Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.426
Filtrar
Más filtros

Publication year range
1.
EMBO J ; 42(4): e110620, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36637036

RESUMEN

Drug resistance contributes to poor therapeutic response in urothelial carcinoma (UC). Metabolomic analysis suggested metabolic reprogramming in gemcitabine-resistant urothelial carcinoma cells, whereby increased aerobic glycolysis and metabolic stimulation of the pentose phosphate pathway (PPP) promoted pyrimidine biosynthesis to increase the production of the gemcitabine competitor deoxycytidine triphosphate (dCTP) that diminishes its therapeutic effect. Furthermore, we observed that gain-of-function of isocitrate dehydrogenase 2 (IDH2) induced reductive glutamine metabolism to stabilize Hif-1α expression and consequently stimulate aerobic glycolysis and PPP bypass in gemcitabine-resistant UC cells. Interestingly, IDH2-mediated metabolic reprogramming also caused cross resistance to CDDP, by elevating the antioxidant defense via increased NADPH and glutathione production. Downregulation or pharmacological suppression of IDH2 restored chemosensitivity. Since the expression of key metabolic enzymes, such as TIGAR, TKT, and CTPS1, were affected by IDH2-mediated metabolic reprogramming and related to poor prognosis in patients, IDH2 might become a new therapeutic target for restoring chemosensitivity in chemo-resistant urothelial carcinoma.


Asunto(s)
Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Humanos , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Gemcitabina , Glucólisis , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Vía de Pentosa Fosfato , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética
2.
Mol Microbiol ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38814666

RESUMEN

Trypanosoma cruzi, a flagellated protozoan, is the causative agent of Chagas disease. The parasite has developed various mechanisms to get through its intricate life cycle and adapt to different evolutionary phases. T. cruzi proliferates in the insect vector's digestive tract as an epimastigote form, encountering fluctuating nutrient availability and oxidative stress caused by the digestion of red blood cells from the mammalian host blood meal. To unravel how the parasite's metabolism adapts to these changing conditions, we conducted an analysis of the chemical species present in epimastigote forms. This involved comparing cultured parasites with those subjected to nutritional deficiency or oxidative stress using untargeted metabolomics. We looked at 21 samples: seven biological copies of parasites that were actively growing, seven samples that were put in a medium without nutrients for 3 h, and seven samples that were treated with glucose oxidase for 30 min to make H2O2 continuously. Importantly, in all conditions, parasite viability was maintained when the samples were collected. Upon nutrient removal, we observed a substantial decrease in amino acids and carbohydrate metabolites, accompanied by the accumulation of fatty acids and steroids, with the predominance of inositol and sphingolipid metabolism, along with a simultaneous decrease in the levels of H2O2. In the presence of H2O2, a significant rise in components of the pentose pathway and specific amino acids such as methionine and serine occurred, along with pathways related to an increase in antioxidant species metabolism such as ribulose 5-phosphate and glyceric acid. Conversely, fatty acid and steroid levels decrease. We found no common increase in metabolites or lipids. In contrast, eight species (succinic acid, glutamic acid, valine, 2-hydroxyisocaproic acid, alanine, indolelactic acid, proline, and lanosterol) were consumed under both stresses. These findings underscore the rapid and distinct enrichment responses in amino acids, lipids, and carbohydrates required to cope with each different environmental condition. We concluded that T. cruzi presents a flexible metabolism that rapidly adapts to variable changes in the environment.

3.
Genomics ; 116(1): 110751, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38052259

RESUMEN

Ageing is an evolutionarily conserved and irreversible biological process in different species. Numerous studies have reported that taking medicine is an effective approach to slow ageing. Lemon extract (LE) is a natural extract of lemon fruit that contains a variety of bioactive phytochemicals. Various forms of LE have been shown to play a role in anti-ageing and improving ageing-related diseases. However, studies on the molecular mechanism of LE in Drosophila ageing have not been reported. In this study, we found that 0.05 g/L LE could significantly extend Drosophila lifespan and greatly improve antioxidative and anti-heat stress abilities. Furthermore, transcriptome and metabolome analyses of 10 d flies between the LE-fed and control groups suggested that the differentially expressed gene ppo1 (Prophenoloxidase 1) and metabolite L-DOPA (Levodopa) were co-enriched in the tyrosine metabolism pathway. Overall, our results indicate that affecting metabolism was the main reason for LE extending Drosophila lifespan.


Asunto(s)
Drosophila , Longevidad , Animales , Drosophila/genética , Longevidad/genética , Drosophila melanogaster/genética , Transcriptoma , Perfilación de la Expresión Génica , Extractos Vegetales/farmacología
4.
J Allergy Clin Immunol ; 154(1): 168-178, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38548091

RESUMEN

BACKGROUND: There are increasing numbers of metabolomic studies in food allergy (FA) and asthma, which, however, are predominantly limited by cross-sectional designs, small sample size, and being conducted in European populations. OBJECTIVE: We sought to identify metabolites unique to and shared by children with FA and/or asthma in a racially diverse prospective birth cohort, the Boston Birth Cohort. METHODS: Mass spectrometry-based untargeted metabolomic profiling was performed using venous plasma collected in early childhood (n = 811). FA was diagnosed according to clinical symptoms consistent with an acute hypersensitivity reaction at food ingestion and food specific-IgE > 0.35 kU/L. Asthma was defined on the basis of physician diagnosis. Generalized estimating equations were applied to analyze metabolomic associations with FA and asthma, adjusting for potential confounders. RESULTS: During a mean ± standard deviation follow-up of 11.8 ± 5.2 years from birth, 78 children developed FA and 171 developed asthma. Androgenic and pregnenolone steroids were significantly associated with a lower risk of FA, especially for egg allergy. N,N,N-trimethyl-5-aminovalerate (odds ratio [OR] = 0.65, 95% confidence interval [CI] = 0.48-0.87), and 1-oleoyl-2-arachidonoyl-sn-glycero-3-phosphoinositol (OR = 0.77; 95% CI = 0.66-0.90) were inversely associated with FA risk. Orotidine (OR = 4.73; 95% CI = 2.2-10.2) and 4-cholesten-3-one (OR = 0.52; 95% CI = 0.35-0.77) were the top 2 metabolites associated with risk of asthma, although they had no association with FA. In comparison, children with both FA and asthma exhibited an altered metabolomic profile that aligned with that of FA, including altered levels of lipids and steroids. CONCLUSION: In this US multiethnic prospective birth cohort, unique and shared alterations in plasma metabolites during early childhood were associated with risk of developing FA and/or asthma. These findings await further validation.


Asunto(s)
Asma , Hipersensibilidad a los Alimentos , Metabolómica , Humanos , Asma/sangre , Asma/epidemiología , Hipersensibilidad a los Alimentos/sangre , Hipersensibilidad a los Alimentos/epidemiología , Femenino , Masculino , Niño , Estudios Prospectivos , Preescolar , Cohorte de Nacimiento , Metaboloma , Boston/epidemiología , Lactante , Adolescente
5.
J Proteome Res ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967328

RESUMEN

The prevalence of different metabolic syndromes has grown globally, and the farnesoid X receptor (FXR), a metabolic homeostat for glucose, lipid, and bile acid metabolisms, may serve an important role in the progression of metabolic disorders. Glucose intolerance by FXR deficiency was previously reported and observed in our study, but the underlying biology remained unclear. To investigate the ambiguity, we collected the nontargeted profiles of the fecal metaproteome, serum metabolome, and liver proteome in Fxr-null (Fxr-/-) and wild-type (WT) mice with LC-HRMS. FXR deficiency showed a global impact on the different molecular levels we monitored, suggesting its serious disruption in the gut microbiota, hepatic metabolism, and circulating biomolecules. The network and enrichment analyses of the dysregulated metabolites and proteins suggested the perturbation of carbohydrate and lipid metabolism by FXR deficiency. Fxr-/- mice presented lower levels of hepatic proteins involved in glycogenesis. The impairment of glycogenesis by an FXR deficiency may leave glucose to accumulate in the circulation, which may deteriorate glucose tolerance. Lipid metabolism was dysregulated by FXR deficiency in a structural-dependent manner. Fatty acid ß-oxidations were alleviated, but cholesterol metabolism was promoted by an FXR deficiency. Together, we explored the molecular events associated with glucose intolerance by impaired FXR with integrated novel multiomic data.

6.
J Proteome Res ; 23(2): 809-821, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38230637

RESUMEN

The rising prevalence of obesity in Saudi Arabia is a major contributor to the nation's high levels of cardiometabolic diseases such as type 2 diabetes. To assess the impact of obesity on the diabetic metabolic phenotype presented in young Saudi Arabian adults, participants (n = 289, aged 18-40 years) were recruited and stratified into four groups: healthy weight (BMI 18.5-24.99 kg/m2) with (n = 57) and without diabetes (n = 58) or overweight/obese (BMI > 24.99 kg/m2) with (n = 102) and without diabetes (n = 72). Distinct plasma metabolic phenotypes associated with high BMI and diabetes were identified using nuclear magnetic resonance spectroscopy and ultraperformance liquid chromatography mass spectrometry. Increased plasma glucose and dysregulated lipoproteins were characteristics of obesity in individuals with and without diabetes, but the obesity-associated lipoprotein phenotype was partially masked in individuals with diabetes. Although there was little difference between diabetics and nondiabetics in the global plasma LDL cholesterol and phospholipid concentration, the distribution of lipoprotein particles was altered in diabetics with a shift toward denser and more atherogenic LDL5 and LDL6 particles, which was amplified in the presence of obesity. Further investigation is warranted in larger Middle Eastern populations to explore the dysregulation of metabolism driven by interactions between obesity and diabetes in young adults.


Asunto(s)
Diabetes Mellitus Tipo 2 , Adulto Joven , Humanos , Arabia Saudita/epidemiología , Índice de Masa Corporal , Obesidad/complicaciones , Obesidad/metabolismo , Lipoproteínas
7.
J Proteome Res ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566450

RESUMEN

Despite the recent and increasing knowledge surrounding COVID-19 infection, the underlying mechanisms of the persistence of symptoms for a long time after the acute infection are still not completely understood. Here, a multiplatform mass spectrometry-based approach was used for metabolomic and lipidomic profiling of human plasma samples from Long COVID patients (n = 40) to reveal mitochondrial dysfunction when compared with individuals fully recovered from acute mild COVID-19 (n = 40). Untargeted metabolomic analysis using CE-ESI(+/-)-TOF-MS and GC-Q-MS was performed. Additionally, a lipidomic analysis using LC-ESI(+/-)-QTOF-MS based on an in-house library revealed 447 lipid species identified with a high confidence annotation level. The integration of complementary analytical platforms has allowed a comprehensive metabolic and lipidomic characterization of plasma alterations in Long COVID disease that found 46 relevant metabolites which allowed to discriminate between Long COVID and fully recovered patients. We report specific metabolites altered in Long COVID, mainly related to a decrease in the amino acid metabolism and ceramide plasma levels and an increase in the tricarboxylic acid (TCA) cycle, reinforcing the evidence of an impaired mitochondrial function. The most relevant alterations shown in this study will help to better understand the insights of Long COVID syndrome by providing a deeper knowledge of the metabolomic basis of the pathology.

8.
J Cell Mol Med ; 28(7): e18194, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38506086

RESUMEN

Non-alcoholic steatohepatitis (NASH) is a severe form of fatty liver disease. If not treated, it can lead to liver damage, cirrhosis and even liver cancer. However, advances in treatment have remained relatively slow, and there is thus an urgent need to develop appropriate treatments. Hedan tablet (HDP) is used to treat metabolic syndrome. However, scientific understanding of the therapeutic effect of HDP on NASH remains limited. We used HDP to treat a methionine/choline-deficient diet-induced model of NASH in rats to elucidate the therapeutic effects of HDP on liver injury. In addition, we used untargeted metabolomics to investigate the effects of HDP on metabolites in liver of NASH rats, and further validated its effects on inflammation and lipid metabolism following screening for potential target pathways. HDP had considerable therapeutic, anti-oxidant, and anti-inflammatory effects on NASH. HDP could also alter the hepatic metabolites changed by NASH. Moreover, HDP considerable moderated NF-κB and lipid metabolism-related pathways. The present study found that HDP had remarkable therapeutic effects in NASH rats. The therapeutic efficacy of HDP in NASH mainly associated with regulation of NF-κB and lipid metabolism-related pathways via arachidonic acid metabolism, glycine-serine-threonine metabolism, as well as steroid hormone biosynthesis.


Asunto(s)
Medicamentos Herbarios Chinos , Enfermedad del Hígado Graso no Alcohólico , Ratas , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/metabolismo , FN-kappa B/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
9.
Prostate ; 84(6): 549-559, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38212952

RESUMEN

INTRODUCTION: In this study we used nuclear magnetic resonance spectroscopy in prostate tissue to provide new data on potential biomarkers of prostate cancer in patients eligible for prostate biopsy. MATERIAL AND METHODS: Core needle prostate tissue samples were obtained. After acquiring all the spectra using a Bruker Avance III DRX 600 spectrometer, tissue samples were subjected to routine histology to confirm presence or absence of prostate cancer. Univariate and multivariate analyses with metabolic and clinical variables were performed to predict the occurrence of prostate cancer. RESULTS: A total of 201 patients, were included in the study. Of all cores subjected to high-resolution magic angle spinning (HR-MAS) followed by standard histological study, 56 (27.8%) tested positive for carcinoma. According to HR-MAS probe analysis, metabolic pathways such as glycolysis, the Krebs cycle, and the metabolism of different amino acids were associated with presence of prostate cancer. Metabolites detected in tissue such as citrate or glycerol-3-phosphocholine, together with prostate volume and suspicious rectal examination, formed a predictive model for prostate cancer in tissue with an area under the curve of 0.87, a specificity of 94%, a positive predictive value of 80% and a negative predictive value of 84%. CONCLUSIONS: Metabolomics using HR-MAS analysis can uncover a specific metabolic fingerprint of prostate cancer in prostate tissue, using a tissue core obtained by transrectal biopsy. This specific fingerprint is based on levels of citrate, glycerol-3-phosphocholine, glycine, carnitine, and 0-phosphocholine. Several clinical variables, such as suspicious digital rectal examination and prostate volume, combined with these metabolites, form a predictive model to diagnose prostate cancer that has shown encouraging results.


Asunto(s)
Próstata , Neoplasias de la Próstata , Masculino , Humanos , Próstata/patología , Glicerol , Fosforilcolina , Neoplasias de la Próstata/patología , Citratos
10.
Biochem Biophys Res Commun ; 726: 150274, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38924882

RESUMEN

Alzheimer's disease (AD) is a complex neurodegenerative condition with growing evidence implicating the gut microbiota in its pathogenesis. This study aimed to investigate the effects of NMN synbiotics, a combination of ß-nicotinamide mononucleotide (NMN), Lactobacillus plantarum, and lactulose, on the gut microbiota composition and metabolic profiles in APP/PS1 transgenic mice. Results demonstrated that NMN synbiotics led to a notable restructuring of the gut microbiota, with a decreased Firmicutes/Bacteroidetes ratio in the AD mice, suggesting a potential amelioration of gut dysbiosis. Alpha diversity indices indicated a reduction in microbial diversity following NMN synbiotics supplementation, while beta diversity analyses revealed a shift towards a more balanced microbial community structure. Functional predictions based on the 16S rRNA data highlighted alterations in metabolic pathways, particularly those related to amino acid and energy metabolism, which are crucial for neuronal health. The metabolomic analysis uncovered a significant impact of NMN synbiotics on the gut metabolome, with normalization of metabolic composition in AD mice. Differential metabolite functions were enriched in pathways associated with neurotransmitter synthesis and energy metabolism, pointing to the potential therapeutic effects of NMN synbiotics in modulating the gut-brain axis and synaptic function in AD. Immunohistochemical staining observed a significant reduction of amyloid plaques formed by Aß deposition in the brain of AD mice after NMN synbiotics intervention. The findings underscore the potential of using synbiotics to ameliorate the neurodegenerative processes associated with Alzheimer's disease, opening new avenues for therapeutic interventions.

11.
BMC Plant Biol ; 24(1): 49, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38216904

RESUMEN

BACKGROUND: Trees have developed a broad spectrum of molecular mechanisms to counteract oxidative stress. Secondary metabolites via phenolic compounds emblematized the hidden bridge among plant kingdom, human health, and oxidative stress. Although studies have demonstrated that abiotic stresses can increase the production of medicinal compounds in plants, research comparing the efficiency of these stresses still needs to be explored. Thus, the present research paper provided an exhaustive comparative metabolomic study in Dalbergia odorifera under salinity (ST) and waterlogging (WL). RESULTS: High ST reduced D. odorifera's fresh biomass compared to WL. While WL only slightly affected leaf and vein size, ST had a significant negative impact. ST also caused more significant damage to water status and leaflet anatomy than WL. As a result, WL-treated seedlings exhibited better photosynthesis and an up-regulation of nonenzymatic pathways involved in scavenging reactive oxygen species. The metabolomic and physiological responses of D. odorifera under WL and salinity ST stress revealed an accumulation of secondary metabolites by the less aggressive stress (WL) to counterbalance the oxidative stress. Under WL, more metabolites were more regulated compared to ST. ST significantly altered the metabolite profile in D. odorifera leaflets, indicating its sensitivity to salinity. WL synthesized more metabolites involved in phenylpropanoid, flavone, flavonol, flavonoid, and isoflavonoid pathways than ST. Moreover, the down-regulation of L-phenylalanine correlated with increased p-coumarate, caffeate, and ferulate associated with better cell homeostasis and leaf anatomical indexes under WL. CONCLUSIONS: From a pharmacological and medicinal perspective, WL improved larger phenolics with therapeutic values compared to ST. Therefore, the data showed evidence of the crucial role of medical tree species' adaptability on ROS detoxification under environmental stresses that led to a significant accumulation of secondary metabolites with therapeutic value.


Asunto(s)
Dalbergia , Humanos , Dalbergia/metabolismo , Salinidad , Plantas/metabolismo , Antioxidantes/metabolismo , Fotosíntesis
12.
BMC Plant Biol ; 24(1): 278, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609866

RESUMEN

BACKGROUND: The availability of soil phosphorus (P) often limits the productivities of wet tropical lowland forests. Little is known, however, about the metabolomic profile of different chemical P compounds with potentially different uses and about the cycling of P and their variability across space under different tree species in highly diverse tropical rainforests. RESULTS: We hypothesised that the different strategies of the competing tree species to retranslocate, mineralise, mobilise, and take up P from the soil would promote distinct soil 31P profiles. We tested this hypothesis by performing a metabolomic analysis of the soils in two rainforests in French Guiana using 31P nuclear magnetic resonance (NMR). We analysed 31P NMR chemical shifts in soil solutions of model P compounds, including inorganic phosphates, orthophosphate mono- and diesters, phosphonates, and organic polyphosphates. The identity of the tree species (growing above the soil samples) explained > 53% of the total variance of the 31P NMR metabolomic profiles of the soils, suggesting species-specific ecological niches and/or species-specific interactions with the soil microbiome and soil trophic web structure and functionality determining the use and production of P compounds. Differences at regional and topographic levels also explained some part of the the total variance of the 31P NMR profiles, although less than the influence of the tree species. Multivariate analyses of soil 31P NMR metabolomics data indicated higher soil concentrations of P biomolecules involved in the active use of P (nucleic acids and molecules involved with energy and anabolism) in soils with lower concentrations of total soil P and higher concentrations of P-storing biomolecules in soils with higher concentrations of total P. CONCLUSIONS: The results strongly suggest "niches" of soil P profiles associated with physical gradients, mostly topographic position, and with the specific distribution of species along this gradient, which is associated with species-specific strategies of soil P mineralisation, mobilisation, use, and uptake.


Asunto(s)
Microbiota , Fósforo , Bosque Lluvioso , Árboles , Guyana Francesa , Fosfatos , Suelo
13.
BMC Plant Biol ; 24(1): 276, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605285

RESUMEN

BACKGROUND: Stephania kwangsiensis Lo (Menispermaceae) is a well-known Chinese herbal medicine, and its bulbous stems are used medicinally. The storage stem of S. kwangsiensis originated from the hypocotyls. To date, there are no reports on the growth and development of S. kwangsiensis storage stems. RESULTS: The bulbous stem of S. kwangsiensis, the starch diameter was larger at the stable expanding stage (S3T) than at the unexpanded stage (S1T) or the rapidly expanding stage (S2T) at the three different time points. We used ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and Illumina sequencing to identify key genes involved in bulbous stem development. A large number of differentially accumulated metabolites (DAMs) and differentially expressed genes (DEGs) were identified. Based on the differential expression profiles of the metabolites, alkaloids, lipids, and phenolic acids were the top three differentially expressed classes. Compared with S2T, significant changes in plant signal transduction and isoquinoline alkaloid biosynthesis pathways occurred at both the transcriptional and metabolic levels in S1T. In S2T compared with S3T, several metabolites involved in tyrosine metabolism were decreased. Temporal analysis of S1T to S3T indicated the downregulation of phenylpropanoid biosynthesis, including lignin biosynthesis. The annotation of key pathways showed an up-down trend for genes and metabolites involved in isoquinoline alkaloid biosynthesis, whereas phenylpropanoid biosynthesis was not completely consistent. CONCLUSIONS: Downregulation of the phenylpropanoid biosynthesis pathway may be the result of carbon flow into alkaloid synthesis and storage of lipids and starch during the development of S. kwangsiensis bulbous stems. A decrease in the number of metabolites involved in tyrosine metabolism may also lead to a decrease in the upstream substrates of phenylpropane biosynthesis. Downregulation of lignin synthesis during phenylpropanoid biosynthesis may loosen restrictions on bulbous stem expansion. This study provides the first comprehensive analysis of the metabolome and transcriptome profiles of S. kwangsiensis bulbous stems. These data provide guidance for the cultivation, breeding, and harvesting of S. kwangsiensis.


Asunto(s)
Alcaloides , Plantas Medicinales , Stephania , Stephania/química , Stephania/metabolismo , Plantas Medicinales/metabolismo , Cromatografía Liquida/métodos , Lignina/metabolismo , Espectrometría de Masas en Tándem , Fitomejoramiento , Perfilación de la Expresión Génica , Transcriptoma , Alcaloides/metabolismo , Almidón/metabolismo , Isoquinolinas/metabolismo , Tirosina/metabolismo , Lípidos , Regulación de la Expresión Génica de las Plantas
14.
BMC Plant Biol ; 24(1): 342, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671368

RESUMEN

BACKGROUND: The gibberellic acid (GA) inhibitor, uniconazole, is a plant growth regulator commonly used in banana cultivation to promote dwarfing but also enhances the cold resistance in plants. However, the mechanism of this induced cold resistance remains unclear. RESULTS: We confirmed that uniconazole induced cold tolerance in bananas and that the activities of Superoxide dismutase and Peroxidase were increased in the uniconazole-treated bananas under cold stress when compared with the control groups. The transcriptome and metabolome of bananas treated with or without uniconazole were analyzed at different time points under cold stress. Compared to the control group, differentially expressed genes (DEGs) between adjacent time points in each uniconazole-treated group were enriched in plant-pathogen interactions, MAPK signaling pathway, and plant hormone signal transduction, which were closely related to stimulus-functional responses. Furthermore, the differentially abundant metabolites (DAMs) between adjacent time points were enriched in flavone and flavonol biosynthesis and linoleic acid metabolism pathways in the uniconazole-treated group than those in the control group. Temporal analysis of DEGs and DAMs in uniconazole-treated and control groups during cold stress showed that the different expression patterns in the two groups were enriched in the linoleic acid metabolism pathway. In addition to strengthening the antioxidant system and complex hormonal changes caused by GA inhibition, an enhanced linoleic acid metabolism can protect cell membrane stability, which may also be an important part of the cold resistance mechanism of uniconazole treatment in banana plants. CONCLUSIONS: This study provides information for understanding the mechanisms underlying inducible cold resistance in banana, which will benefit the production of this economically important crop.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Metaboloma , Musa , Transcriptoma , Triazoles , Musa/genética , Musa/efectos de los fármacos , Musa/fisiología , Musa/metabolismo , Metaboloma/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Triazoles/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Respuesta al Choque por Frío/genética , Respuesta al Choque por Frío/efectos de los fármacos , Frío , Perfilación de la Expresión Génica , Giberelinas/metabolismo
15.
BMC Plant Biol ; 24(1): 308, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38644502

RESUMEN

Acacia melanoxylon is well known as a valuable commercial tree species owing to its high-quality heartwood (HW) products. However, the metabolism and regulatory mechanism of heartwood during wood development remain largely unclear. In this study, both microscopic observation and content determination proved that total amount of starches decreased and phenolics and flavonoids increased gradually from sapwood (SW) to HW. We also obtained the metabolite profiles of 10 metabolites related to phenolics and flavonoids during HW formation by metabolomics. Additionally, we collected a comprehensive overview of genes associated with the biosynthesis of sugars, terpenoids, phenolics, and flavonoids using RNA-seq. A total of ninety-one genes related to HW formation were identified. The transcripts related to plant hormones, programmed cell death (PCD), and dehydration were increased in transition zone (TZ) than in SW. The results of RT-PCR showed that the relative expression level of genes and transcription factors was also high in the TZ, regardless of the horizontal or vertical direction of the trunk. Therefore, the HW formation took place in the TZ for A. melanoxylon from molecular level, and potentially connected to plant hormones, PCD, and cell dehydration. Besides, the increased expression of sugar and terpenoid biosynthesis-related genes in TZ further confirmed the close connection between terpenoid biosynthesis and carbohydrate metabolites of A. melanoxylon. Furthermore, the integrated analysis of metabolism data and RNA-seq data showed the key transcription factors (TFs) regulating flavonoids and phenolics accumulation in HW, including negative correlation TFs (WRKY, MYB) and positive correlation TFs (AP2, bZIP, CBF, PB1, and TCP). And, the genes and metabolites from phenylpropanoid and flavonoid metabolism and biosynthesis were up-regulated and largely accumulated in TZ and HW, respectively. The findings of this research provide a basis for comprehending the buildup of metabolites and the molecular regulatory processes of HW formation in A. melanoxylon.


Asunto(s)
Acacia , Flavonoides , Perfilación de la Expresión Génica , Madera , Acacia/genética , Acacia/metabolismo , Flavonoides/metabolismo , Flavonoides/biosíntesis , Madera/genética , Madera/metabolismo , Metabolómica , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Fenoles/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
16.
BMC Plant Biol ; 24(1): 84, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308239

RESUMEN

BACKGROUND: Cinnamomum cassia Presl, classified in the Lauraceae family, is widely used as a spice, but also in medicine, cosmetics, and food. Aroma is an important factor affecting the medicinal and flavoring properties of C. cassia, and is mainly determined by volatile organic compounds (VOCs); however, little is known about the composition of aromatic VOCs in C. cassia and their potential molecular regulatory mechanisms. Here, integrated transcriptomic and volatile metabolomic analyses were employed to provide insights into the formation regularity of aromatic VOCs in C. cassia bark at five different harvesting times. RESULTS: The bark thickness and volatile oil content were significantly increased along with the development of the bark. A total of 724 differentially accumulated volatiles (DAVs) were identified in the bark samples, most of which were terpenoids. Venn analysis of the top 100 VOCs in each period showed that twenty-eight aromatic VOCs were significantly accumulated in different harvesting times. The most abundant VOC, cinnamaldehyde, peaked at 120 months after planting (MAP) and dominated the aroma qualities. Five terpenoids, α-copaene, ß-bourbonene, α-cubebene, α-funebrene, and δ-cadinene, that peaked at 240 MAP could also be important in creating C. cassia's characteristic aroma. A list of 43,412 differentially expressed genes (DEGs) involved in the biosynthetic pathways of aromatic VOCs were identified, including phenylpropanoids, mevalonic acid (MVA) and methylerythritol phosphate (MEP). A gene-metabolite regulatory network for terpenoid and phenylpropanoid metabolism was constructed to show the key candidate structural genes and transcription factors involved in the biosynthesis of terpenoids and phenylpropanoids. CONCLUSIONS: The results of our research revealed the composition and changes of aromatic VOCs in C. cassia bark at different harvesting stages, differentiated the characteristic aroma components of cinnamon, and illuminated the molecular mechanism of aroma formation. These foundational results will provide technical guidance for the quality breeding of C. cassia.


Asunto(s)
Cinnamomum aromaticum , Cinnamomum aromaticum/química , Corteza de la Planta/genética , Fitomejoramiento , Perfilación de la Expresión Génica , Terpenos/análisis
17.
BMC Plant Biol ; 24(1): 203, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509491

RESUMEN

BACKGROUND: Quinoa leaves demonstrate a diverse array of colors, offering a potential enhancement to landscape aesthetics and the development of leisure-oriented sightseeing agriculture in semi-arid regions. This study utilized integrated transcriptomic and metabolomic analyses to investigate the mechanisms underlying anthocyanin synthesis in both emerald green and pink quinoa leaves. RESULTS: Integrated transcriptomic and metabolomic analyses indicated that both flavonoid biosynthesis pathway (ko00941) and anthocyanin biosynthesis pathway (ko00942) were significantly associated with anthocyanin biosynthesis. Differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) were analyzed between the two germplasms during different developmental periods. Ten DEGs were verified using qRT-PCR, and the results were consistent with those of the transcriptomic sequencing. The elevated expression of phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), 4-coumarate CoA ligase (4CL) and Hydroxycinnamoyltransferase (HCT), as well as the reduced expression of flavanone 3-hydroxylase (F3H) and Flavonol synthase (FLS), likely cause pink leaf formation. In addition, bHLH14, WRKY46, and TGA indirectly affected the activities of CHS and 4CL, collectively regulating the levels of cyanidin 3-O-(3'', 6''-O-dimalonyl) glucoside and naringenin. The diminished expression of PAL, 4CL, and HCT decreased the formation of cyanidin-3-O-(6"-O-malonyl-2"-O-glucuronyl) glucoside, leading to the emergence of emerald green leaves. Moreover, the lowered expression of TGA and WRKY46 indirectly regulated 4CL activity, serving as another important factor in maintaining the emerald green hue in leaves N1, N2, and N3. CONCLUSION: These findings establish a foundation for elucidating the molecular regulatory mechanisms governing anthocyanin biosynthesis in quinoa leaves, and also provide some theoretical basis for the development of leisure and sightseeing agriculture.


Asunto(s)
Antocianinas , Chenopodium quinoa , Antocianinas/metabolismo , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Perfilación de la Expresión Génica/métodos , Transcriptoma , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Glucósidos , Regulación de la Expresión Génica de las Plantas
18.
J Neuroinflammation ; 21(1): 54, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383421

RESUMEN

Parkinson's disease (PD) is a common age-related neurodegenerative disorder characterized by the aggregation of α-Synuclein (αSYN) building up intraneuronal inclusions termed Lewy pathology. Mounting evidence suggests that neuron-released αSYN aggregates could be central to microglial activation, which in turn mounts and orchestrates neuroinflammatory processes potentially harmful to neurons. Therefore, understanding the mechanisms that drive microglial cell activation, polarization and function in PD might have important therapeutic implications. Here, using primary microglia, we investigated the inflammatory potential of pure αSYN fibrils derived from PD patients. We further explored and characterized microglial cell responses to a chronic-type inflammatory stimulation combining PD patient-derived αSYN fibrils (FPD), Tumor necrosis factor-α (TNFα) and prostaglandin E2 (PGE2) (TPFPD). We showed that FPD hold stronger inflammatory potency than pure αSYN fibrils generated de novo. When combined with TNFα and PGE2, FPD polarizes microglia toward a particular functional phenotype departing from FPD-treated cells and featuring lower inflammatory cytokine and higher glutamate release. Whereas metabolomic studies showed that TPFPD-exposed microglia were closely related to classically activated M1 proinflammatory cells, notably with similar tricarboxylic acid cycle disruption, transcriptomic analysis revealed that TPFPD-activated microglia assume a unique molecular signature highlighting upregulation of genes involved in glutathione and iron metabolisms. In particular, TPFPD-specific upregulation of Slc7a11 (which encodes the cystine-glutamate antiporter xCT) was consistent with the increased glutamate response and cytotoxic activity of these cells toward midbrain dopaminergic neurons in vitro. Together, these data further extend the structure-pathological relationship of αSYN fibrillar polymorphs to their innate immune properties and demonstrate that PD-derived αSYN fibrils, TNFα and PGE2 act in concert to drive microglial cell activation toward a specific and highly neurotoxic chronic-type inflammatory phenotype characterized by robust glutamate release and iron retention.


Asunto(s)
Síndromes de Neurotoxicidad , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/patología , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Microglía/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Señales (Psicología) , Inflamación/metabolismo , Neuronas Dopaminérgicas/patología , Síndromes de Neurotoxicidad/metabolismo , Glutamatos/metabolismo , Hierro/metabolismo
19.
Planta ; 259(3): 65, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329545

RESUMEN

MAIN CONCLUSION: This study reveals that TRM21 acts as a positive regulator of flavonoid biosynthesis at the translational level in Arabidopsis, impacting both secondary metabolites and genes associated with root hair growth. TRM (TONNEAU1-recruiting motif) superfamily proteins are reported to be involved in microtubule assembly. However, the functions of this protein family are just beginning to be uncovered. Here, we provide metabolomic and genetic evidence that 1 of the 34 TRM members, TRM21, positively regulates the biosynthesis of flavonoids at the translational level in Arabidopsis thaliana. A loss-of-function mutation in TRM21 led to root hair growth defects and stunted plant growth, accompanied by significant alterations in secondary metabolites, particularly a marked reduction in flavonoid content. Interestingly, our study revealed that the transcription levels of genes involved in the flavonoid biosynthesis pathway remained unchanged in the trm21 mutants, but there was a significant downregulation in the translation levels of certain genes [flavanone 3-hydroxylase (F3H), dihydroflavonol-4-reductase (DFR), anthocyanidin reductase (ANR), flavanone 3'-hydroxylase (F3'H), flavonol synthase (FLS), chalcone synthase (CHS)]. Additionally, the translation levels of some genes related to root hair growth [RHO-related GTPases of plant 2 (ROP2), root hair defective 6 (RHD6), root hair defective 2 (RHD2)] were also reduced in the trm21 mutants. Taken together, these results indicate that TRM21 functions as a positive regulator of flavonoid biosynthesis at the translational level in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Flavonoides , Proteínas Asociadas a Microtúbulos , Antocianinas , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Regulación hacia Abajo , Flavonoides/biosíntesis , Redes y Vías Metabólicas , Proteínas Asociadas a Microtúbulos/genética
20.
Planta ; 260(1): 31, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888604

RESUMEN

Deforestation of Atlantic Forest has caused prolonged drought events in the last decades. The need for reforestation is growing, and the development of native seedlings that are more tolerant to drought stress is necessary. A biotechnological tool that improves plant tolerance is the use of plant growth-promoting bacteria (PGPB) as inoculants. Two species of PGPB were inoculated in drought-stressed seedlings of two neotropical tree species that have been used in environmental restoration programs: Cecropia pachystachya and Cariniana estrellensis. Biometrical, physiological, and metabolomic parameters from carbon and nitrogen pathways were evaluated. We found that the PGPB positively influenced photosynthesis and growth parameters in both trees under drought. The enzymes activities, the tricarboxylic acid cycle intermediates, the amino acids, and protein contents were also influenced by the PGPB treatments. The results allowed us to find the specific composition of secondary metabolites of each plant species. This study provides evidence that there is not a single mechanism involved in drought tolerance and that the inoculation with PGPB promotes a broad-spectrum tolerance response in Neotropical trees. The inoculation with PGPB appears as an important strategy to improve drought tolerance in Atlantic Forest native trees and enhance environmental restoration programs' success. MAIN CONCLUSION: The association with plant growth-promoting bacteria improved the tolerance to drought in Neotropical trees through biochemical, physiological, and biometrical parameters. This can enhance the success of forest restoration programs.


Asunto(s)
Carbono , Sequías , Metabolómica , Nitrógeno , Hojas de la Planta , Árboles , Carbono/metabolismo , Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Árboles/microbiología , Árboles/metabolismo , Árboles/fisiología , Cecropia/metabolismo , Cecropia/fisiología , Fotosíntesis , Estrés Fisiológico , Bacterias/metabolismo , Plantones/microbiología , Plantones/crecimiento & desarrollo , Plantones/fisiología , Plantones/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda