Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Mol Ecol ; 33(2): e17214, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38018658

RESUMEN

The evolution of insect vector-pathogen relationships has long been of interest in the field of molecular ecology. One system of special relevance, due to its economic impacts, is that between Diaphorina citri and 'Candidatus Liberibacter asiaticus' (CLas), the cause of the severe Asian form of huanglongbing. CLas-positive D. citri are more fecund than their CLas-negative counterparts, boosting opportunities for pathogens to acquire new vector hosts. The molecular mechanism behind this life-history shift remains unclear. Here, we found that CLas promoted ovarian development and increased the expression of the vitellogenin receptor (DcVgR) in ovaries. DcVgR RNAi significantly decreased fecundity and CLas titer in ovaries, extended the preoviposition period, shortened the oviposition period and blocked ovarian development. Given their importance in gene regulation, we explored the role of miRNAs in shaping these phenotypes and their molecular triggers. Our results showed that one miRNA, miR-275, suppressed DcVgR expression by binding to its 3' UTR. Overexpression of miR-275 knocked down DcVgR expression and CLas titer in ovaries, causing reproductive defects that mimicked DcVgR knockdown phenotypes. We focused, further, on roles of the Juvenile Hormone (JH) pathway in shaping the observed fecundity phenotype, given its known impacts on ovarian development. After CLas infection, this pathway was upregulated, thereby increasing DcVgR expression. From these combined results, we conclude that CLas hijacks the JH signalling pathway and miR-275, thereby targeting DcVgR to increase D. citri fecundity. These changes simultaneously increase CLas replication, suggesting a pathogen-vector host mutualism, or a seemingly helpful, but cryptically costly life-history manipulation.


Asunto(s)
Citrus , Hemípteros , Liberibacter , MicroARNs , Rhizobiaceae , Animales , Femenino , Rhizobiaceae/genética , Citrus/genética , Enfermedades de las Plantas/genética , Hemípteros/genética , Fertilidad/genética , MicroARNs/genética , Proliferación Celular
2.
Insect Biochem Mol Biol ; 162: 104013, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37804878

RESUMEN

The NF-κB/Relish, as a core transcription factor of Drosophila immune deficiency (Imd) pathway, activates the transcriptions of antimicrobial peptides (AMPs) to combat gram-negative bacterial infections, but its role in regulating miRNA expression during immune response has less been reported. We here describe a negative feedback loop of Imd signaling mediated by Relish/miR-275/Dredd that controls Drosophila immune homeostasis after Escherichia coli (E. coli) infection. Our results demonstrate that Relish may directly activate the transcription of miR-275 via binding to its promoter in vitro and vivo, particularly miR-275 further inhibits the expression of Dredd through binding to its 3'UTR to negatively control Drosophila Imd immune response. Remarkably, the ectopic expression of miR-275 significantly reduces Drosophila lifespan. More importantly, our work uncovers a new mechanism by which Relish can flexibly switch its role to maintain Drosophila immune response and homeostasis during infection. Collectively, our study not only reveals the functional duality of Relish in regulating immune response of Drosophila Imd pathway, but also provides a new insight into the maintenance of animal innate immune homeostasis.


Asunto(s)
Proteínas de Drosophila , MicroARNs , Animales , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Escherichia coli/genética , Retroalimentación , Inmunidad Innata , MicroARNs/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda