Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Thromb J ; 22(1): 74, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39123189

RESUMEN

BACKGROUND: Proper control of the lineage bias of megakaryocytic and erythroid progenitor cells (MEPs) is of significant importance, the disorder of which will lead to abnormalities in the number and function of platelets and erythrocytes. Unfortunately, the signaling pathways regulating MEP differentiation largely remain to be elucidated. This study aimed to analyze the role and the underlying molecular mechanism of miR-1915-3p in megakaryocytic and erythroid differentiation. METHODS: We utilized miRNA mimics and miRNA sponge to alter the expression of miR-1915-3p in megakaryocytic and/or erythroid potential cells; siRNA and overexpression plasmid to change the expression of SOCS4, a potential target of miR-1915-3p. The expression of relevant surface markers was detected by flow cytometry. We scanned for miR-1915-3p target genes by mRNA expression profiling and bioinformatic analysis, and confirmed the targeting by dual-luciferase reporter assay, western blot and gain- and lost-of-function studies. One-way ANOVA and t-test were used to analyze the statistical significance. RESULTS: In this study, overexpression or knockdown of miR-1915-3p inhibited or promoted erythroid differentiation, respectively. Accordingly, we scanned for miR-1915-3p target genes and confirmed that SOCS4 is one of the direct targets of miR-1915-3p. An attentive examination of the endogenous expression of SOCS4 during megakaryocytic and erythroid differentiation suggested the involvement of SOCS4 in erythroid/megakaryocytic lineage determination. SOCS4 knockdown lessened erythroid surface markers expression, as well as improved megakaryocytic differentiation, similar to the effects of miR-1915-3p overexpression. While SOCS4 overexpression resulted in reversed effects. SOCS4 overexpression in miR-1915-3p upregulated cells rescued the effect of miR-1915-3p. CONCLUSIONS: miR-1915-3p acts as a negative regulator of erythropoiesis, and positively in thrombopoiesis. SOCS4 is one of the key mediators of miR-1915-3p during the differentiation of MEPs.

2.
BMC Cancer ; 21(1): 1218, 2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34774019

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) have been reported to play significant roles in non-small-cell lung cancer (NSCLC). However, the roles of microRNA (miR)-1915-3p in NSCLC remain unclear. In this study, we aimed to explore the biological functions of miR-1915-3p in NSCLC. METHODS: The expression of miR-1915-3p and SET nuclear proto-oncogene (SET) in NSCLC tissues were examined by quantitative real-time PCR (qRT-PCR). Migratory and invasive abilities of lung cancer were tested by wound healing and transwell invasion assay. The direct target genes of miR-1915-3p were measured by dual-luciferase reporter assay and western blot. Finally, the regulation between METTL3/YTHDF2/KLF4 axis and miR-1915-3p were evaluated by qRT-PCR, promoter reporter assay and chromatin immunoprecipitation (CHIP). RESULTS: miR-1915-3p was downregulated in NSCLC tissues and cell lines, and inversely associated with clinical TNM stage and overall survival. Functional assays showed that miR-1915-3p significantly suppressed migration, invasion and epithelial-mesenchymal transition (EMT) in NSCLC cells. Furthermore, miR-1915-3p directly bound to the 3'untranslated region (3'UTR) of SET and modulated the expression of SET. SET inhibition could recapitulate the inhibitory effects on cell migration, invasion and EMT of miR-1915-3p, and restoration of SET expression could abrogate these effects induced by miR-1915-3p through JNK/Jun and NF-κB signaling pathways. What's more, miR-1915-3p expression was regulated by METTL3/YTHDF2 m6A axis through transcription factor KLF4. CONCLUSIONS: These findings demonstrate that miR-1915-3p function as a tumor suppressor by targeting SET and may have an anti-metastatic therapeutic potential for lung cancer treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Proteínas de Unión al ADN/genética , Expresión Génica , Chaperonas de Histonas/genética , Neoplasias Pulmonares/genética , MicroARNs/fisiología , Células A549 , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/patología , Movimiento Celular/genética , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/metabolismo , Regulación hacia Abajo , Transición Epitelial-Mesenquimal/genética , Femenino , Genes Reporteros , Genes Supresores de Tumor/fisiología , Chaperonas de Histonas/antagonistas & inhibidores , Chaperonas de Histonas/metabolismo , Humanos , Factor 4 Similar a Kruppel/genética , Factor 4 Similar a Kruppel/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Masculino , Metiltransferasas/genética , Metiltransferasas/metabolismo , MicroARNs/genética , Persona de Mediana Edad , Invasividad Neoplásica/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
3.
Int J Cancer ; 143(11): 2871-2883, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30191958

RESUMEN

The histone H3 lysine 4-specific methyltransferase SETD1A is associated with transcription activation and is considered a key epigenetic regulator that modulates the cell cycle and metastasis in triple-negative breast cancer cells. However, the clinical role of SETD1A in estrogen receptor (ER)-positive breast cancer cells remains unclear. Here, we examined whether SETD1A is a potential target for ERα-positive breast cancer therapy. SETD1A expression was upregulated in breast tumor tissue compared to that in normal breast tissue. Moreover, ER-target genes regulated by SETD1A were particularly enriched in cell cycle and cancer pathways. SETD1A is involved in histone H3K4 methylation, subsequent recruitment of ERα, and the establishment of accessible chromatin structure at the enhancer region of ERα target genes. In addition to ERα target genes, other cell survival genes were also downregulated by SETD1A depletion in MCF-7 cells, leading to significant decrease in cell proliferation and migration, and spontaneous induction of apoptosis. We also found that miR-1915-3p functioned as a novel regulator of SETD1A expression in breast cells. Importantly, the growth of tamoxifen-resistant MCF-7 cells was effectively repressed by SETD1A knockdown. These results indicate that SETD1A may serve as a molecular target and prognostic indicator in ERα-positive breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Movimiento Celular/genética , Receptor alfa de Estrógeno/genética , Regulación Neoplásica de la Expresión Génica/genética , N-Metiltransferasa de Histona-Lisina/genética , Apoptosis/efectos de los fármacos , Apoptosis/genética , Neoplasias de la Mama/tratamiento farmacológico , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Células MCF-7 , MicroARNs/genética , Tamoxifeno/farmacología , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
4.
Dig Liver Dis ; 54(7): 896-904, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34987010

RESUMEN

BACKGROUND: Gastric cancer (GC) is a common malignant tumor of the digestive system. Increasing reports have demonstrated the crucial roles of circRNAs in tumorigenesis and progression of GC. METHODS: The relative expression of circ-ABCB10 in GC tissues and cell lines was detected by qRT-PCR. A series of in vitro assays and a xenograft model in vivo were applied to explore the function of circ-ABCB10 in GC cells. RESULTS: Circ-ABCB10 expression was upregulated in GC tissues and cell lines and positively correlated with poor survival of GC patients. Circ-ABCB10 downregulation decreased cell viability, inhibited cell growth, invasion, and migration, while promoted cell apoptosis of GC cell lines SGC-7901 and MKN-48. Circ-ABCB10 could upregulate Rac1 expression by directly sponging miR-1915-3p. Rescue experiments revealed that miR-1915-3p inhibitor obviously reversed the inhibitory effect of si-circ-ABCB10, and Rac1 overexpression obviously reversed the inhibitory effect of miR-1915-3p mimics on cell growth, invasion, migration, apoptosis, and cell cycle progression. Moreover, si-circ-ABCB10 effectively inhibited tumor growth in a xenograft model. CONCLUSIONS: Our study revealed that circ-ABCB10 promoted GC progression via targeting the miR-1915-3p/Rac1 axis, and circ-ABCB10 might be a potential target for GC diagnosis and treatment.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , MicroARNs , ARN Circular , Neoplasias Gástricas , Proteína de Unión al GTP rac1 , Transportadoras de Casetes de Unión a ATP/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Neoplasias Gástricas/patología , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
5.
Cancer Chemother Pharmacol ; 88(6): 1021-1031, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34599680

RESUMEN

PURPOSE: Oxaliplatin is a crucial component of the combinatorial chemotherapeutic standard of care for advanced colorectal cancer (CRC). Unfortunately, a serious barrier to effective oxaliplatin treatment is drug resistance due to epithelial-mesenchymal transitioning (EMT). Interestingly, stable oxaliplatin-resistant CRC cell lines show differential expression of miR-1915-3p; thus, this microRNA may represent a potential modifier of oxaliplatin resistance in CRC cells. METHODS: miR-1915-3p was over-expressed in oxaliplatin-resistant CRC cells and a non-tumorigenic intestinal cell line (FHC) via lentiviral transduction. Extracellular vesicles (EVs) were purified from transduced FHC cells and co-incubated with CRC cells. Expression levels of miR-1915-3p and other RNA species were assessed by RT-qPCR, while protein expression levels were assessed by Western blotting. The effects of miR-1915-3p on CRC viability were evaluated by proliferation, apoptosis assays, and Transwell assays. Effects of miR-1915-3p over-expression on in vivo oxaliplatin sensitivity was tested via murine xenograft models. RESULTS: miRNA-1915-3p decreased EMT marker expression in oxaliplatin-resistant CRC cell lines and in vivo. FHC cells were able to produce and secrete miR-1915-3p-containing EVs, which we employed to mediate miR-1915-3p delivery to oxaliplatin-resistant CRC cells and increase their oxaliplatin sensitivity in vivo and in vitro. Mechanistically, miR-1915-3p overexpression downregulated the EMT-promoting oncogenes 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and ubiquitin carboxyl-terminal hydrolase 2 (USP2) as well as upregulated E-cadherin (a cell adhesion mediator). miR-1915-3p's effects on chemosensitivity and EMT were mediated by its regulation of PFKFB3 and USP2. CONCLUSION: Exosomal delivery of miR-1915-3p can improve the chemotherapeutic efficacy of oxaliplatin in CRC cells by suppressing the EMT-promoting oncogenes PFKFB3 and USP2.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Resistencia a Antineoplásicos , Exosomas/metabolismo , MicroARNs/genética , Oxaliplatino/farmacología , Animales , Apoptosis , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Exosomas/trasplante , Humanos , Ratones , MicroARNs/administración & dosificación , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Biosci Rep ; 39(5)2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31036603

RESUMEN

Many gene expressions changed during the development of gastric cancer, and non-coding RNAs including microRNAs (miRNAs) have been found to regulate cancer progression by participating in the process of tumor cell growth, migration, invasion and apoptosis. Our previous study has identified 29 miRNAs that are highly expressed in gastric cancer stem cells. One of these miRNAs, miR-1915-3p, has shown great potential as a diagnostic and prognostic biomarker for the cancers in liver, colon and thyroid, as well as in immune and kidney diseases. Herein, we found that miR-1915-3p exhibited low expression level in differentiated gastric cancer cell lines and gastric cancer tissues. It was found that the miR-1915-3p inhibited the growth of gastric cancer cells and thus promoted cell apoptosis. We discovered that the expressions of miR-1915-3p were significantly correlated to the lymph node metastasis and overall survival of patients with gastric cancer. Further study showed that there was a negative correlation between miR-1915-3p and Bcl-2 (B cell lymphoma/leukemia-2) expression, suggesting that Bcl-2 was a target gene of miR-1915-3p. Hence, miR-1915-3p possibly contributes to the development and progression of gastric cancer by inhibiting the anti-apoptotic protein Bcl-2. The finding provides a potential therapeutic strategy for gastric cancer.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , MicroARNs/biosíntesis , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , ARN Neoplásico/biosíntesis , Neoplasias Gástricas/metabolismo , Adulto , Línea Celular Tumoral , Femenino , Humanos , Masculino , MicroARNs/genética , Persona de Mediana Edad , Proteínas Proto-Oncogénicas c-bcl-2/genética , ARN Neoplásico/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda