Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 947
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(45): e2204795119, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322719

RESUMEN

Abnormal neovascularization is an important cause of blindness in many ocular diseases, for which the etiology and pathogenic mechanisms remain incompletely understood. Recent studies have revealed the diverse roles of noncoding RNAs in various biological processes and facilitated the research and development of the clinical application of numerous RNA drugs, including microRNAs. Here, we report the antiangiogenic activity of microRNA-29a (miR-29a) in three animal models of ocular neovascularization. The miR-29a knockout (KO) mice displayed enhanced vessel pruning, resulting in a decreased vascularized area during retinal development. In contrast, miR-29a deletion in adult mice accelerated angiogenesis in preclinical disease models, including corneal neovascularization, oxygen-induced retinopathy, and choroidal neovascularization, while the administration of agomir-29a ameliorated pathological neovascularization. Furthermore, miR-29a exerted inhibitory effects on endothelial cell proliferation, migration, and tube formation capacities. RNA sequencing analysis of retinas from miR-29a KO mice and RNA interference experiments identified platelet-derived growth factor C and several extracellular matrix genes as downstream targets of miR-29a involved in regulating ocular angiogenesis. Our data suggest that miR-29a may be a promising clinical candidate for the treatment of neovascular diseases.


Asunto(s)
Neovascularización Coroidal , MicroARNs , Ratones , Animales , MicroARNs/metabolismo , Proliferación Celular , Interferencia de ARN , Ojo/metabolismo , Neovascularización Coroidal/metabolismo , Ratones Noqueados
2.
J Cell Mol Med ; 28(3): e18112, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38263865

RESUMEN

The energy metabolic rearrangement of triple-negative breast cancer (TNBC) from oxidative phosphorylation to aerobic glycolysis is a significant biological feature and can promote the malignant progression. However, there is little knowledge about the functional mechanisms of methyltransferase-like protein 14 (METTL14) mediated contributes to TNBC malignant progression. Our study found that METTL14 expression was significantly upregulated in TNBC tissues and cell lines. Silencing METTL14 significantly inhibited TNBC cell growth and invasion in vitro, as well as suppressed tumour growth. Mechanically, METTL14 was first found to activate miR-29c-3p through m6A and regulate tripartite motif containing 9 (TRIM9) to promote ubiquitination of pyruvate kinase isoform M2 (PKM2) and lead to its transition from tetramer to dimer, resulting in glucose metabolic reprogramming from oxidative phosphorylation to aerobic glycolysis to promote the progress of TNBC. Taken together, these findings reveal important roles of METTL14 in TNBC tumorigenesis and energy metabolism, which might represent a novel potential therapeutic target for TNBC.


Asunto(s)
MicroARNs , Neoplasias de la Mama Triple Negativas , Humanos , MicroARNs/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Línea Celular Tumoral , Proliferación Celular , Glucólisis , Regulación Neoplásica de la Expresión Génica , Movimiento Celular , Metiltransferasas/metabolismo
3.
J Neurochem ; 168(7): 1297-1316, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38413218

RESUMEN

Mitochondrial dysfunction is the main cause of gradual deterioration of structure and function of neuronal cells, eventually resulting in neurodegeneration. Studies have revealed a complex interrelationship between neurotoxicant exposure, mitochondrial dysfunction, and neurodegenerative diseases. Alteration in the expression of microRNAs (miRNAs) has also been linked with disruption in mitochondrial homeostasis and bioenergetics. In our recent research (Cellular and Molecular Neurobiology (2023) https://doi.org/10.1007/s10571-023-01362-4), we have identified miR-29b-3p as one of the most significantly up-regulated miRNAs in the blood of Parkinson's patients. The findings of the present study revealed that neurotoxicants of two different natures, that is, arsenic or rotenone, dramatically increased miR-29b-3p expression (18.63-fold and 12.85-fold, respectively) in differentiated dopaminergic SH-SY5Y cells. This dysregulation of miR-29b-3p intricately modulated mitochondrial morphology, induced oxidative stress, and perturbed mitochondrial membrane potential, collectively contributing to the degeneration of dopaminergic cells. Additionally, using assays for mitochondrial bioenergetics in live and differentiated SH-SY5Y cells, a reduction in oxygen consumption rate (OCR), maximal respiration, basal respiration, and non-mitochondrial respiration was observed in cells transfected with mimics of miR-29b-3p. Inhibition of miR-29b-3p by transfecting inhibitor of miR-29b-3p prior to exposure to neurotoxicants significantly restored OCR and other respiration parameters. Furthermore, we observed that induction of miR-29b-3p activates neuronal apoptosis via sirtuin-1(SIRT-1)/YinYang-1(YY-1)/peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α)-regulated Bcl-2 interacting protein 3-like-dependent mechanism. Collectively, our studies have shown the role of miR-29b-3p in dysregulation of mitochondrial bioenergetics during degeneration of dopaminergic neurons via regulating SIRT-1/YY-1/PGC-1α axis.


Asunto(s)
Diferenciación Celular , Neuronas Dopaminérgicas , MicroARNs , Mitocondrias , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Línea Celular Tumoral , Diferenciación Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Rotenona/toxicidad , Rotenona/farmacología , Sirtuina 1/metabolismo , Sirtuina 1/genética
4.
Cancer Sci ; 115(5): 1587-1601, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38438251

RESUMEN

Both lysine and arginine methyltransferases are thought to be promising therapeutic targets for malignant tumors, yet how these methyltransferases function in malignant tumors, especially hepatocellular carcinoma (HCC), has not been fully elucidated. Here, we reported that SMYD4, a lysine methyltransferase, acts as an oncogene in HCC. SMYD4 was highly upregulated in HCC and promoted HCC cell proliferation and metastasis. Mechanistically, PRMT5, a well-known arginine methyltransferase, was identified as a SMYD4-binding protein. SMYD4 monomethylated PRMT5 and enhanced the interaction between PRMT5 and MEP50, thereby promoting the symmetrical dimethylation of H3R2 and H4R3 on the PRMT5 target gene promoter and subsequently activating DVL3 expression and inhibiting expression of E-cadherin, RBL2, and miR-29b-1-5p. Moreover, miR-29b-1-5p was found to inversely regulate SMYD4 expression in HCC cells, thus forming a positive feedback loop. Furthermore, we found that the oncogenic effect of SMYD4 could be effectively suppressed by PRMT5 inhibitor in vitro and in vivo. Clinically, high coexpression of SMYD4 and PRMT5 was associated with poor prognosis of HCC patients. In summary, our study provides a model of crosstalk between lysine and arginine methyltransferases in HCC and highlights the SMYD4-PRMT5 axis as a potential therapeutic target for the treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Proliferación Celular , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , MicroARNs , Proteína-Arginina N-Metiltransferasas , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Humanos , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Animales , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular/genética , Ratones , Metilación , Masculino , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Retroalimentación Fisiológica , Femenino , Ratones Desnudos
5.
Funct Integr Genomics ; 24(2): 54, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38467932

RESUMEN

Despite substantial progress in clinical trials of osteoarthritis (OA) gene therapy, the prevalence of OA is still on the rise. MiRNAs have a potential biomarker and therapeutic target for OA. OA cartilage and chondrosarcoma cells were studied to determine the role of miR-29a-3p and PTEN. OA cartilage and human chondrosarcoma cells (SW1353) were obtained. miR-29a-3p and PTEN signature expression was determined by RT-qPCR. The binding relationship between miR-29a-3p and PTEN was investigated by dual-luciferase reporter gene and western blot assay. TUNEL, immunohistochemistry, CCK-8, and flow cytometry were utilized to determine the proliferation and apoptosis of SW1353 cells. This study indicated downregulation of miR-29a-3p expression and upregulation of PTEN expression in human OA primary chondrocytes or OA tissue samples, compared with the normal cartilage cells or tissues. PTEN expression was negatively correlated with miR-29a-3p expression, and miR-29a-3p targeted PTEN mechanistically. miR-29a-3p reduced SW1353 cell activity and proliferation and promoted cell apoptosis. However, the aforementioned effects could be reversed by downregulating PTEN. miR-29a-3p can stimulate chondrocyte proliferation and inhibit apoptosis by inhibiting PTEN expression.


Asunto(s)
Neoplasias Óseas , Condrosarcoma , MicroARNs , Osteoartritis , Humanos , Apoptosis/genética , Proliferación Celular/genética , Condrosarcoma/genética , MicroARNs/genética , MicroARNs/metabolismo , Osteoartritis/genética , Tensinas
6.
J Cell Sci ; 135(14)2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35735031

RESUMEN

Laminar shear stress (Lss) is an important anti-atherosclerosis (anti-AS) factor, but its mechanism network is not clear. Therefore, this study aimed to identify how Lss acts against AS formation from a new perspective. In this study, we analyzed high-throughput sequencing data from static and Lss-treated human aortic and human umbilical vein endothelial cells (HAECs and HUVECs, respectively) and found that the expression of CX3CL1, which is a target gene closely related to AS development, was lower in the Lss group. Lss alleviated the inflammatory response in TNF-α (also known as TNF)-activated HAECs by regulating the miR-29b-3p/CX3CL1 axis, and this was achieved by blocking nuclear factor (NF)-κB signaling. In complementary in vivo experiments, a high-fat diet (HFD) induced inflammatory infiltration and plaque formation in the aorta, both of which were significantly reduced after injection of agomir-miRNA-29b-3p via the tail vein into HFD-fed ApoE-/- mice. In conclusion, this study reveals that the Lss-sensitive miR-29b-3p/CX3CL1 axis is an important regulatory target that affects vascular endothelial inflammation and AS development. Our study provides new insights into the prevention and treatment of AS.


Asunto(s)
Aterosclerosis , MicroARNs , Animales , Aterosclerosis/genética , Aterosclerosis/metabolismo , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones , Ratones Noqueados para ApoE , MicroARNs/metabolismo , Monocitos/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo
7.
Biochem Biophys Res Commun ; 710: 149884, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38598901

RESUMEN

In the clinical setting, chemotherapy is the most widely used antitumor treatment, however, chemotherapy resistance significantly limits its efficacy. Reduced drug influx is a key mechanism of chemoresistance, and inhibition of the complexity of the tumor microenvironment (TME) may improve chemotherapy drug influx and therapeutic efficiency. In the current study, we identified that the major extracellular matrix protein collagen I is more highly expressed in lung cancer tissues than adjacent tissues in patients with lung cancer. Furthermore, Kaplan-Meier analysis suggested that COL1A1 expression was negatively correlated with the survival time of patients with lung cancer. Our previous study demonstrated that miR-29a inhibited collagen I expression in lung fibroblasts. Here, we investigated the effect of miR-29a on collagen I expression and the cellular behavior of lung cancer cells. Our results suggest that transfection with miR-29a could prevent Lewis lung carcinoma (LLC) migration by downregulating collagen I expression, but did not affect the proliferation, apoptosis, and cell cycle of LLC cells. In a 3D tumoroid model, we demonstrated that miR-29a transfection significantly increased cisplatin (CDDP) permeation and CDDP-induced cell death. Furthermore, neutral lipid emulsion-based miR-29a delivery improved the therapeutic effect of cisplatin in an LLC spontaneous tumor model in vivo. In summary, this study shows that targeting collagen I expression in the TME contributes to chemotherapy drug influx and improves therapeutic efficacy in lung cancer.


Asunto(s)
Neoplasias Pulmonares , MicroARNs , Humanos , Línea Celular Tumoral , Proliferación Celular , Cisplatino/farmacología , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MicroARNs/metabolismo , MicroARNs/farmacología , Permeabilidad , Microambiente Tumoral
8.
Arch Biochem Biophys ; 755: 109980, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38555043

RESUMEN

BACKGROUND: Cervical cancer is a common cancer that seriously affects women's health globally. The key roles of long non-coding RNAs (lncRNAs) in the onset and development of cervical cancer have attracted much attention. Our study aims to uncover the roles of lncRNA EBLN3P and miR-29c-3p and the mechanisms by which EBLN3P and miR-29c-3p regulate malignancy in cervical cancer. METHODS: Tumor and adjacent normal tissues were collected from cervical cancer patients, and the expression of EBLN3P and miR-29c-3p were analyzed via RT-qPCR. The capacities of proliferation, migration, and invasion were assessed using CCK-8, wound healing and transwell assays. The interaction among EBLN3P, miR-29c-3p and TAF15 was determined by luciferase, RNA immunoprecipitation and RNA pull-down assays, respectively. A subcutaneous tumor xenograft mouse model was established to evaluate the functional role of EBLN3P in vivo. RESULTS: The interaction and reciprocal negative regulation between EBLN3P and miR-29c-3p were uncovered in cervical cancer cells. Likewise, EBLN3P and miR-29c-3p expression patterns in tumor tissues presented a negative association. EBLN3P knockdown weakened cell proliferation, migration and invasion, but these effects were abrogated by miR-29c-3p depletion. Mechanistically, ALKBH5 might impaired EBLN3P stability to reduce its expression. EBLN3P functioned as a competing endogenous RNA (ceRNA) for miR-29c-3p to relieve its suppression of RCC2. Besides, EBLN3P enhanced RCC2 mRNA stability via interacting with TAF15. Furthermore, silencing of EBLN3P repressed the tumor growth in mice. CONCLUSION: Altogether, lncRNA EBLN3P positively regulates RCC2 expression via competitively binding to miR-29c-3p and interacting with TAF15, thereby boosting proliferation, migration, and invasion of cervical cancer cells.

9.
Exp Eye Res ; 238: 109690, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37939831

RESUMEN

BACKGROUND: Oxidative stress-induced damage and dysfunction of retinal pigment epithelium (RPE) cells are important pathogenetic factors of age-related macular degeneration (AMD) and hereditary retinopathy diseases (HRDs). This study aimed to elucidate the roles and mechanisms of circ-CARD6 and miR-29b-3p in oxidative stress-induced RPE and provide new ideas for the diagnosis and treatment of retinopathy disease (RD). METHODS: A model of oxidative stress-induced RPE (ARPE-19) was established, and the level of malondialdehyde (MDA) and concentration of reactive oxygen species (ROS) were detected by a DCFH-DA fluorescent probe and MDA kit. The cell viability was measured by a CCK-8 assay. The expression of PRDX6/PI3K/Akt axis genes and proteins related to apoptosis and autophagy were determined by RT‒qPCR and Western blot analyses. The dual-luciferase reporter system confirmed the targeting relationship between miR-29b-3p and circ-CARD6 and between miR-29b-3p and PRDX6. RESULTS: In H2O2-treated ARPE-19 cells, the expression of circ-CARD6 and PRDX6 was decreased, while the expression of miR-29b-3p was increased. The overexpression of circ-CARD6 inhibits oxidative stress-induced increases in ROS, apoptosis and autophagy in ARPE-19 cells. circ-CARD6 targets miR-29b-3p, miR-29b-3p targets PRDX6, and circ-CARD6 regulates PRDX6 via miR-29b-3p. Further studies showed that circ-CARD6 acts as a competitive endogenous RNA of miR-29b-3p to affect the expression of PRDX6, thereby inhibiting autophagy and apoptosis in ARPE-19 cells. CONCLUSION: circ-CARD6 can inhibit oxidative stress and apoptosis by regulating the miR-29b-3p/PRDX6/PI3K/Akt axis.


Asunto(s)
Degeneración Macular , MicroARNs , Humanos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Especies Reactivas de Oxígeno , Peróxido de Hidrógeno , Autofagia , Apoptosis , Estrés Oxidativo , Degeneración Macular/genética , MicroARNs/genética , Proliferación Celular , Proteínas Adaptadoras de Señalización CARD , Peroxiredoxina VI
10.
Cell Commun Signal ; 22(1): 365, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020373

RESUMEN

BACKGROUND: The homing of human mesenchymal stem cells (hMSCs) is crucial for their therapeutic efficacy and is characterized by the orchestrated regulation of multiple signaling modules. However, the principal upstream regulators that synchronize these signaling pathways and their mechanisms during cellular migration remain largely unexplored. METHODS: miR-29a-3p was exogenously expressed in either wild-type or DiGeorge syndrome critical region 8 (DGCR8) knockdown hMSCs. Multiple pathway components were analyzed using Western blotting, immunohistochemistry, and real-time quantitative PCR. hMSC migration was assessed both in vitro and in vivo through wound healing, Transwell, contraction, and in vivo migration assays. Extensive bioinformatic analyses using gene set enrichment analysis and Ingenuity pathway analysis identified enriched pathways, upstream regulators, and downstream targets. RESULTS: The global depletion of microRNAs (miRNAs) due to DGCR8 gene silencing, a critical component of miRNA biogenesis, significantly impaired hMSC migration. The bioinformatics analysis identified miR-29a-3p as a pivotal upstream regulator. Its overexpression in DGCR8-knockdown hMSCs markedly improved their migration capabilities. Our data demonstrate that miR-29a-3p enhances cell migration by directly inhibiting two key phosphatases: protein tyrosine phosphatase receptor type kappa (PTPRK) and phosphatase and tensin homolog (PTEN). The ectopic expression of miR-29a-3p stabilized the polarization of the Golgi apparatus and actin cytoskeleton during wound healing. It also altered actomyosin contractility and cellular traction forces by changing the distribution and phosphorylation of myosin light chain 2. Additionally, it regulated focal adhesions by modulating the levels of PTPRK and paxillin. In immunocompromised mice, the migration of hMSCs overexpressing miR-29a-3p toward a chemoattractant significantly increased. CONCLUSIONS: Our findings identify miR-29a-3p as a key upstream regulator that governs hMSC migration. Specifically, it was found to modulate principal signaling pathways, including polarization, actin cytoskeleton, contractility, and adhesion, both in vitro and in vivo, thereby reinforcing migration regulatory circuits.


Asunto(s)
Movimiento Celular , Células Madre Mesenquimatosas , MicroARNs , Transducción de Señal , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Movimiento Celular/genética , Transducción de Señal/genética , Animales , Ratones
11.
Prostaglandins Other Lipid Mediat ; 171: 106805, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38141777

RESUMEN

Diabetic retinopathy (DR) is a neurovascular complication of diabetes, driven by an intricate network of cellular and molecular mechanisms. This study sought to explore the mechanisms by investigating the role of 12-hydroxyeicosatetraenoic acid (12-HETE), its receptor GPR31, and microRNA (miR-29) in the context of DR, specifically focusing on their impact on Müller glial cells. We found that 12-HETE activates Müller cells (MCs), elevates glutamate production, and induces inflammatory and oxidative responses, all of which are instrumental in DR progression. The expression of GPR31, the receptor for 12-HETE, was prominently found in the retina, especially in MCs and retinal ganglion cells, and was upregulated in diabetes. Interestingly, miR29 showed potential as a protective agent, mitigating the harmful effects of 12-HETE by attenuating inflammation and oxidative stress, and restoring the expression of pigment epithelium-derived factor (PEDF). Our results underline the central role of 12-HETE in DR progression through activation of a neurovascular toxic pathway in MCs and illuminate the protective capabilities of miR-29, highlighting both as promising therapeutic targets for the management of DR.


Asunto(s)
Retinopatía Diabética , MicroARNs , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Retinopatía Diabética/genética , Retinopatía Diabética/metabolismo , Células Ependimogliales , MicroARNs/genética , MicroARNs/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Retina/metabolismo
12.
Mol Biol Rep ; 51(1): 617, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38705955

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are epigenetic factors regulating many genes involved in brain development. Dysregulation of miRNA could result in dysregulation of genes which may contribute to diseases affecting the brain and behavior (e.g., schizophrenia). miR-29 family is a miRNA family contributing to brain maturation. miR-29 knockout in animal studies is reported to correlate with psychiatric disorders very similar to those seen in schizophrenia. In this study, we aimed to evaluate the miR-29a level in patients with schizophrenia and its potential value in the diagnosis of schizophrenia. MATERIALS AND METHODS: The serum sample of 42 patients with schizophrenia and 40 healthy subjects were obtained from the Azeri Recent onset/Acute phase psychosis Survey (ARAS) Cohort study. After preparations, the expression level of miR-29a was investigated by real-time PCR. The SPSS and GraphPad prism software were used to analyze the relation between miR-29a level and clinical parameters and its potential as a biomarker for the diagnosis of schizophrenia. RESULTS: Our study showed a significantly lower miR-29a level in patients compared to healthy controls (p = 0.0012). Furthermore, miR-29a level was significantly lower in some types of schizophrenia (p = 0.024). miR-29a level was not related to sex, age, or heredity (p > 0.05). miR-29a also showed 80% specificity and 71.43% sensitivity in the diagnosis of schizophrenia. CONCLUSION: Downregulation of miR-29a in schizophrenia is significantly related to the development of this illness. It might have the potential as a biomarker for schizophrenia.


Asunto(s)
Biomarcadores , Regulación hacia Abajo , MicroARNs , Esquizofrenia , Humanos , MicroARNs/genética , MicroARNs/sangre , Esquizofrenia/genética , Esquizofrenia/diagnóstico , Esquizofrenia/sangre , Masculino , Femenino , Adulto , Biomarcadores/sangre , Regulación hacia Abajo/genética , Estudios de Casos y Controles , Adulto Joven , Persona de Mediana Edad
13.
J Biochem Mol Toxicol ; 38(1): e23598, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38047396

RESUMEN

Endothelial cell apoptosis driven by inflammation (TNF-α) plays a critical role in the pathogenesis of atherosclerosis, but the exact molecular mechanisms are not clearly elucidated. MicroRNA (miR)-29 families (a/b/c) take important roles in pathophysiological processes of atherosclerosis, also the underlying mechanisms have not been fully clarified. The aims are to explore whether or not miR-29 families mediate the apoptotic effects of TNF-α on endothelial cells and uncover the underlying molecular mechanisms. In this study, MTT assay and flow cytometer analysis were employed respectively to determine the proliferation and apoptosis of human umbilical vascular endothelial cells (HUVECs) under TNF-α exposure. Real-time quantitative PCR and western blot were performed to detect the levels of target RNAs and proteins/their phosphorylation in HUVECs. TNF-α could inhibit HUVEC proliferation and induce HUVEC apoptosis in a positive dose- and time-dependent manner, with a similar way of miR-29a upregulation, but no effects on miR-29b/c. Upregulation of miR-29a with its mimics enhanced the apoptotic effect of TNF-α on HUVECs, but downregulation of miR-29a using anti-miR-29a blocked up its apoptotic effect. MiR-29a inhibited the expression of PI3Kp85α and Bcl-2 and blocked up the signal transduction of PI3K/AKT/Bcl-2 axis to mediate the apoptotic effect of TNF-α on HUVECs. Mediating the inflammation-driven endothelial cell apoptosis is an important biology mechanism by which miR-29a promotes atherosclerosis and its complications. MiR-29a will be a potential diagnostic and therapeutic target for atherosclerotic cardiovascular diseases; it is worthwhile to further study.


Asunto(s)
Aterosclerosis , MicroARNs , Humanos , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Apoptosis , Inflamación/metabolismo , Aterosclerosis/metabolismo
14.
Exp Cell Res ; 426(1): 113556, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36933858

RESUMEN

Overactivation of cardiac fibroblasts (CFs) is one of the main causes of myocardial fibrosis (MF), and inhibition of CF activation is a crucial strategy for MF therapy. A previous study by our group demonstrated that leonurine (LE) effectively inhibits collagen synthesis and myofibroblast generation originated from CFs, and eventually mitigates the progression of MF (where miR-29a-3p is likely to be a vital mediator). However, the underlying mechanisms involved in this process remain unknown. Thus, the present study aimed to investigate the precise role of miR-29a-3p in LE-treated CFs, and to elucidate the pharmacological effects of LE on MF. Neonatal rat CFs were isolated and stimulated by angiotensin II (Ang II) to mimic the pathological process of MF in vitro. The results show that LE distinctly inhibits collagen synthesis, as well as the proliferation, differentiation and migration of CFs, all of which could be induced by Ang II. In addition, LE promotes apoptosis in CFs under Ang II stimulation. During this process, the down-regulated expressions of miR-29a-3p and p53 are partly restored by LE. Either knockdown of miR-29a-3p or inhibition of p53 by PFT-α (a p53 inhibitor) blocks the antifibrotic effect of LE. Notably, PFT-α suppresses miR-29a-3p levels in CFs under both normal and Ang II-treated conditions. Furthermore, ChIP analysis confirmed that p53 is bound to the promoter region of miR-29a-3p, and directly regulates its expression. Overall, our study demonstrates that LE upregulates p53 and miR-29a-3p expression, and subsequently inhibits CF overactivation, suggesting that the p53/miR-29a-3p axis may play a crucial role in mediating the antifibrotic effect of LE against MF.


Asunto(s)
MicroARNs , Ratas , Animales , Angiotensina II/farmacología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Fibrosis , Colágeno Tipo I/metabolismo , Fibroblastos/metabolismo
15.
Mol Ther ; 31(2): 454-470, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36114673

RESUMEN

Fetal cutaneous wound closure and repair differ from that in adulthood. In this work, we identify an oxidant stress sensor protein, nonselenocysteine-containing phospholipid hydroperoxide glutathione peroxidase (NPGPx), that is abundantly expressed in normal fetal epidermis (and required for fetal wound closure), though not in adult epidermis, but is variably re-induced upon adult tissue wounding. NPGPx is a direct target of the miR-29 family. Following injury, abundance of miR-29 is lowered, permitting a prompt increase in NPGPx transcripts and protein expression in adult wound-edge tissue. NPGPx expression was required to mediate increased keratinocyte migration induced by miR-29 inhibition in vitro and in vivo. Increased NPGPx expression induced increased SOX2 expression and ß-catenin nuclear localization in keratinocytes. Augmenting physiologic NPGPx expression via experimentally induced miR-29 suppression, using cutaneous tissue nanotransfection or targeted lipid nanoparticle delivery of anti-sense oligonucleotides, proved to be sufficient to overcome the deleterious effects of diabetes on this specific pathway to enhance tissue repair.


Asunto(s)
MicroARNs , Cicatrización de Heridas , Embarazo , Humanos , Femenino , Cicatrización de Heridas/genética , Piel/metabolismo , Queratinocitos/metabolismo , Movimiento Celular , MicroARNs/metabolismo
16.
Cell Mol Biol Lett ; 29(1): 55, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643118

RESUMEN

BACKGROUND: Viral myocarditis (VMC) is a disease resulting from viral infection, which manifests as inflammation of myocardial cells. Until now, the treatment of VMC is still a great challenge for clinicians. Increasing studies indicate the participation of miR-29b-3p in various diseases. According to the transcriptome sequencing analysis, miR-29b-3p was markedly upregulated in the viral myocarditis model. The purpose of this study was to investigate the role of miR-29b-3p in the progression of VMC. METHODS: We used CVB3 to induce primary cardiomyocytes and mice to establish a model of viral myocarditis. The purity of primary cardiomyocytes was identified by immunofluorescence. The cardiac function of mice was detected by Vevo770 imaging system. The area of inflammatory infiltration in heart tissue was shown by hematoxylin and eosin (H&E) staining. The expression of miR-29b-3p and DNMT3A was detected by quantitative real time polymerase chain reaction (qRT-PCR). The expression of a series of pyroptosis-related proteins was detected by western blot. The role of miR-29b-3p/DNMT3A in CVB3-induced pyroptosis of cardiomyocytes was studied in this research. RESULTS: Our data showed that the expression of miR-29b-3p was upregulated in CVB3-induced cardiomyocytes and heart tissues in mice. To explore the function of miR-29b-3p in CVB3-induced VMC, we conducted in vivo experiments by knocking down the expression of miR-29b-3p using antagomir. We then assessed the effects on mice body weight, histopathology changes, myocardial function, and cell pyroptosis in heart tissues. Additionally, we performed gain/loss-of-function experiments in vitro to measure the levels of pyroptosis in primary cardiomyocytes. Through bioinformatic analysis, we identified DNA methyltransferases 3A (DNMT3A) as a potential target gene of miR-29b-3p. Furthermore, we found that the expression of DNMT3A can be modulated by miR-29b-3p during CVB3 infection. CONCLUSIONS: Our results demonstrate a correlation between the expression of DNMT3A and CVB3-induced pyroptosis in cardiomyocytes. These findings unveil a previously unidentified mechanism by which CVB3 induces cardiac injury through the regulation of miR-29b-3p/DNMT3A-mediated pyroptosis.


Asunto(s)
MicroARNs , Miocarditis , Animales , Ratones , Antagomirs/metabolismo , Inflamación/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Miocarditis/genética , Miocarditis/metabolismo , Miocitos Cardíacos/metabolismo , Piroptosis
17.
Acta Biochim Biophys Sin (Shanghai) ; 56(4): 607-620, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38414350

RESUMEN

Myocardial damage is a critical complication and a significant contributor to mortality in sepsis. MicroRNAs (miRNAs) have emerged as key players in sepsis pathogenesis. In this study, we explore the effect and mechanisms of miR-29b-1-5p on sepsis-induced myocardial damage. Sepsis-associated Gene Expression Omnibus datasets (GSE72380 and GSE29914) are examined for differential miRNAs. The mouse sepsis-induced cardiac injury was established by Lipopolysaccharide (LPS) or cecal ligation and puncture (CLP). LPS-treated HL-1 mouse cardiomyocytes simulate myocardial injury in vitro. miR-29b-1-5p is co-upregulated in both datasets and in cardiac tissue from sepsis mouse and HL-1 cell models. miR-29b-1-5p expression downregulation was achieved by antagomir transduction and confirmed by real-time quantitative reverse transcription PCR. Survival analysis and echocardiography examination show that miR-29b-1-5p inhibition improves mice survival cardiac function in LPS- and CLP-induced sepsis mice. Hematoxylin and eosin and Masson's trichrome staining and Immunohistochemistry analysis of mouse myocardial α-smooth muscle actin show that miR-29b-1-5p inhibition reduces myocardial tissue injury and fibrosis. The inflammatory cytokines and cardiac troponin I (cTnI) levels in mouse serum and HL-1 cells are also decreased by miR-29b-1-5p inhibition, as revealed by enzyme-linked immunosorbent assay. The expressions of autophagy-lysosomal pathway-related and apoptosis-related proteins in the mouse cardiac tissues and HL-1 cells are evaluated by western blot analysis. The sepsis-induced activation of the autophagy-lysosomal pathway and apoptosis are also reversed by miR-29b-1-5p antagomir. MTT and flow cytometry measurement further confirm the protective role of miR-29b-1-5p antagomir in HL-1 cells by increasing cell viability and suppressing cell apoptosis. Metascape functionally enriches TargetScan-predicted miR-29b-1-5p target genes. TargetScan prediction and dual luciferase assay validate the targeting relationship between miR-29b-1-5p and telomeric repeat-binding factor 2 (TERF2). The expression and function of TERF2 in HL-1 cells and mice are also evaluated. MiR-29b-1-5p negatively regulates the target gene TERF2. TERF2 knockdown partly restores miR-29b-1-5p antagomir function in LPS-stimulated HL-1 cells. In summary, miR-29b-1-5p targetedly inhibits TERF2, thereby enhancing sepsis-induced myocardial injury.


Asunto(s)
MicroARNs , Sepsis , Ratones , Animales , Lipopolisacáridos/farmacología , Antagomirs , MicroARNs/genética , MicroARNs/metabolismo , Regulación hacia Abajo , Sepsis/complicaciones , Sepsis/genética , Sepsis/metabolismo
18.
Biochem Genet ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625592

RESUMEN

To explore the effect of miR-29b-3p on fibrosis and hypertrophy of ligamentum flavum (LF) in lumbar spinal stenosis (LSS) and its underlying mechanism. Patients with LSS and lumbar disc herniation (LDH) (control) undergoing posterior lumbar laminectomy were included in this study. Human LF samples were obtained for LF cell isolation, RNA, and protein extraction. Histomorphological analysis of LF was performed using hematoxylin-eosin (HE) staining. After isolation, culture, and transfection of primary LF cells, different transfection groups were constructed: NC-mimic, miR-29b-3p-mimic, NC-inhibitor, and miR-29b-3p-inhibitor. Quantitative real time polymerase chain reaction (qRT-PCR) was performed to detect the expression of miR-29b-3p in LF and LF cells. Western blot analysis detected the protein expressions of P16 and CyclinD1. ELISA detected the protein expressions of TGF-ß1, Smad2, Smad3, TLR4, Type I collagen, and Type III collagen. Finally, LF cell viability was detected using the Cell Counting Kit-8 (CCK8) assay. The thickness of LF was significantly thicker in the LSS group compared to the LDH group (p < 0.05), accompanied by a higher calcification degree, more fibroblasts, and a larger area of collagen fiber proliferation. miR-29b-3p expression was significantly lower in LSS-derived LF tissues and cells than in LDH-derived tissues and cells (both p < 0.05). Compared to the NC-mimic group, the miR-29b-3p-mimic group exhibited significantly higher miR-29b-3p expression, decreased protein expressions of Type I collagen, Type III collagen, TGF-ß1, Smad2, Smad3, TLR4, P16, and CyclinD1, and inhibited LF cell proliferation (all p < 0.05). As expected, the miR-29b-3p-inhibitor group displayed contrasting expression patterns (all p < 0.05). Compared to the phosphate buffer saline (PBS) group, the Trimethylamine-N-Oxide (TMAO) group showed significantly increased expressions of TGF-ß1, Smad2, Smad3, TLR4, Type I collagen, Type III collagen, P16, and CyclinD1, as well as enhanced LF cell proliferation (all p < 0.05). However, there was no significant difference between the TMAO group and the Ang II group (all p > 0.05). Upregulation of miR-29b-3p expression may play a role in improving LF fibrosis and hypertrophy in LSS by inhibiting P16 expression and suppressing the activation of the TGF-ß/Smad signaling pathway. This finding offers new insights into future gene modification therapy for this patient population.

19.
Environ Toxicol ; 39(7): 3956-3966, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38587027

RESUMEN

BACKGROUNDS: Non-small cell lung carcinoma (NSCLC) is a common type of lung cancer. Prior investigations have elucidated the pivotal role of miR-29b-3p in restraining tumor growth and metastasis. Nonetheless, it remains to be determined whether miR-29b-3p can effectively suppress NSCLC progression and enhance the sensitivity of NSCLC cells to cisplatin. This investigation sought to determine the mechanism by which miR-29b-3p inhibited the advancement of NSCLC and mitigated resistance to cisplatin. METHODS: We initially assessed miR-29b-3p and VEGF levels in NSCLC tissues and cell lines. Next, miR-29b-3p expression was elevated in NSCLC cell lines H1975 and A549 by overexpression plasmid transfection. Following this, a sequence of molecular biology experiments was conducted to evaluate the impact of miR-29b-3p on the biological behaviors of NSCLC cells and their resistance to cisplatin. Additionally, we predicted VEGF was a target gene of miR-29b-3p by bioinformatics analysis. We next employed western blot to evaluate the protein expression of Nrf2 and HO-1 in NSCLC cells. Finally, we elucidated the effects of VEGF and Nrf2/HO-1pathway on NSCLC progression and cisplatin resistance by in vitro assays. RESULTS: In comparison to paracancerous tissues and human normal lung epithelial cells, the expression of miR-29b-3p was notably reduced and VEGF expression was clearly elevated in NSCLC tissues and cells. Moreover, miR-29b-3p upregulated obviously suppressed the biological activities of NSCLC cells and increased their sensitivity to cisplatin. Furthermore, in NSCLC cells, miR-29b-3p bound to VEGF and negatively regulate its transcription. Additionally, miR-29b-3p overexpression also inhibited the Nrf2/HO-1 signaling pathway. Finally, the overexpression of VEGF and the activation of the Nrf2/HO-1 pathway reversed miR-29b-3p-mediated inhibitory effect on biological behaviors of NSCLC cells and increased the cisplatin resistance. CONCLUSION: Our findings indicate that miR-29b-3p impedes NSCLC cells' biological behaviors and augments their sensitivity to cisplatin by targeting VEGF to modulate the Nfr2/HO-1 signaling pathway.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Cisplatino , Resistencia a Antineoplásicos , Hemo-Oxigenasa 1 , Neoplasias Pulmonares , MicroARNs , Factor 2 Relacionado con NF-E2 , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Cisplatino/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/genética , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
20.
Hepatobiliary Pancreat Dis Int ; 23(5): 472-480, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38724321

RESUMEN

BACKGROUND: Regulatory B cells (Bregs) is an indispensable element in inducing immune tolerance after liver transplantation. As one of the microRNAs (miRNAs), miR-29a-3p also inhibits translation by degrading the target mRNA, and yet the relationship between Bregs and miR-29a-3p has not yet been fully explored. This study aimed to investigate the impact of miR-29a-3p on the regulation of differentiation and immunosuppressive functions of memory Bregs (mBregs) and ultimately provide potentially effective therapies in inducing immune tolerance after liver transplantation. METHODS: Flow cytometry was employed to determine the levels of Bregs in peripheral blood mononuclear cells. TaqMan low-density array miRNA assays were used to identify the expression of different miRNAs, electroporation transfection was used to induce miR-29a-3p overexpression and knockdown, and dual luciferase reporter assay was used to verify the target gene of miR-29a-3p. RESULTS: In patients experiencing acute rejection after liver transplantation, the proportions and immunosuppressive function of mBregs in the circulating blood were significantly impaired. miR-29a-3p was found to be a regulator of mBregs differentiation. Inhibition of miR-29a-3p, which targeted nuclear factor of activated T cells 5 (NFAT5), resulted in a conspicuous boost in the differentiation and immunosuppressive function of mBregs. The inhibition of miR-29a-3p in CD19+ B cells was capable of raising the expression levels of NFAT5, thereby promoting B cells to differentiate into mBregs. In addition, the observed enhancement of differentiation and immunosuppressive function of mBregs upon miR-29a-3p inhibition was abolished by the knockdown of NFAT5 in B cells. CONCLUSIONS: miR-29a-3p was found to be a crucial regulator for mBregs differentiation and immunosuppressive function. Silencing miR-29a-3p could be a potentially effective therapeutic strategy for inducing immune tolerance after liver transplantation.


Asunto(s)
Antígenos CD19 , Linfocitos B Reguladores , Antígeno CD24 , Diferenciación Celular , Trasplante de Hígado , MicroARNs , Humanos , MicroARNs/metabolismo , MicroARNs/genética , Linfocitos B Reguladores/inmunología , Linfocitos B Reguladores/metabolismo , Antígenos CD19/metabolismo , Antígenos CD19/genética , Masculino , Antígeno CD24/metabolismo , Antígeno CD24/genética , Transducción de Señal , Rechazo de Injerto/inmunología , Rechazo de Injerto/genética , Femenino , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Persona de Mediana Edad , Tolerancia Inmunológica , Células Cultivadas , Adulto , Fenotipo , Memoria Inmunológica
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda