuropéptido Y/metabolismo , Células del Asta Posterior/fisiología , Receptores de Neuropéptido Y/metabolismo , Animales , Capsaicina/farmacología , Clozapina/análogos & derivados , Clozapina/farmacología , Interneuronas/metabolismo , Mecanorreceptores/metabolismo , Ratones , Ratones Noqueados , Neuropéptido Y/fisiología , Células del Asta Posterior/efectos de los fármacos , Células del Asta Posterior/metabolismo , Reflejo/fisiología , Fármacos del Sistema Sensorial/farmacología , Médula Espinal/citología , Médula Espinal/efectos de los fármacos , Médula Espinal/fisiología , Estimulación Química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda