Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 1.194
Filtrar
1.
J Gen Virol ; 105(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38271027

RESUMEN

The COVID-19 pandemic has highlighted the need for vaccines capable of providing rapid and robust protection. One way to improve vaccine efficacy is delivery via microarray patches, such as the Vaxxas high-density microarray patch (HD-MAP). We have previously demonstrated that delivery of a SARS-CoV-2 protein vaccine candidate, HexaPro, via the HD-MAP induces potent humoral immune responses. Here, we investigate the cellular responses induced by HexaPro HD-MAP vaccination. We found that delivery via the HD-MAP induces a type one biassed cellular response of much greater magnitude as compared to standard intramuscular immunization.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Animales , Ratones , Humanos , Glicoproteína de la Espiga del Coronavirus/genética , Pandemias , COVID-19/prevención & control , SARS-CoV-2 , Vacunación , Inmunidad Celular , Vacunas contra la COVID-19 , Anticuerpos Antivirales , Inmunidad Humoral , Anticuerpos Neutralizantes
2.
Small ; 20(12): e2307104, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37939306

RESUMEN

The treatment of chronic wounds still presents great challenges due to being infected by biofilms and the damaged healing process. The current treatments do not address the needs of chronic wounds. In this study, a highly effective dressing (Dox-DFO@MN Hy) for the treatment of chronic wounds is described. This dressing combines the advantages of microneedles (MNs) and hydrogels in the treatment of chronic wounds. MNs is employed to debride the biofilms and break down the wound barrier, providing rapid access to therapeutic drugs from hydrogel backing layer. Importantly, to kill the pathogenic bacteria in the biofilms specifically, Doxycycline hydrochloride (Dox) is wrapped into the polycaprolactone (PCL) microspheres that have lipase-responsive properties and loaded into the tips of MNs. At the same time, hydrogel backing layer is used to seal the wound and accelerate wound healing. Benefiting from the combination of two advantages of MNs and hydrogel, the dressing significantly reduces the bacteria in the biofilms and effectively promotes angiogenesis and cell migration in vitro. Overall, Dox-DFO@MN Hy can effectively treat chronic wounds infected with biofilms, providing a new idea for the treatment of chronic wounds.


Asunto(s)
Vendajes , Hidrogeles , Bacterias , Biopelículas , Movimiento Celular , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
3.
Small ; 20(26): e2308479, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38385813

RESUMEN

Microneedles (MNs) have maintained their popularity in therapeutic and diagnostic medical applications throughout the past decade. MNs are originally designed to gently puncture the stratum corneum layer of the skin and have lately evolved into intelligent devices with functions including bodily fluid extraction, biosensing, and drug administration. MNs offer limited invasiveness, ease of application, and minimal discomfort. Initially manufactured solely from metals, MNs are now available in polymer-based varieties. MNs can be used to create systems that deliver drugs and chemicals uniformly, collect bodily fluids, and are stimulus-sensitive. Although these advancements are favorable in terms of biocompatibility and production costs, they are insufficient for the therapeutic use of MNs. This is the first comprehensive review that discusses individual MN functions toward the evolution and development of smart and multifunctional MNs for a variety of novel and impactful future applications. The study examines fabrication techniques, application purposes, and experimental details of MN constructs that perform multiple functions concurrently, including sensing, drug-molecule release, sampling, and remote communication capabilities. It is highly likely that in the near future, MN-based smart devices will be a useful and important component of standard medical practice for different applications.


Asunto(s)
Agujas , Humanos , Sistemas de Liberación de Medicamentos , Animales , Nanomedicina Teranóstica , Microinyecciones/instrumentación , Microinyecciones/métodos
4.
Small ; 20(21): e2308403, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38098457

RESUMEN

Keratitis, an inflammation of the cornea caused by bacterial or fungal infections, is one of the leading causes of severe visual disability and blindness. Keratitis treatment requires both the prevention of infection and the reduction of inflammation. However, owing to their limited therapeutic functions, in addition to the ocular barrier, existing conventional medications are characterized by poor efficacy and low bioavailability, requiring high dosages or frequent topical treatment, which represents a burden on patients and increases the risk of side effects. In this study, manganese oxide nanocluster-decorated graphdiyne nanosheets (MnOx/GDY) are developed as multienzyme-like nanozymes for the treatment of infectious keratitis and loaded into hyaluronic acid and polymethyl methacrylate-based ocular microneedles (MGMN). MGMN not only exhibits antimicrobial and anti-inflammatory effects owing to its multienzyme-like activities, including oxidase, peroxidase, catalase, and superoxide dismutase mimics but also crosses the ocular barrier and shows increased bioavailability via the microneedle system. Moreover, MGMN is demonstrated to eliminate pathogens, prevent biofilm formation, reduce inflammation, alleviate ocular hypoxia, and promote the repair of corneal epithelial damage in in vitro, ex vivo, and in vivo experiments, thus providing a better therapeutic effect than commercial ophthalmic voriconazole, with no obvious microbial resistance or cytotoxicity.


Asunto(s)
Queratitis , Agujas , Queratitis/tratamiento farmacológico , Animales , Ratones , Enzimas/metabolismo , Biopelículas/efectos de los fármacos , Humanos , Óxidos , Compuestos de Manganeso
5.
Small ; 20(6): e2306222, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37786290

RESUMEN

In recent years, microneedles (MNs) have attracted a lot of attention due to their microscale sizes and high surface area (500-1000 µm in length), allowing pain-free and efficient drug delivery through the skin. In addition to the great success of MNs based transdermal drug delivery, especially for skin diseases, increasing studies have indicated the expansion of MNs to diverse nontransdermal applications, including the delivery of therapeutics for hair loss, ocular diseases, and oral mucosal. Here, the current treatment of hair loss, eye diseases, and oral disease is discussed and an overview of recent advances in the application of MNs is provided for these three noncutaneous localized organ diseases. Particular emphasis is laid on the future trend of MNs technology development and future challenges of expanding the generalizability of MNs.


Asunto(s)
Agujas , Piel , Humanos , Administración Cutánea , Alopecia , Sistemas de Liberación de Medicamentos
6.
Small ; 20(16): e2307523, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38018331

RESUMEN

Sustained-release drug delivery formulations are preferable for treating various diseases as they enhance and prolong efficacy, minimize adverse effects, and avoid frequent dosing. However, these formulations are associated with poor patient compliance, require trained personnel for administration, and involve harsh manufacturing conditions that compromise drug stability. Here, a self-healing biodegradable porous microneedle (PMN) patch is reported for sustained drug delivery. The PMN patch is fabricated by a cryogenic micromoulding followed by phase separation, leading to formation of interconnected pores on the surface and internals of MNs. The pores with self-healing feature enable the PMNs to load hydrophilic drugs with different molecular weights in a mild and efficient manner. The healed PMNs can easily penetrate into the skin under press and detach from the supporting substrate under shear, thereby acting as implantable drug reservoirs for achieving sustained release of drugs for at least 40 days. One-time administration of desired therapeutics using the sustained-release healed PMNs resulted in stronger and longer-lasting efficacy in mitigating psoriasis and eliciting immunity compared to conventional methods with multiple administrations. The self-healing PMN patch for self-administrated and long-acting drug delivery can eventually improve medication adherence in prophylactic and therapeutic protocols that typically require frequent dosages.


Asunto(s)
Separación de Fases , Piel , Humanos , Preparaciones de Acción Retardada/farmacología , Administración Cutánea , Porosidad , Sistemas de Liberación de Medicamentos/métodos , Agujas
7.
Small ; 20(29): e2310461, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38396201

RESUMEN

Bacteria-induced keratitis is a major cause of corneal blindness in both developed and developing countries. Instillation of antibiotic eyedrops is the most common management of bacterial keratitis but usually suffers from low bioavailability (i.e., <5%) and frequent administration, due to the existence of corneal epithelial barrier that prevents large and hydrophilic drug molecules from entering the cornea, and the tear film on corneal surface that rapidly washes drug away from the cornea. Here, a self-implantable core-shell microneedle (MN) patch with programmed drug release property to facilitate bacterial keratitis treatment is reported. The pH-responsive antimicrobial nanoparticles (NPs), Ag@ZIF-8, which are capable of producing antibacterial metal ions in the infected cornea and generating oxidative stress in bacteria, are loaded in the dissolvable core, while the anti-angiogenic drug, rapamycin (Rapa), is encapsulated in the biodegradable shell, thereby enabling rapid release of Ag@ZIF-8 NPs and sustained release of Rapa after corneal insertion. Owing to the programmed release feature, one single administration of the core-shell MN patch in a rat model of bacterial keratitis, can achieve satisfactory antimicrobial activity and superior anti-angiogenic and anti-inflammation effects as compared to daily topical eyedrops, indicating a great potential for the infectious keratitis therapy in clinics.


Asunto(s)
Liberación de Fármacos , Queratitis , Agujas , Animales , Queratitis/tratamiento farmacológico , Queratitis/microbiología , Ratas , Sirolimus/administración & dosificación , Antibacterianos/farmacología , Antibacterianos/administración & dosificación , Antibacterianos/química , Antibacterianos/uso terapéutico , Ratas Sprague-Dawley , Córnea/metabolismo , Córnea/efectos de los fármacos , Plata/química , Sistemas de Liberación de Medicamentos
8.
Small ; 20(23): e2305838, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38258379

RESUMEN

Interstitial fluid (ISF) is an attractive alternative to regular blood sampling for health checks and disease diagnosis. Porous microneedles (MNs) are well suited for collecting ISF in a minimally invasive manner. However, traditional methods of molding MNs from microfabricated templates involve prohibitive fabrication costs and fixed designs. To overcome these limitations, this study presents a facile and economical additive manufacturing approach to create porous MNs. Compared to traditional layerwise build sequences, direct ink drawing with nanocomposite inks can define sharp MNs with tailored shapes and achieve vastly improved fabrication efficiency. The key to this fabrication strategy is the yield-stress fluid ink that is easily formulated by dispersing silica nanoparticles into the cellulose acetate polymer solution. As-printed MNs are solidified into interconnected porous microstructure inside a coagulation bath of deionized water. The resulting MNs exhibit high mechanical strength and high porosity. This approach also allows porous MNs to be easily integrated on various substrates. In particular, MNs on filter paper substrates are highly flexible to rapidly collect ISF on non-flat skin sites. The extracted ISF is used for quantitative analysis of biomarkers, including glucose, = calcium ions, and calcium ions. Overall, the developments allow facile fabrication of porous MNs for transdermal diagnosis and therapy.


Asunto(s)
Líquido Extracelular , Tinta , Nanocompuestos , Agujas , Nanocompuestos/química , Porosidad , Líquido Extracelular/química , Animales
9.
Biomed Microdevices ; 26(1): 9, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38189892

RESUMEN

There is an urgent need for research into effective interventions for pain management to improve patients' life quality. Traditional needle and syringe injection were used to administer the local anesthesia. However, it causes various discomforts, ranging from brief stings to trypanophobia and denial of medical operations. In this study, a dissolving microneedles (MNs) system made of composite matrix materials of polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), and sodium hyaluronate (HA) was successfully developed for the loading of lidocaine hydrochloride (LidH). The morphology, size and mechanical properties of the MNs were also investigated. After the insertion of MNs into the skin, the matrix at the tip of the MNs was swelled and dissolved by absorption of interstitial fluid, leading to a rapid release of loaded LidH from MNs' tips. And the LidH in the back patching was diffused into deeper skin tissue through microchannels created by MNs insertion, forming a prolonged anesthesia effect. In addition, the back patching of MNs could be acted as a drug reservoir to form a prolonged local anesthesia effect. The results showed that LidH MNs provided a superior analgesia up to 8 h, exhibiting a rapid and long-lasting analgesic effects. Additionally, tissue sectioning and in vitro cytotoxicity tests indicated that the MNs patch we developed had a favorable biosafety profile.


Asunto(s)
Lidocaína , Polímeros , Humanos , Anestesia Local , Alcohol Polivinílico , Povidona
10.
Mol Pharm ; 21(5): 2118-2147, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38660711

RESUMEN

The various kinds of nanocarriers (NCs) have been explored for the delivery of therapeutics designed for the management of skin manifestations. The NCs are considered as one of the promising approaches for the skin delivery of therapeutics attributable to sustained release and enhanced skin penetration. Despite the extensive applications of the NCs, the challenges in their delivery via skin barrier (majorly stratum corneum) have persisted. To overcome all the challenges associated with the delivery of NCs, the microneedle (MN) technology has emerged as a beacon of hope. Programmable drug release, being painless, and its minimally invasive nature make it an intriguing strategy to circumvent the multiple challenges associated with the various drug delivery systems. The integration of positive traits of NCs and MNs boosts therapeutic effectiveness by evading stratum corneum, facilitating the delivery of NCs through the skin and enhancing their targeted delivery. This review discusses the barrier function of skin, the importance of MNs, the types of MNs, and the superiority of NC-loaded MNs. We highlighted the applications of NC-integrated MNs for the management of various skin ailments, combinational drug delivery, active targeting, in vivo imaging, and as theranostics. The clinical trials, patent portfolio, and marketed products of drug/NC-integrated MNs are covered. Finally, regulatory hurdles toward benchtop-to-bedside translation, along with promising prospects needed to scale up NC-integrated MN technology, have been deliberated. The current review is anticipated to deliver thoughtful visions to researchers, clinicians, and formulation scientists for the successful development of the MN-technology-based product by carefully optimizing all the formulation variables.


Asunto(s)
Administración Cutánea , Sistemas de Liberación de Medicamentos , Agujas , Enfermedades de la Piel , Piel , Humanos , Sistemas de Liberación de Medicamentos/métodos , Enfermedades de la Piel/tratamiento farmacológico , Piel/metabolismo , Piel/efectos de los fármacos , Nanopartículas/química , Nanopartículas/administración & dosificación , Portadores de Fármacos/química , Animales , Absorción Cutánea , Microinyecciones/métodos , Microinyecciones/instrumentación
11.
Mol Pharm ; 21(3): 1015-1026, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38288698

RESUMEN

Vaccines have historically faced challenges regarding stability, especially in regions lacking a robust cold chain infrastructure. This review delves into established and emergent techniques to improve the thermostability of vaccines. We discuss the widely practiced lyophilization method, effectively transforming liquid vaccine formulations into a solid powdered state, enhancing storage and transportation ability. However, potential protein denaturation during lyophilization necessitates alternative stabilization methods. Cryoprotectants, namely, starch and sugar molecules, have shown promise in protecting vaccine antigens and adjuvants from denaturation and augmenting the stability of biologics during freeze-drying. Biomineralization, a less studied yet innovative approach, utilizes inorganic or organic-inorganic hybrids to encapsulate biological components of vaccines with a particular emphasis on metal-organic coordination polymers. Encapsulation in organic matrices to form particles or microneedles have also been studied in the context of vaccine thermostability, showing some ability to store outside the cold-chain. Unfortunately, few of these techniques have advanced to clinical trials that evaluate differences in storage conditions. Nonetheless, early trials suggest that alternative storage techniques are viable and emphasize the need for more comprehensive studies. This review underscores the pressing need for heat-stable vaccines, especially in light of the increasing global distribution challenges. Combining traditional methods with novel approaches holds promise for the future adaptability of vaccine distribution and use.


Asunto(s)
Calor , Vacunas , Humanos , Estabilidad de Medicamentos , Composición de Medicamentos/métodos , Vacunación , Liofilización/métodos
12.
Pharm Res ; 41(1): 93-104, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37985572

RESUMEN

OBJECTIVE: To prepare polylactic acid microneedles (PLAMNs) with sustained antibacterial effect to avoid skin infection caused by traditional MNs-based biosensors. METHODS: Silver nanoparticles (AgNPs) were synthesized using an in-situ reduction process with polydopamine (PDA). PLAMNs were fabricated using the hot-melt method. A series of pressure tests and puncture experiments were conducted to confirm the physicochemical properties of PLAMNs. Then AgNPs were modified on the surface of PLAMNs through in-situ reduction of PDA, resulting in the formation of PLAMNs@PDA-AgNPs. The in vitro antibacterial efficacy of PLAMNs@PDA-AgNPs was evaluated using agar diffusion assays and bacterial liquid co-culture approach. Wound healing and simulated long-term application were performed to assess the in vivo antibacterial effectiveness of PLAMNs@PDA-AgNPs. RESULTS: The MNs array comprised 169 tiny needle tips in pyramidal rows. Strength and puncture tests confirmed a 100% puncture success rate for PLAMNs on isolated rat skin and tin foil. SEM analysis revealed the integrity of PLAMNs@PDA-AgNPs with the formation of new surface substances. EDS analysis indicated the presence of silver elements on the surface of PLAMNs@PDA-AgNPs, with a content of 14.44%. Transepidermal water loss (TEWL) testing demonstrated the rapid healing of micro-pores created by PLAMNs@PDA-AgNPs, indicating their safety. Both in vitro and in vivo tests confirmed antibacterial efficacy of PLAMNs@PDA-AgNPs. CONCLUSIONS: In conclusion, the sustained antibacterial activity exhibited by PLAMNs@PDA-AgNPs offers a promising solution for addressing skin infections associated with MN applications, especially when compared to traditional MN-based biosensors. This advancement offers significant potential for the field of MN technology.


Asunto(s)
Nanopartículas del Metal , Poliésteres , Plata , Ratas , Animales , Plata/farmacología , Plata/química , Nanopartículas del Metal/química , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana
13.
Pharm Res ; 41(6): 1045-1092, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38862719

RESUMEN

Neurodegenerative diseases (NDs), particularly dementia, provide significant problems to worldwide healthcare systems. The development of therapeutic materials for various diseases has a severe challenge in the form of the blood-brain barrier (BBB). Transdermal treatment has recently garnered widespread favor as an alternative method of delivering active chemicals to the brain. This approach has several advantages, including low invasiveness, self-administration, avoidance of first-pass metabolism, preservation of steady plasma concentrations, regulated release, safety, efficacy, and better patient compliance. Topics include the transdermal method for therapeutic NDs, their classification, and the mechanisms that allow the medicine to enter the bloodstream through the skin. The paper also discusses the obstacles and potential outcomes of transdermal therapy, emphasizing the benefits and drawbacks of different approaches.


Asunto(s)
Administración Cutánea , Barrera Hematoencefálica , Sistemas de Liberación de Medicamentos , Trastornos Mentales , Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Trastornos Mentales/tratamiento farmacológico , Animales , Barrera Hematoencefálica/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Investigación Biomédica Traslacional/métodos , Ensayos Clínicos como Asunto , Piel/metabolismo , Absorción Cutánea
14.
Pharm Res ; 41(2): 203-222, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38337104

RESUMEN

PURPOSE: In the local administration methods for treating eye diseases, the application of microneedles has great potential due to the shortcomings of low efficacy and significant side effects of local administration preparations. This article provides ideas for the research on the application of ophthalmic microneedle in the treatment of eye diseases. RESULTS: This article analyzes the physiological structures of the eyes, ocular diseases and its existing ocular preparations in sequence. Finally, this article reviews the development and trends of ocular microneedles in recent years, and summarizes and discusses the drugs of ocular microneedles as well as the future directions of development. At the same time, according to the inspiration of previous work, the concept of "microneedle with spinule" is proposed for the first time, and its advantages and limitations are discussed in the article. CONCLUSIONS: At present, the application of ocular microneedles still faces multiple challenges. The aspects of auxiliary devices, appearance, the properties of the matrix materials, and preparation technology of ophthalmic microneedle are crucial for their application in the treatment of eye diseases.


Asunto(s)
Oftalmopatías , Agujas , Humanos , Microinyecciones , Sistemas de Liberación de Medicamentos , Preparaciones Farmacéuticas , Oftalmopatías/tratamiento farmacológico , Administración Cutánea
15.
Sens Actuators B Chem ; 398: 134788, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38164440

RESUMEN

Online monitoring of prognostic biomarkers is critically important when diagnosing disorders and assessing individuals' health, especially for chronic and infectious diseases. Despite this, current diagnosis techniques are time-consuming, labor-intensive, and performed offline. In this context, developing wearable devices for continuous measurements of multiple biomarkers from body fluids has considerable advantages including availability, rapidity, convenience, and minimal invasiveness over the conventional painful and time-consuming tools. However, there is still a significant challenge in powering these devices over an extended period, especially for applications that require continuous and long-term health monitoring. Herein, a new freestanding, wearable, multifunctional microneedle-based extended gate field effect transistor biosensor is fabricated for online detection of multiple biomarkers from the interstitial fluid including sodium, calcium, potassium, and pH along with excellent electrical response, reversibility, and precision. In addition, a hybrid powering system of triboelectric nanogenerator and solar cell was developed for creating a freestanding, closed-loop platform for continuous charging of the device's battery and integrated with an Internet of Things technology to broadcast the measurements online, suggesting a stand-alone, stable multifunctional tool which paves the way for advanced practical personalized health monitoring and diagnosis.

16.
J Pharm Pharm Sci ; 27: 12434, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38571937

RESUMEN

Microneedle (MN)-assisted drug delivery technology has gained increasing attention over the past two decades. Its advantages of self-management and being minimally invasive could allow this technology to be an alternative to hypodermic needles. MNs can penetrate the stratum corneum and deliver active ingredients to the body through the dermal tissue in a controlled and sustained release. Long-acting polymeric MNs can reduce administration frequency to improve patient compliance and therapeutic outcomes, especially in the management of chronic diseases. In addition, long-acting MNs could avoid gastrointestinal reactions and reduce side effects, which has potential value for clinical application. In this paper, advances in design strategies and applications of long-acting polymeric MNs are reviewed. We also discuss the challenges in scale manufacture and regulations of polymeric MN systems. These two aspects will accelerate the effective clinical translation of MN products.


Asunto(s)
Sistemas de Liberación de Medicamentos , Piel , Humanos , Microinyecciones , Administración Cutánea , Preparaciones Farmacéuticas , Polímeros
17.
J Nanobiotechnology ; 22(1): 103, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38468261

RESUMEN

BACKGROUND: Rheumatoid arthritis (RA) is a prevalent inflammatory autoimmune disease characterised by persistent inflammation and joint damage with elevated levels of reactive oxygen species (ROS). Current treatment modalities for RA have significant limitations, including poor bioavailability, severe side effects, and inadequate targeting of inflamed joints. Herein, we synthesised cerium/manganese oxide nanoparticles (NPs) as efficient drug carriers with antioxidant and catalytic-like functions that can eliminate ROS to facilitate the polarization of macrophages phenotype from M1 to M2 and alleviate inflammation. Methotrexate (MTX), a first-line RA medication, was loaded into the NPs, which were further modified with bovine serum albumin (BSA) and integrated into dissolving hyaluronic acid-based microneedles (MNs) for transdermal delivery. RESULT: This innovative approach significantly enhanced drug delivery efficiency, reduced RA inflammation, and successfully modulated macrophage polarization toward an anti-inflammatory phenotype. CONCLUSION: This research not only presents a promising drug delivery strategy for RA but also contributes broadly to the field of immune disease treatment by offering an advanced approach for macrophage phenotypic reprogramming.


Asunto(s)
Artritis Reumatoide , Cerio , Compuestos de Manganeso , Nanopartículas , Óxidos , Humanos , Manganeso/farmacología , Especies Reactivas de Oxígeno/farmacología , Artritis Reumatoide/tratamiento farmacológico , Macrófagos , Inflamación , Cerio/farmacología
18.
Handb Exp Pharmacol ; 284: 93-111, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37106150

RESUMEN

In the last 20 years, protein, peptide and nucleic acid-based therapies have become the fastest growing sector in the pharmaceutical industry and play a vital role in disease therapy. However, the intrinsic sensitivity and large molecular sizes of biotherapeutics limit the available routes of administration. Currently, the main administration routes of biomacromolecules, such as parenteral, oral, pulmonary, nasal, rectal and buccal routes, each have their limitations. Several non-invasive strategies have been proposed to overcome these challenges. Researchers were particularly interested in microneedles (MNs) and polymeric films because of their less invasiveness, convenience and greater potential to preserve the bioactivity of biotherapeutics. By facilitating with MNs and polymeric films, biomacromolecules could provide significant benefits to patients suffering from various diseases such as cancer, diabetes, infectious and ocular diseases. However, before these devices can be used on patients, how to upscale MN manufacture in a cost-effective and timely manner, as well as the long-term safety of MN and polymeric film applications necessitates further investigation.


Asunto(s)
Sistemas de Liberación de Medicamentos , Péptidos , Humanos , Administración Cutánea , Péptidos/química , Péptidos/metabolismo , Piel/metabolismo
19.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34551974

RESUMEN

Vaccination is an essential public health measure for infectious disease prevention. The exposure of the immune system to vaccine formulations with the appropriate kinetics is critical for inducing protective immunity. In this work, faceted microneedle arrays were designed and fabricated utilizing a three-dimensional (3D)-printing technique called continuous liquid interface production (CLIP). The faceted microneedle design resulted in increased surface area as compared with the smooth square pyramidal design, ultimately leading to enhanced surface coating of model vaccine components (ovalbumin and CpG). Utilizing fluorescent tags and live-animal imaging, we evaluated in vivo cargo retention and bioavailability in mice as a function of route of delivery. Compared with subcutaneous bolus injection of the soluble components, microneedle transdermal delivery not only resulted in enhanced cargo retention in the skin but also improved immune cell activation in the draining lymph nodes. Furthermore, the microneedle vaccine induced a potent humoral immune response, with higher total IgG (Immunoglobulin G) and a more balanced IgG1/IgG2a repertoire and achieved dose sparing. Furthermore, it elicited T cell responses as characterized by functional cytotoxic CD8+ T cells and CD4+ T cells secreting Th1 (T helper type 1)-cytokines. Taken together, CLIP 3D-printed microneedles coated with vaccine components provide a useful platform for a noninvasive, self-applicable vaccination.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Impresión Tridimensional/instrumentación , Vacunación/métodos , Vacunas/administración & dosificación , Administración Cutánea , Animales , Sistemas de Liberación de Medicamentos , Femenino , Ratones , Ratones Endogámicos C57BL , Ovalbúmina/inmunología
20.
Nano Lett ; 23(17): 7990-7999, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37595030

RESUMEN

Although gene therapy has shown prospects in treating triple-negative breast cancer, it is insufficient to treat such a malignant tumor. Herein, nanoparticles (NPs)-embedded dissolving microneedles (IR780-PL/pFBXO44@MNs) with steerable and flectional property were developed to achieve the codelivery of FBXO44-targeted CRISPR/Cas9 plasmids (pFBXO44) and hydrophobic photosensitizers. For improved NP penetration in tumor tissue, collagenase@MNs were preapplied to degrade the tumor matrix. Under light irradiation, IR780 exhibited remarkable phototherapy, while the escape efficiency of NPs from lysosomes was improved. pFBXO44 was subsequently released in tumor cell cytoplasm via reducing the disulfide bonds of NPs, which could specifically knock out the FBXO44 gene to inhibit the migration and invasion of tumor cells. As a result, tumor cells were eradicated, and lung metastasis was effectively suppressed. This micelle-incorporated microneedle platform broadens the potential of combining gene editing and photo synergistic cancer therapy.


Asunto(s)
Neoplasias , Fármacos Fotosensibilizantes , Sistemas CRISPR-Cas/genética , Terapia Combinada , Fototerapia , Lisosomas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda