Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
New Phytol ; 237(2): 585-600, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36266961

RESUMEN

Extensive mutational screening studies have documented genes regulating anther and pollen development. Knowledge concerning how formation of male germinal cell is arithmetically controlled in natural populations, under different environmental conditions, is lacking. We counted pollen number within a single anther and a maize-teosinte BC2 S3 recombinant inbred line population to identify ZmCCT10 as a major determinant of pollen number variation. ZmCCT10 was originally identified as a photoperiod-sensitive negative regulator of flowering. ZmCCT10 inactivation, after transposon insertion within its promoter, is proposed to have accelerated maize spread toward higher latitudes, thus allowing temperate maize to flower under long-day conditions. We showed that the active ZmCCT10 allele decreased pollen formation. As different active and inactive ZmCCT10 alleles have been found in natural maize populations, this represents the first report of a gene controlling pollen number in a crop natural population. These findings suggest that higher pollen number, which provides a competitive advantage in open-pollinated populations, may have been one of the major driving forces for the selection of an inactive ZmCCT10 allele during tropical maize domestication. We provide evidence that ZmCCT10 has opposite effects on cell proliferation of archesporial and tapetum cells and it modulates expression of key regulators during early anther development.


Asunto(s)
Fotoperiodo , Zea mays , Zea mays/genética , Flores/fisiología
2.
Ann Bot ; 115(1): 81-92, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25452249

RESUMEN

BACKGROUND AND AIMS: Quercus suber (cork oak) is a dominant tree of the Fagaceae in forests of the south-west Iberian Peninsula. It is monoecious with a long progamic phase that provides a comprehensive system for comparative studies in development and sexual reproduction. In this study the distribution of arabinogalactan protein (AGPs) and pectin epitopes in anthers of Q. suber was assessed to map these hydroxyproline-rich glycoproteins and the galacturonate-rich acidic polysaccharides during pollen development. Methods Immunolocalization in male flowers was performed with a set of monoclonal antibodies directed against the carbohydrate moiety that recognizes AGPs and pectins. To identify AGP genes involved in cork oak male flower development, a search was conducted for annotated AGP genes in the available transcriptome data of the Cork Oak EST Consortium database (www.corkoakdb.org). KEY RESULTS: Ubiquitous labelling in all cell types was obtained with anti-homogalacturan antibodies for methyl-esterified pectins. In contrast, the antibody that labelled non-methyl-esterified homogalacturans had a preferential presence in microsporocyte cells walls at the beginning of pollen development. Intense labelling was obtained with anti-AGP antibodies both in the tapetum and in the intine wall near the pollen apertures and later in the generative cell wall and vegetative cell. Evaluation of the putative AGPs highly expressed in the male gametophyte was achieved by quantitative RT-PCR analysis in male and female cork oak flowers. CONCLUSIONS: Four putative AGP genes were identified that are preferentially expressed in the male flower compared with the female flower. The putative Arabidopsis thaliana orthologues of these genes are associated with preferential expression in pollen, suggesting that the AGPs probably play a significant role in cork oak reproduction.


Asunto(s)
Mucoproteínas/genética , Pectinas/genética , Quercus/crecimiento & desarrollo , Quercus/genética , Secuencia de Aminoácidos , Epítopos/genética , Epítopos/metabolismo , Flores/crecimiento & desarrollo , Flores/metabolismo , Datos de Secuencia Molecular , Mucoproteínas/metabolismo , Especificidad de Órganos , Pectinas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/crecimiento & desarrollo , Quercus/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
Plant J ; 75(6): 927-40, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23750584

RESUMEN

The proper transmission of DNA in dividing cells is crucial for the survival of eukaryotic organisms. During cell division, faithful segregation of replicated chromosomes requires their tight attachment, known as sister chromatid cohesion, until anaphase. Sister chromatid cohesion is established during S-phase in a process requiring an acetyltransferase that in yeast is known as Establishment of cohesion 1 (Eco1). Inactivation of Eco1 typically disrupts chromosome segregation and homologous recombination-dependent DNA repair in dividing cells, ultimately resulting in lethality. We report here the isolation and detailed characterization of two homozygous T-DNA insertion mutants for the Arabidopsis thaliana Eco1 homolog, CHROMOSOME TRANSMISSION FIDELITY 7/ESTABLISHMENT OF COHESION 1 (CTF7/ECO1), called ctf7-1 and ctf7-2. Mutants exhibited dwarfism, poor anther development and sterility. Analysis of somatic tissues by flow cytometry, scanning electron microscopy and quantitative real-time PCR identified defects in DNA repair and cell division, including an increase in the area of leaf epidermal cells, an increase in DNA content and the upregulation of genes involved in DNA repair including BRCA1 and PARP2. No significant change was observed in the expression of genes that influence entry into the endocycle. Analysis of meiocytes identified changes in chromosome morphology and defective segregation; the abundance of chromosomal-bound cohesion subunits was also reduced. Transcript levels for several meiotic genes, including the recombinase genes DMC1 and RAD51C and the S-phase licensing factor CDC45 were elevated in mutant anthers. Taken together our results demonstrate that Arabidopsis CTF7/ECO1 plays important roles in the preservation of genome integrity and meiosis.


Asunto(s)
Acetiltransferasas/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cromátides/fisiología , Genoma de Planta , Meiosis , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica/genética , Reparación del ADN/genética , Meiosis/genética , Mitosis/genética , Mutagénesis Insercional , Polen/genética , Polen/crecimiento & desarrollo , Cohesinas
4.
Cell Biol Int ; 38(4): 472-9, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24390765

RESUMEN

The bipolar spindle is a major cytoskeletal structure, which ensures an equal chromosome distribution between the daughter nuclei. The spindle formation in animal cells depends on centrosomes activity. In flowering plant cells the centrosomes have not been identified as definite structures. The absence of these structures suggests that plants assemble their spindle via novel mechanisms. Nonetheless, the cellular and molecular mechanisms controlling the cytoskeleton remodeling during the spindle development in plants are still insufficiently clear. This article describes the results of a comparative analysis of the microtubular cytoskeleton dynamics during assembly of the second division spindle in tobacco microsporocytes with the normal and deformed nuclei. According to our observations, the bipolar spindle fibres are formed from short arrays of the disintegrated perinuclear cytoskeleton system, the perinuclear microtubular band. The microsporocytes of polyploid tobacco plants with deformed nuclei entirely lack this cytoskeleton structure. In such type of cells the overall prometaphase events are blocked, and the assembly of second division spindles is completely arrested.


Asunto(s)
Núcleo Celular/metabolismo , Meiosis , Nicotiana/citología , Nicotiana/metabolismo , Huso Acromático/metabolismo , Núcleo Celular/ultraestructura , Citoesqueleto/química , Citoesqueleto/metabolismo , Células Vegetales/química , Células Vegetales/metabolismo , Polen/química , Polen/metabolismo , Poliploidía , Huso Acromático/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda