Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 421
Filtrar
1.
FASEB J ; 38(2): e23415, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38243682

RESUMEN

Emerging evidence suggests that stem cell-derived extracellular vesicles (EVs) may induce pro-regenerative effects in ischemic tissues by delivering bioactive molecules, including microRNAs. Recent studies have also shown pro-regenerative benefits of EVs derived from induced pluripotent stem (iPS) cells. However, the underlying mechanisms of EV benefits and the role of their transferred regulatory molecules remain incompletely understood. Accordingly, we investigated the effects of human iPS-derived EVs (iPS-EVs) enriched in proangiogenic miR-126 (iPS-miR-126-EVs) on functional properties of human endothelial cells (ECs) in vitro. We also examined the outcomes following EV injection in a murine model of limb ischemia in vivo. EVs were isolated from conditioned media from cultures of unmodified and genetically modified human iPS cells overexpressing miR-126. The iPS-miR-126-EVs were enriched in miR-126 when compared with control iPS-EVs and effectively transferred miR-126 along with other miRNAs to recipient ECs improving their functional properties essential for ischemic tissue repair, including proliferation, metabolic activity, cell survival, migration, and angiogenic potential. Injection of iPS-miR-126-EVs in vivo in a murine model of acute limb ischemia promoted angiogenesis, increased perfusion, and enhanced functional recovery. These observations corresponded with elevated expression of genes for several proangiogenic factors in ischemic tissues following iPS-miR-126-EV transplantation. These results indicate that innate pro-regenerative properties of iPS-EVs may be further enhanced by altering their molecular composition via controlled genetic modifications. Such iPS-EVs overexpressing selected microRNAs, including miR-126, may represent a novel acellular tool for therapy of ischemic tissues in vivo.


Asunto(s)
Vesículas Extracelulares , Células Madre Pluripotentes Inducidas , MicroARNs , Humanos , Ratones , Animales , Células Madre Pluripotentes Inducidas/metabolismo , Células Endoteliales/metabolismo , Modelos Animales de Enfermedad , MicroARNs/genética , MicroARNs/metabolismo , Vesículas Extracelulares/metabolismo , Isquemia/terapia , Isquemia/metabolismo
2.
Mol Ther ; 32(1): 152-167, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37990493

RESUMEN

Metastatic melanoma poses significant challenges as a highly lethal disease. Despite the success of molecular targeting using BRAFV600E inhibitors (BRAFis) and immunotherapy, the emergence of early recurrence remains an issue and there is the need for novel therapeutic approaches. This study aimed at creating a targeted delivery system for the oncosuppressor microRNA 126 (miR126) and testing its effectiveness in combination with a phosphatidylinositol 3-kinase (PI3K)/ protein kinase B (AKT) inhibitor for treating metastatic melanoma resistant to BRAFis. To achieve this, we synthesized chitosan nanoparticles containing a chemically modified miR126 sequence. These nanoparticles were further functionalized with an antibody specific to the chondroitin sulfate proteoglycan 4 (CSPG4) melanoma marker. After evaluation in vitro, the efficacy of this treatment was evaluated through an in vivo experiment using mice bearing resistant human melanoma. The co-administration of miR126 and the PI3K/AKT inhibitor in these experiments significantly reduced tumor growth and inhibited the formation of liver and lung metastases. These results provide evidence for a strategy to target an oncosuppressive nucleic acid sequence to tumor cells while simultaneously protecting it from plasma degradation. The system described in this study exhibits encouraging potential for the effective treatment of therapy-resistant metastatic melanoma while also presenting a prospective approach for other forms of cancer.


Asunto(s)
Melanoma , MicroARNs , Humanos , Animales , Ratones , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Línea Celular Tumoral , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , MicroARNs/farmacología
3.
Proc Natl Acad Sci U S A ; 119(16): e2112482119, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35412895

RESUMEN

MiR-126 and miR-155 are key microRNAs (miRNAs) that regulate, respectively, hematopoietic cell quiescence and proliferation. Herein we showed that in acute myeloid leukemia (AML), the biogenesis of these two miRNAs is interconnected through a network of regulatory loops driven by the FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD). In fact, FLT3-ITD induces the expression of miR-155 through a noncanonical mechanism of miRNA biogenesis that implicates cytoplasmic Drosha ribonuclease III (DROSHA). In turn, miR-155 down-regulates SH2-containing inositol phosphatase 1 (SHIP1), thereby increasing phosphor-protein kinase B (AKT) that in turn serine-phosphorylates, stabilizes, and activates Sprouty related EVH1 domain containing 1 (SPRED1). Activated SPRED1 inhibits the RAN/XPO5 complex and blocks the nucleus-to-cytoplasm transport of pre-miR-126, which cannot then complete the last steps of biogenesis. The net result is aberrantly low levels of mature miR-126 that allow quiescent leukemia blasts to be recruited into the cell cycle and proliferate. Thus, miR-126 down-regulation in proliferating AML blasts is downstream of FLT3-ITD­dependent miR-155 expression that initiates a complex circuit of concatenated regulatory feedback (i.e., miR-126/SPRED1, miR-155/human dead-box protein 3 [DDX3X]) and feed-forward (i.e., miR-155/SHIP1/AKT/miR-126) regulatory loops that eventually converge into an output signal for leukemic growth.


Asunto(s)
Leucemia Mieloide Aguda , MicroARNs , Tirosina Quinasa 3 Similar a fms , ARN Helicasas DEAD-box/metabolismo , Regulación hacia Abajo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , MicroARNs/metabolismo , Mutación , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/metabolismo
4.
Scand J Immunol ; 99(4): e13354, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39008522

RESUMEN

Systemic sclerosis (SSc) is a chronic autoimmune connective tissue disease. Vascular damage is one of the important features of SSc, which affects the progression and prognosis of the disease. MiR-126-3p is an important microRNA (miRNA) that regulates vascular structure and function, which can be transported through exosomes. However, the role of miR-126-3p in vascular damage in SSc is still unclear. Therefore, we focused on the connection between miR-126-3p and vascular damage in SSc, as well as investigated the potential role of miR-126-3p in vascular damage in SSc. First, this study successfully extracted extracellular vesicles from clinical plasma samples and characterized the exosomes within them. Then, we predicted and screened the target pathway mammalian/mechanistic target of rapamycin (mTOR) and the target gene SLC7A5 of miR-126-3p through online databases. Next, we constructed SSc mice for in vivo studies. The results showed that the expression of miR-126-3p was decreased in the plasma exosomes, while the SLC7A5 expression, autophagy, and lipid peroxidation were increased in the aorta. Luciferase reporter gene assays demonstrated that miR-126-3p can bind to SLC7A5, resulting in a decrease in its expression. In vitro experiments have shown that exosomal miR-126-3p can be internalized by human umbilical vein endothelial cells (HUVECs). The miR-126-3p group exhibited enhanced cell viability and tube formation ability, along with increased expression of the vascular formation marker CD31. Additionally, miR-126-3p downregulated the protein expression of SLC7A5 and LC3 in HUVECs, while upregulating the protein expression of mTOR, P62, PPARγ, and CPT-1. However, the effects of miR-126-3p on HUVECs were counteracted by mTOR inhibitors and enhanced by mTOR activators. The results indicated that exosomal miR-126-3p has the potential to protect against vascular injury in SSc by regulating the SLC7A5/mTOR signalling pathway in HUVECs.


Asunto(s)
Exosomas , Células Endoteliales de la Vena Umbilical Humana , MicroARNs , Transducción de Señal , Serina-Treonina Quinasas TOR , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Exosomas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Ratones , Esclerodermia Sistémica/metabolismo , Esclerodermia Sistémica/genética , Esclerodermia Sistémica/patología , Masculino , Femenino , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Transportador de Aminoácidos Neutros Grandes 1/genética , Persona de Mediana Edad , Modelos Animales de Enfermedad , Adulto
5.
Cytotherapy ; 26(1): 36-50, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37747393

RESUMEN

BACKGROUND AIMS: Treating chronic non-healing diabetic wounds and achieving complete skin regeneration has always been a critical clinical challenge. METHODS: In order to address this issue, researchers conducted a study aiming to investigate the role of miR-126-3p in regulating the downstream gene PIK3R2 and promoting diabetic wound repair in endothelial progenitor cell (EPC)-derived extracellular vesicles. The study involved culturing EPCs with astragaloside IV, transfecting them with miR-126-3p inhibitor or mock plasmid, interfering with high glucose-induced damage in human umbilical vein endothelial cells (HUVECs) and treating diabetic skin wounds in rats. RESULTS: The healing of rat skin wounds was observed through histological staining. The results revealed that treatment with miR-126-3p-overexpressing EPC-derived extracellular vesicles accelerated the healing of rat skin wounds and resulted in better tissue repair with slower scar formation. In addition, the transfer of EPC-derived extracellular vesicles with high expression of miR-126-3p to high glucose-damaged HUVECs increased their proliferation and invasion, reduced necrotic and apoptotic cell numbers and improved tube formation. In this process, the expression of angiogenic factors vascular endothelial growth factor (VEGF)A, VEGFB, VEGFC, basic fibroblast growth factor and Ang-1 significantly increased, whereas the expression of caspase-1, NRLP3, interleukin-1ß, inteleukin-18, PIK3R2 and SPRED1 was suppressed. Furthermore, miR-126-3p was able to target and inhibit the expression of the PIK3R2 gene, thereby restoring the proliferation and migration ability of high glucose-damaged HUVEC. CONCLUSIONS: In summary, these research findings demonstrate the important role of miR-126-3p in regulating downstream genes and promoting diabetic wound repair, providing a new approach for treating chronic non-healing diabetic wounds.


Asunto(s)
Diabetes Mellitus , Células Progenitoras Endoteliales , Exosomas , MicroARNs , Humanos , Ratas , Animales , MicroARNs/genética , MicroARNs/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Progenitoras Endoteliales/metabolismo , Exosomas/metabolismo , Piroptosis , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Glucosa/metabolismo , Proliferación Celular/genética , Proteínas Adaptadoras Transductoras de Señales
6.
Neuroendocrinology ; 114(4): 315-330, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38071970

RESUMEN

INTRODUCTION: Traumatic brain injuries (TBIs) pose a high risk of pituitary insufficiency development in patients. We have previously reported alterations in miR-126-3p levels in sera from patients with TBI-induced pituitary deficiency. METHODS: To investigate why TBI-induced pituitary deficiency develops only in some patients and to reveal the relationship between miR-126-3p with hormone axes, we used mice that were epigenetically modified with miR-126-3p at the embryonic stage. These modified mice were subjected to mild TBI (mTBI) according to the Marmarou's weight-drop model at 2 months of age. The levels of miR-126-3p were assessed at 1 and 30 days in serum after mTBI. Changes in miR-126-3p levels after mTBI of wild-type and miR-126-3p* modified mouse lines validated our human results. Additionally, hypothalamus, pituitary, and adrenal tissues were analyzed for transcripts and associated serum hormone levels. RESULTS: We report that miR-126-3p directly affects hypothalamus-pituitary-adrenal (HPA) axis upregulation and ACTH secretion in the acute phase after mTBI. We also demonstrated that miR-126-3p suppresses Gnrh transcripts in the hypothalamus and pituitary, but this is not reflected in serum FSH/LH levels. The increase in ACTH levels in the acute phase may indicate that upregulation of miR-126-3p at the embryonic stage has a protective effect on the HPA axis after TBI. Notably, the most prominent transcriptional response is found in the adrenals, highlighting their role in the pathophysiology of TBI. CONCLUSION: Our study revealed the role of miR-126-3p in TBI and pituitary deficiency developing after TBI, and the obtained data will significantly contribute to elucidating the mechanism of pituitary deficiency development after TBI and development of new diagnostic and treatment strategies.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Hipopituitarismo , MicroARNs , Humanos , Ratones , Animales , Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Lesiones Traumáticas del Encéfalo/complicaciones , Hormona Adrenocorticotrópica
7.
Mol Biol Rep ; 51(1): 231, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38281293

RESUMEN

BACKGROUND: In India, esophageal cancer (EC) is among the major cause of cancer-related deaths in both sexes. In recent past, autophagy has emerged as one of the crucial process associated with cancer. In the development of EC, the role of autophagy and the precise molecular mechanism involved has yet to be fully understood. Recently, a small number of studies have proposed how variations in autophagy genes affect the growth and development of EC. Micro-RNA's are also known to play a critical role in the development of EC. Here, we examined the relationship between the risk of EC and two single-nucleotide polymorphisms (SNPs) in the key autophagy genes, ATG10 rs1864183 and ATG16L1 rs2241880. We also analyzed the association of miR-107 and miR-126 with EC as these miRNA's are associated with autophagy. METHODS AND RESULTS: A total of 230 EC patients and 230 healthy controls from North-west Indian population were enrolled. ATG10 rs1864183 and ATG16L1 rs2241880 polymorphism were analyzed using TaqMan genotyping assay. Expression levels of miR-107 and miR-126 were analyzed through quantitative PCR using SYBR green chemistry. We found significant association of CT + CC genotype (OR 0.64, p = 0.022) in recessive model for ATG10 rs1864183 polymorphism with decreased EC risk. For ATG16L1 rs2241880 polymorphism significant association for AG genotype (OR 1.48, p = 0.05) and G allele (OR 1.43, p = 0.025) was observed for increased EC risk. Expression levels of miR-126 were also found to be significantly up regulated (p = 0.008). CONCLUSION: Our results suggest that ATG10 rs1864183, ATG16L1 rs2241880 and miR-126 may be associated with esophageal carcinogenesis and warrant further investigation.


Asunto(s)
Neoplasias Esofágicas , MicroARNs , Masculino , Femenino , Humanos , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple/genética , Genotipo , Neoplasias Esofágicas/genética , MicroARNs/genética , Proteínas Relacionadas con la Autofagia/genética , Autofagia/genética , Estudios de Casos y Controles , Proteínas de Transporte Vesicular/genética
8.
Mol Ther ; 31(5): 1402-1417, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-36380587

RESUMEN

Extracellular vesicles (EVs) are nanovesicles released by all eukaryotic cells. This work reports the first nanoscale fluorescent visualization of tumor-originating vesicles bearing an angiogenic microRNA (miR)-126 cargo. In a validated experimental model of lethal murine vascular neoplasm, tumor-originating EV delivered its miR-126 cargo to tumor-associated macrophages (TAMs). Such delivery resulted in an angiogenic (LYVE+) change of state in TAM that supported tumor formation. Study of the trafficking of tumor-originating fluorescently tagged EV revealed colocalization with TAM demonstrating uptake by these cells. Ex vivo treatment of macrophages with tumor-derived EVs led to gain of tumorigenicity in these isolated cells. Single-cell RNA sequencing of macrophages revealed that EV-borne miR-126 characterized the angiogenic change of state. Unique gene expression signatures of specific macrophage clusters responsive to miR-126-enriched tumor-derived EVs were revealed. Topical tissue nanotransfection (TNT) delivery of an oligonucleotide comprising an anti-miR against miR-126 resulted in significant knockdown of miR-126 in the tumor tissue. miR-126 knockdown resulted in complete involution of the tumor and improved survival rate of tumor-affected mice. This work identifies a novel tumorigenic mechanism that relies on tumorigenic state change of TAM caused by tumor-originating EV-borne angiomiR. This disease process can be effectively targeted by topical TNT of superficial tumors.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Animales , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Macrófagos/metabolismo , Fagocitosis , Vesículas Extracelulares/metabolismo
9.
Biochem Genet ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849709

RESUMEN

Human papillomavirus accounts for 99.7% of all cervical cancer cases worldwide. The viral oncoproteins alter normal cell signaling and gene expression, resulting in loss of cell cycle control and cancer development. Also, microRNAs (miRNAs) have been reported to play a critical role in cervical carcinogenesis. Especially these are not only appropriate targets for therapeutic intervention in cervical cancer but also early diagnostic signals. The given study tries to improve the sparse knowledge on miRNAs and their role in this physiological context. Deregulated miRNAs were identified by analyzing the raw data of the well-founded GSE20592 dataset including 16 tumor/normal pairs of human cervical tissue samples. The dataset was quantified by a conservative strategy based on HTSeq and Salmon, followed by target prediction via TargetScan and miRDB. The comprehensive pathway analysis of all factors was performed using DAVID. The theoretical results were subject of a stringent experimental validation in a well-characterized clinical cohort of 30 tumor/normal pairs of cervical samples. The top 31 miRNAs and their 140 primary target genes were closely intertwined with the PI3K-Akt signaling pathway. MiR-21-3p and miR-1-3p showed a prominent regulatory role while miR-542, miR-126, miR-143, and miR-26b are directly targeting both PI3K and AKT. This study provides insights into the regulation of PI3K-Akt signaling as an important inducer of cervical cancer and identified miR-542, miR-126, miR-143, and miR-26b as promising inhibitors of the PI3K-Akt action.

10.
Molecules ; 29(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38398499

RESUMEN

In this study, the expression and abundance of two candidate chicken (Gallus gallus; gga) microRNAs (miRNAs, miR), gga-miR-21-5p (miR-21) and gga-miR-126-5p (miR-126), have been analyzed in order to identify biomarkers for the traceability and quality of poultry meat. Two breeds of broiler chickens were tested: the most common Ross308 (fast-growing) and the high-quality Ranger Gold (slow-growing). A preliminary analysis of the two miRNAs expressions was conducted across various tissues (liver, lung, spleen, skeletal muscle, and kidney), and the three tissues (lung, spleen, and muscle) with a higher expression were chosen for further analysis. Using quantitative reverse transcription polymerase chain reaction (RT-qPCR), the expression of miRNAs in the three tissues of a total of thirteen animals was determined. The results indicate that miR-126 could be a promising biomarker for the lung tissue in the Ranger Gold (RG) breed (p < 0.01), thus suggesting a potential applicability for tracing hybrids. RG exhibits a significantly higher miR-126 expression in the lung tissue compared to the Ross308 broilers (R308), an indication of greater respiratory capacity and, consequently, a higher oxidative metabolism of the fast-growing hybrid. During sampling, two R308 broilers presented some anomalies, including airsacculitis, hepatic steatosis, and enlarged spleen. The expression of miR-126 and miR-21 was compared in healthy animals and in those presenting anomalies. Chickens with airsacculitis and hepatic steatosis showed an up-regulation of miR-21 and miR-126 in the most commercially valuable tissue, the skeletal muscle or breast (p < 0.05).


Asunto(s)
MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Pollos/genética , Pollos/metabolismo , Aves de Corral , Músculo Esquelético/metabolismo , Inocuidad de los Alimentos
11.
Evol Dev ; 25(3): 226-239, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37157156

RESUMEN

The evolution of specialized cell-types is a long-standing interest of biologists, but given the deep time-scales very difficult to reconstruct or observe. microRNAs have been linked to the evolution of cellular complexity and may inform on specialization. The endothelium is a vertebrate-specific specialization of the circulatory system that enabled a critical new level of vasoregulation. The evolutionary origin of these endothelial cells is unclear. We hypothesized that Mir-126, an endothelial cell-specific microRNA may be informative. We here reconstruct the evolutionary history of Mir-126. Mir-126 likely appeared in the last common ancestor of vertebrates and tunicates, which was a species without an endothelium, within an intron of the evolutionary much older EGF Like Domain Multiple (Egfl) locus. Mir-126 has a complex evolutionary history due to duplications and losses of both the host gene and the microRNA. Taking advantage of the strong evolutionary conservation of the microRNA among Olfactores, and using RNA in situ hybridization, we localized Mir-126 in the tunicate Ciona robusta. We found exclusive expression of the mature Mir-126 in granular amebocytes, supporting a long-proposed scenario that endothelial cells arose from hemoblasts, a type of proto-endothelial amoebocyte found throughout invertebrates. This observed change of expression of Mir-126 from proto-endothelial amoebocytes in the tunicate to endothelial cells in vertebrates is the first direct observation of the evolution of a cell-type in relation to microRNA expression indicating that microRNAs can be a prerequisite of cell-type evolution.


Asunto(s)
Células Endoteliales , MicroARNs , Animales , Células Endoteliales/metabolismo , Vertebrados/genética , Invertebrados/genética , MicroARNs/genética , MicroARNs/metabolismo
12.
J Transl Med ; 21(1): 509, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37507742

RESUMEN

BACKGROUND: Preeclampsia is a common pregnancy complication characterized by high blood pressure and damage to organs. Abnormal placenta and vascular function can lead to preeclampsia. Accumulating evidence has suggested a potential link between circular RNAs (circRNAs) and preeclampsia. As a placenta and endothelial-expressed circRNA, hsa_circ_0002348, may be promising to be the novel molecular target for preeclampsia. However, the function and mechanism of hsa_circ_0002348 in preeclampsia has not been elucidated. MATERIALS AND METHODS: An overlap analysis of two circRNA profiles from placenta and endothelial cells was used to identify a functionally unknown circRNA, hsa_circ_0002348. Quantitative real-time PCR (qRT-PCR) and in situ hybridization (ISH) were used to detect its expression in the trophoblast cells and placental tissues. The mouse model of lipopolysaccharide (LPS)-induced preeclampsia was established to determine the in vivo role of hsa_circ_0002348. RNA immunoprecipitation (RIP), Luciferase reporter assay, qRT-PCR, western blot, gain- and loss-of-function and rescue experiments were conducted to uncover the role of hsa_circ_0002348 and its interaction with miR-126-3p and BAK1 in regulating trophoblast proliferation and apoptosis. Fluorescence in situ hybridization (FISH) and Immunohistochemistry (IHC) were performed to examine the expression of miR-126-3p and BAK1 in mice and human placentas, respectively. RESULTS: Hsa_circ_0002348 was significantly increased in the preeclampsia placentas, and positively correlated with the severity of preeclampsia patients' clinical manifestations. Its overexpression exacerbated preeclampsia-like features in the mouse model of LPS-induced preeclampsia. Functionally, hsa_circ_0002348 was found to inhibit trophoblast proliferation and promote trophoblast apoptosis. Mechanistically, hsa_circ_0002348, as an endogenous miR-126-3p sponge, upregulated the expression of BAK1. Additionally, both hsa_circ_0002348 knockdown and miR-126-3p overexpression enhanced the mammalian target of rapamycin (mTOR) and ERK1/2 signaling pathway. CONCLUSIONS: Hsa_circ_0002348 might be a novel regulator of trophoblast proliferation and apoptosis through miR-126-3p/BAK1 axis in preeclampsia, which may serve as a potential target for detecting and treating preeclampsia.


Asunto(s)
MicroARNs , Preeclampsia , ARN Circular , Animales , Femenino , Humanos , Ratones , Embarazo , Apoptosis/genética , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proliferación Celular/genética , Modelos Animales de Enfermedad , Células Endoteliales , Hibridación Fluorescente in Situ , Lipopolisacáridos , Mamíferos , MicroARNs/genética , Placenta , Preeclampsia/genética , ARN Circular/genética , Trofoblastos
13.
IUBMB Life ; 75(3): 186-195, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-34320278

RESUMEN

This study tended to clarify the role of miR-126 in non-small cell lung cancer (NSCLC) cell biological behaviors in vitro, containing cell proliferation, migration, invasion, and apoptosis. miRNA expression microarray related to NSCLC was accessed from gene expression omnibus (GEO) database and subjected to differential analysis using the "limma" package. Real-time quantitative PCR was conducted to assess the expression of miR-126 in NSCLC cell lines. wIn vitro experiments including 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), wound healing assay, Transwell, and flow cytometry assay were used for evaluating the effect of miR-126 on cell proliferation, migration, invasion, and apoptosis. Additionally, target mRNA for miR-126 was predicted and further validated by bioinformatics analysis and dual-luciferase reporter assay, respectively. It suggested that miR-126 was significantly down-regulated in NSCLS based on the expression microarray, and similar expression trend was exhibited in cancer cell lines. In the meantime, overexpression of miR-126 was found to result in inhibition of cell proliferation, migration, and invasion while promotion of cell apoptosis, with reductions in protein expression of AKT2 and phosphorylated HK2 (p-HK2) as well. AKT2, identified to be a direct target of miR-126 in NSCLC as judged by dual-luciferase reporter assay. Additionally, overexpression of AKT2 was observed to have the ability of elevating p-HK2 protein expression and reversing the effect of miR-126 on NSCLC cell proliferation, migration, and invasion. Given the above findings, we can see that miR-126 exerts its role in NSCLC cell proliferation, migration, invasion, and apoptosis with the aid of AKT2/HK2 axis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Humanos , Neoplasias Pulmonares/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , MicroARNs/genética , Proliferación Celular/genética , Apoptosis/genética , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Proto-Oncogénicas c-akt/genética
14.
Mol Biol Rep ; 51(1): 5, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38085382

RESUMEN

BACKGROUND: Gestational diabetes mellitus (GDM), a type of diabetes that occurs for the first time during pregnancy, may predispose the development of chronic degenerative diseases and metabolic alterations in mother and offspring. DNA methylation and microRNA (miRNA) expression are regulatory mechanisms of gene expression that may contribute to the pathogenesis of GDM. Therefore, we determined global DNA methylation and miR-126-3p expression levels in 8 and 7 Mexican women with and without GDM, respectively. METHODS AND RESULTS: Global DNA methylation was assessed by measuring the percentage of 5-methylcytosine (5-mC) in placenta, umbilical cord, and plasma DNA samples, whereas miR-126-3p expression was quantified by real-time PCR using the 2-ΔCt method of the corresponding RNA samples. A significant increase in the percentage of 5-mC was detected in placenta samples from GDM patients compared to healthy women, while plasma samples showed a significant decrease. Conversely, miR-126-3p expression levels were significantly higher in plasma from the GDM group, while placenta and umbilical cord samples showed no significant differences across experimental groups. Furthermore, DNA methylation correlated significantly with glucose levels in placenta and plasma. Likewise, miR-126-3p expression correlated significantly with plasma glucose, in addition to maternal body mass index (BMI at first trimester). CONCLUSION: The results indicate that GDM is associated with alterations in global DNA methylation levels and miR-126-3p expression in placenta and/or plasma, providing insights into future novel approaches to diagnose and/or prevent this pathology.


Asunto(s)
Diabetes Gestacional , MicroARNs , Embarazo , Humanos , Femenino , Diabetes Gestacional/genética , Metilación de ADN/genética , Proyectos Piloto , Placenta/metabolismo , MicroARNs/metabolismo
15.
Cereb Cortex ; 32(21): 4763-4781, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-35059720

RESUMEN

Memory formation and consolidation necessitate gene expression and new protein synthesis. MicroRNAs (miRNAs), a family of small noncoding RNAs that inhibit target gene mRNA expression, are involved in new memory formation. In this study, elevated miR-126a-3p (miR-126) levels were found to contribute to the consolidation of contextual fear memory. Using different commonly mined algorithms and luciferase reporter assay, we found two Alzheimer's disease (AD)-related proteins, namely EFHD2 and BACE1, but not ADAM9, were the targets downregulated by miR-126 after CFC training. Moreover, we indicated that upregulated miR-126 could promote the formation of contextual fear memory by modulating its target EFHD2. Finally, we demonstrated that miR-126 overexpression in dentate gyrus of hippocampus could reduce Aß plaque area and neuroinflammation, as well as rescue the hippocampal memory deficits in APP/PS1 mice. This study adds to the growing body of evidence for the role of miRNAs in memory formation and demonstrates the implication of EFHD2 protein regulated by miR-126 in the adult brain.


Asunto(s)
Enfermedad de Alzheimer , Proteínas de Unión al Calcio , MicroARNs , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Proteínas de Unión al Calcio/metabolismo , Hipocampo/metabolismo , MicroARNs/genética
16.
Acta Biochim Biophys Sin (Shanghai) ; 55(3): 449-459, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36942990

RESUMEN

Human bone marrow mesenchymal stem cells (hBMMSCs) are a promising cell source for bone engineering owing to their high potential to differentiate into osteoblasts. The objective of the present study is to assess microRNA-126 (miR-126) and examine its effects on the osteogenic differentiation of hBMMSCs. In this study, we investigate the role of miR-126 in the progression of osteogenic differentiation (OD) as well as the apoptosis and inflammation of hBMMSCs during OD induction. OD is induced in hBMMSCs, and matrix mineralization along with other OD-associated markers are evaluated by Alizarin Red S (AR) staining and quantitative PCR (qPCR). Gain- and loss-of-function studies are performed to demonstrate the role of miR-126 in the OD of hBMMSCs. Flow cytometry and qPCR-based cytokine expression studies are performed to investigate the effect of miR-126 on the apoptosis and inflammation of hBMMSCs. The results indicate that miR-126 expression is downregulated during the OD of hBMMSCs. Gain- and loss-of function assays reveal that miR-126 upregulation inhibits the differentiation of hBMMSCs into osteoblasts, whereas the downregulation of miR-126 promotes hBMMSC differentiation, as assessed by the determination of osteogenic genes and alkaline phosphatase activity. Furthermore, the miR-126 level is positively correlated with the production of inflammatory cytokines and apoptotic cell death. Additionally, our results suggest that miR-126 negatively regulates not only B-cell lymphoma 2 (Bcl-2) expression but also the phosphorylation of extracellular signal­regulated protein kinase (ERK) 1/2. Moreover, restoring ERK1/2 activity and upregulating Bcl-2 expression counteract the miR-126-mediated suppression of OD in hBMMSCs by promoting inflammation and apoptosis, respectively. Overall, our findings suggest a novel molecular mechanism relevant to the differentiation of hBMMSCs into osteoblasts, which can potentially facilitate bone formation by counteracting miR-126-mediated suppression of ERK1/2 activity and Bcl-2 expression.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Humanos , Médula Ósea/metabolismo , Células de la Médula Ósea/metabolismo , Diferenciación Celular/genética , Células Cultivadas , Inflamación/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo , Osteogénesis/genética
17.
Aesthetic Plast Surg ; 47(2): 825-832, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36075983

RESUMEN

BACKGROUND: Fat transplantation supported by supplementation with ASCs has become a reliable procedure for treating soft tissue defects. However, the unpredictable survival rates for grafted fat remains a challenge with post-transplantation ischemia causing tissue loss. MiR126, which regulates VEGF signaling, is an endothelial cell-specific miRNA known to play an essential role in angiogenesis. We hypothesized that increased miR126 expression in grafted ASCs may promote fat survival within an autologous fat transfer model. METHODS: Rat adipose-derived stem cells were isolated, expanded ex vivo for three passages and then transduced with miR126. We used PCR to verify lentiviral transduction and ELISA to confirm VEGF expression. We then mixed autologous fat tissues from our rat model with transduced ASCs, augmented with a nonsense control or miR126 expression vector. These mixtures were used in the fat grafting procedure, completed via subcutaneous injection at three paravertebral points in each rat. Fat grafts were then harvested on days 4, 7, 14, and 28 post-transplant and evaluated for survival, neovascularization, and protein expression via western blot. RESULTS: VEGF expression levels in ASCs, Con-ASCs, and miR126-ASCs were not significantly different. However, miR126-ASCs experienced significantly improved survival on days 7, 14, and 28 when compared with the other groups. These ASCs also presented with the greatest capillary density on days 7, 14, and 28 post-transplantation as well as increased p-ERK and p-AKT expression when compared to the other groups. CONCLUSION: This data suggests that miR126 augmentation of ASCs may help to enhance the survival and angiogenic capacity of transplanted fat tissues, and that this augmentation was not dependent on VEGF but rather the activation of the ERK/AKT pathway. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Asunto(s)
Supervivencia de Injerto , MicroARNs , Ratas , Animales , Factor A de Crecimiento Endotelial Vascular/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Tejido Adiposo/trasplante , Células Madre , MicroARNs/genética
18.
Ter Arkh ; 95(10): 839-844, 2023 Nov 23.
Artículo en Ruso | MEDLINE | ID: mdl-38159015

RESUMEN

Cardiovascular disease (CVD) in type 1 diabetes mellitus (T1DM) is preceded by asymptomatic changes in the geometry of the heart. The only symptoms of the beginning of cardiac remodeling and concomitant predictors of an unfavorable cardiovascular prognosis are: thickening of epicardial fat (EAT), secreting a number of adipokines, and cardiospecific miRNAs. To improve the effectiveness of prevention of CVD in young patients with DM1, a search was made for structural-functional and epigenetic markers. AIM: To assess the state of the cardiovascular system according to MRI-heart with T1 mapping in T1DM without CVD. To reveal the relationship of epigenetic markers (circulating miR-126-5p, miR-21-5p) and adipokines with cardiovascular system in T1DM. Suggested personalized approach to patients with T1DM with initial manifestations of joint remodeling and/or exclusion of cardiospecific microRNA. MATERIALS AND METHODS: The study included 40 patients: 30 with T1DM (age 26.2±7.4 years), 10 without T1DM (26.4±8.2). The patients underwent a general clinical examination, bioimpedancemetry, electrocardiography, MRI of the heart with T1 mapping, determination of adiponectin, resistin, visfatin, NT-proBNP, miR-126-5p, miR-21-5p. RESULTS: Patients with T1DM had lower levels of cardioprotective miR-126-5p (p=0.046). According to MRI of the heart in T1DM, signs of vascular remodeling were revealed - thickening of the interventricular septum (p=0.001), posterior wall (p=0.012) and relative size of the walls (p=0.048) of the left ventricle, an increase in EAT density (p=0.001). Diffuse vascular fibrosis was found in 16% of patients from the T1DM group. Also, in T1DM, the expression of visfatin is increased (p=0.036) and adiponectin is reduced (p=0.043). CONCLUSION: Structural and functional changes in the cardiovascular system (including thickening of the EAT), shifts in miR-126-5p expression and adipokines profile are observed already at a young age in patients with T1DM. In T1DM, diffuse vascular fibrosis is detected in 16% of patients. The data obtained were used to identify the group increased risk of developing CVD in T1DM and served as the basis for determining the timing of the start of preventive therapy.


Asunto(s)
Enfermedades Cardiovasculares , MicroARN Circulante , Diabetes Mellitus Tipo 1 , MicroARNs , Humanos , Adolescente , Adulto Joven , Adulto , Diabetes Mellitus Tipo 1/complicaciones , Nicotinamida Fosforribosiltransferasa , Adiponectina , Tejido Adiposo Epicárdico , Relevancia Clínica , MicroARNs/metabolismo , Adipoquinas , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/etiología , Fibrosis
19.
J Cell Mol Med ; 26(9): 2529-2542, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35322532

RESUMEN

Radiotherapy is a common method for the treatment of lung adenocarcinoma, but it often fails due to the relative non-susceptibility of lung adenocarcinoma cells to radiation. We aimed to discuss the related mechanisms by which miR-126-5p might mediate radiosensitivity of lung adenocarcinoma cells. The binding affinity between miR-126-5p and EZH2 and between KLF2 and BIRC5 was identified using multiple assays. A549 and H1650 cells treated with X-ray were transfected with miR-126-5p mimic/inhibitor, oe-EZH2, or si-KLF2 to detect cell biological functions and radiosensitivity. Finally, lung adenocarcinoma nude mouse models were established. miR-126-5p and KLF2 were poorly expressed, while EZH2 and BIRC5 were upregulated in lung adenocarcinoma tissues and cells. miR-126-5p targeted EZH2 to promote the KLF2 expression so as to inhibit BIRC5 activation. Both in vitro and in vivo experiments verified that elevated miR-126-5p inhibited cell migration and promoted apoptosis to enhance the sensitivity of lung adenocarcinoma cells to radiotherapy via the EZH2/KLF2/BIRC5 axis. Collectively, miR-126-5p downregulated EZH2 to facilitate the sensitivity of lung adenocarcinoma cells to radiotherapy via KLF2/BIRC5.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , MicroARNs , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/radioterapia , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/radioterapia , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Tolerancia a Radiación/genética
20.
Development ; 146(21)2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31582413

RESUMEN

Mutations in the transcription factor GATA2 cause lymphedema. GATA2 is necessary for the development of lymphatic valves and lymphovenous valves, and for the patterning of lymphatic vessels. Here, we report that GATA2 is not necessary for valvular endothelial cell (VEC) differentiation. Instead, GATA2 is required for VEC maintenance and morphogenesis. GATA2 is also necessary for the expression of the cell junction molecules VE-cadherin and claudin 5 in lymphatic vessels. We identified miR-126 as a target of GATA2, and miR-126-/- embryos recapitulate the phenotypes of mice lacking GATA2. Primary human lymphatic endothelial cells (HLECs) lacking GATA2 (HLECΔGATA2) have altered expression of claudin 5 and VE-cadherin, and blocking miR-126 activity in HLECs phenocopies these changes in expression. Importantly, overexpression of miR-126 in HLECΔGATA2 significantly rescues the cell junction defects. Thus, our work defines a new mechanism of GATA2 activity and uncovers miR-126 as a novel regulator of mammalian lymphatic vascular development.


Asunto(s)
Células Endoteliales/metabolismo , Factor de Transcripción GATA2/metabolismo , MicroARNs/metabolismo , Mutación , Angiopoyetina 2/metabolismo , Animales , Sistemas CRISPR-Cas , Proteínas de Unión al Calcio/metabolismo , Diferenciación Celular , Línea Celular , Claudina-5/metabolismo , Familia de Proteínas EGF/metabolismo , Endotelio Vascular/metabolismo , Femenino , Eliminación de Gen , Humanos , Vasos Linfáticos/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , RNA-Seq
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda