Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 9.691
Filtrar
Más filtros

Publication year range
1.
FASEB J ; 38(1): e23317, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38095240

RESUMEN

Alzheimer's disease (AD) is currently an incurable neurodegenerative disorder and is the most common etiological cause of dementia. Consequently, it has severe burden on its patients and on their caregivers and represents a global health concern. Clinical investigations have indicated that a dysregulation of peripheral T cell immune homeostasis may be involved in the pathogenesis of AD, as well as in the early stages of AD, characterized by mild cognitive impairment (MCI). However, the characteristics and concomitant feasibility of the use of T-cell receptor (TCR) typing for disease diagnosis remains largely unknown. We employed a high-throughput sequencing and multidimensional bioinformatics analyses for the identification of TCR repertoires present in peripheral blood samples of 10 patients with amnestic MCI (aMCI), 10 patients with AD, and 10 healthy controls (HCs). Based on the characteristics of the TCR repertoires in the amount and diversity of combinations of V-J, the spectrum of immune defense, and differentially expressed genes (DEGs), single and specific TCR profiles were observed in the patient samples of aMCI and AD compared to profiles of HCs. In particular, the diversity of TCR clonotypes manifested a pattern of "decreased first and then increased" pattern during the progression from aMCI to AD, a pattern that was not observed in HC samples. Additionally, a total of 46 and 35 amino acid CDR3 sequences with consistent and reverse expressive abundance with diversity of TCR clonotypes were identified, respectively. Taken together, we provide novel and essential preliminary evidence demonstrating the presence of diversity of T cell repertoires from differentially expressed V-J gene segments and amino acid clonotypes using peripheral blood samples from patients with AD, aMCI, and from HC. Such findings have the potential to reveal potential mechanisms through which aMCI progresses to AD and provide a reference for the future development of immune-related diagnoses and therapies for AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Linfocitos T , Disfunción Cognitiva/diagnóstico , Receptores de Antígenos de Linfocitos T , Aminoácidos
2.
Brain ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013020

RESUMEN

Brain inflammation, with an increased density of microglia and macrophages, is an important component of Alzheimer's disease (AD) and a potential therapeutic target. However, it is incompletely characterized, particularly in patients whose disease begins before the age of 65 years and, thus, have few co-pathologies. Inflammation has been usefully imaged with translocator protein (TSPO) positron emission tomography (PET), but most inflammation PET tracers cannot image subjects with a low-binder TSPO rs6971 genotype. In an important development, participants with any TSPO genotype can be imaged with a novel tracer, [11C]ER176, that has a high binding potential and a more favorable metabolite profile than other TSPO tracers currently available. We applied [11C]ER176 to detect brain inflammation in mild cognitive impairment (MCI) caused by early-onset AD. Furthermore, we sought to correlate the brain localization of inflammation, volume loss, elevated Aß and tau. We studied brain inflammation in 25 patients with early-onset amnestic MCI (average age 59 ± 4.5 years, 10 women) and 23 healthy controls (average age 65 ± 6.0 years, 12 women), both groups with a similar proportion of all three TSPO-binding affinities. [11C]ER176 total distribution volume (VT), obtained with an arterial input function, was compared across patients and controls using voxel-wise and region-wise analyses. In addition to inflammation PET, most MCI patients had Aß (n=23), and tau PET (n=21). For Aß and tau tracers, standard uptake value ratios (SUVRs) were calculated using cerebellar grey matter as region of reference. Regional correlations among the three tracers were determined. Data were corrected for partial volume effect. Cognitive performance was studied with standard neuropsychological tools. In MCI caused by early-onset AD, there was inflammation in the default network, reaching statistical significance in precuneus and lateral temporal and parietal association cortex bilaterally, and in the right amygdala. Topographically, inflammation co-localized most strongly with tau (r= 0.63 ± 0.24). This correlation was higher than the co-localization of Aß with tau (r= 0.55±0.25) and of inflammation with Aß (0.43±0.22). Inflammation co-localized least with atrophy (-0.29±0.26). These regional correlations could be detected in participants with any of the three rs6971 TSPO polymorphisms. Inflammation in AD-related regions correlated with impaired cognitive scores. Our data highlight the importance of inflammation, a potential therapeutic target, in the AD process. Furthermore, they support the notion that, as shown in experimental tissue and animal models, the propagation of tau in humans is associated with brain inflammation.

3.
Brain ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743817

RESUMEN

Single-value scores reflecting the deviation from (FADE score) or similarity with (SAME score) prototypical novelty-related and memory-related functional magnetic resonance imaging (fMRI) activation patterns in young adults have been proposed as imaging biomarkers of healthy neurocognitive aging. Here, we tested the utility of these scores as potential diagnostic and prognostic markers in Alzheimer's disease (AD) and risk states like mild cognitive impairment (MCI) or subjective cognitive decline (SCD). To this end, we analyzed subsequent memory fMRI data from individuals with SCD, MCI, and AD dementia as well as healthy controls (HC) and first-degree relatives of AD dementia patients (AD-rel) who participated in the multi-center DELCODE study (N = 468). Based on the individual participants' whole-brain fMRI novelty and subsequent memory responses, we calculated the FADE and SAME scores and assessed their association with AD risk stage, neuropsychological test scores, CSF amyloid positivity, and ApoE genotype. Memory-based FADE and SAME scores showed a considerably larger deviation from a reference sample of young adults in the MCI and AD dementia groups compared to HC, SCD and AD-rel. In addition, novelty-based scores significantly differed between the MCI and AD dementia groups. Across the entire sample, single-value scores correlated with neuropsychological test performance. The novelty-based SAME score further differed between Aß-positive and Aß-negative individuals in SCD and AD-rel, and between ApoE ε4 carriers and non-carriers in AD-rel. Hence, FADE and SAME scores are associated with both cognitive performance and individual risk factors for AD. Their potential utility as diagnostic and prognostic biomarkers warrants further exploration, particularly in individuals with SCD and healthy relatives of AD dementia patients.

4.
Brain ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38915268

RESUMEN

Considering the growing age of the world population, the incidence of epilepsy in older adults is expected to increase significantly. It has been suggested that late-onset temporal lobe epilepsy (LO-TLE) may be neurodegenerative in origin and overlap with Alzheimer's Disease (AD). Herein, we aimed to characterize the pattern of cortical atrophy and cerebrospinal fluid (CSF) biomarkers of AD (total and phosphorylated tau, and ß-amyloid) in a selected population of LO-TLE of unknown origin. We prospectively enrolled individuals with temporal lobe epilepsy onset after the age of 50 and no cognitive impairment. They underwent a structural MRI scan and CSF biomarkers measurement. Imaging and biomarkers data were compared to three retrospectively collected groups: (i) age-sex-matched healthy controls, (ii) patients with Mild Cognitive Impairment (MCI) and abnormal CSF AD biomarkers (MCI-AD), and (iii) patients with MCI and normal CSF AD biomarkers (MCI-noAD). From a pool of 52 patients, twenty consecutive eligible LO-TLE patients with a mean disease duration of 1.8 years were recruited. As control populations, 25 patients with MCI-AD, 25 patients with MCI-noAD, and 25 healthy controls were enrolled. CSF biomarkers returned normal values in LO-TLE, significantly different from patients with MCI due to AD. There were no differences in cortico-subcortical atrophy between epilepsy patients and healthy controls, while patients with MCI demonstrated widespread injuries of cortico-subcortical structures. Individuals with a late-onset form of temporal lobe epilepsy, characterized by short disease duration and normal CSF ß-amyloid and tau protein levels, showed patterns of cortical thickness and subcortical volumes not significantly different from healthy controls, but highly different from patients with MCI, either due to Alzheimer's Disease or not.

5.
Cereb Cortex ; 34(3)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38521993

RESUMEN

Alzheimer's disease (AD) and mild cognitive impairment (MCI) both show abnormal resting-state functional connectivity (rsFC) of default mode network (DMN), but it is unclear to what extent these abnormalities are shared. Therefore, we performed a comprehensive meta-analysis, including 31 MCI studies and 20 AD studies. MCI patients, compared to controls, showed decreased within-DMN rsFC in bilateral medial prefrontal cortex/anterior cingulate cortex (mPFC/ACC), precuneus/posterior cingulate cortex (PCC), right temporal lobes, and left angular gyrus and increased rsFC between DMN and left inferior temporal gyrus. AD patients, compared to controls, showed decreased rsFC within DMN in bilateral mPFC/ACC and precuneus/PCC and between DMN and left inferior occipital gyrus and increased rsFC between DMN and right dorsolateral prefrontal cortex. Conjunction analysis showed shared decreased rsFC in mPFC/ACC and precuneus/PCC. Compared to MCI, AD had decreased rsFC in left precuneus/PCC and between DMN and left inferior occipital gyrus and increased rsFC in right temporal lobes. MCI and AD share a decreased within-DMN rsFC likely underpinning episodic memory deficits and neuropsychiatric symptoms, but differ in DMN rsFC alterations likely related to impairments in other cognitive domains such as language, vision, and execution. This may throw light on neuropathological mechanisms in these two stages of dementia.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Red en Modo Predeterminado , Disfunción Cognitiva/patología , Giro del Cíngulo , Lóbulo Temporal/patología , Imagen por Resonancia Magnética , Encéfalo , Mapeo Encefálico
6.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-38012122

RESUMEN

Mild cognitive impairment is considered the prodromal stage of Alzheimer's disease. Accurate diagnosis and the exploration of the pathological mechanism of mild cognitive impairment are extremely valuable for targeted Alzheimer's disease prevention and early intervention. In all, 100 mild cognitive impairment patients and 86 normal controls were recruited in this study. We innovatively constructed the individual morphological brain networks and derived multiple brain connectome features based on 3D-T1 structural magnetic resonance imaging with the Jensen-Shannon divergence similarity estimation method. Our results showed that the most distinguishing morphological brain connectome features in mild cognitive impairment patients were consensus connections and nodal graph metrics, mainly located in the frontal, occipital, limbic lobes, and subcortical gray matter nuclei, corresponding to the default mode network. Topological properties analysis revealed that mild cognitive impairment patients exhibited compensatory changes in the frontal lobe, while abnormal cortical-subcortical circuits associated with cognition were present. Moreover, the combination of multidimensional brain connectome features using multiple kernel-support vector machine achieved the best classification performance in distinguishing mild cognitive impairment patients and normal controls, with an accuracy of 84.21%. Therefore, our findings are of significant importance for developing potential brain imaging biomarkers for early detection of Alzheimer's disease and understanding the neuroimaging mechanisms of the disease.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Conectoma , Humanos , Conectoma/métodos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Imagen por Resonancia Magnética/métodos
7.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38300184

RESUMEN

T1 image is a widely collected imaging sequence in various neuroimaging datasets, but it is rarely used to construct an individual-level brain network. In this study, a novel individualized radiomics-based structural similarity network was proposed from T1 images. In detail, it used voxel-based morphometry to obtain the preprocessed gray matter images, and radiomic features were then extracted on each region of interest in Brainnetome atlas, and an individualized radiomics-based structural similarity network was finally built using the correlational values of radiomic features between any pair of regions of interest. After that, the network characteristics of individualized radiomics-based structural similarity network were assessed, including graph theory attributes, test-retest reliability, and individual identification ability (fingerprinting). At last, two representative applications for individualized radiomics-based structural similarity network, namely mild cognitive impairment subtype discrimination and fluid intelligence prediction, were exemplified and compared with some other networks on large open-source datasets. The results revealed that the individualized radiomics-based structural similarity network displays remarkable network characteristics and exhibits advantageous performances in mild cognitive impairment subtype discrimination and fluid intelligence prediction. In summary, the individualized radiomics-based structural similarity network provides a distinctive, reliable, and informative individualized structural brain network, which can be combined with other networks such as resting-state functional connectivity for various phenotypic and clinical applications.


Asunto(s)
Encéfalo , Radiómica , Reproducibilidad de los Resultados , Encéfalo/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Neuroimagen
8.
Cereb Cortex ; 34(3)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38466115

RESUMEN

Mild cognitive impairment plays a crucial role in predicting the early progression of Alzheimer's disease, and it can be used as an important indicator of the disease progression. Currently, numerous studies have focused on utilizing the functional brain network as a novel biomarker for mild cognitive impairment diagnosis. In this context, we employed a graph convolutional neural network to automatically extract functional brain network features, eliminating the need for manual feature extraction, to improve the mild cognitive impairment diagnosis performance. However, previous graph convolutional neural network approaches have primarily concentrated on single modes of brain connectivity, leading to a failure to leverage the potential complementary information offered by diverse connectivity patterns and limiting their efficacy. To address this limitation, we introduce a novel method called the graph convolutional neural network with multimodel connectivity, which integrates multimode connectivity for the identification of mild cognitive impairment using fMRI data and evaluates the graph convolutional neural network with multimodel connectivity approach through a mild cognitive impairment diagnostic task on the Alzheimer's Disease Neuroimaging Initiative dataset. Overall, our experimental results show the superiority of the proposed graph convolutional neural network with multimodel connectivity approach, achieving an accuracy rate of 92.2% and an area under the Receiver Operating Characteristic (ROC) curve of 0.988.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Imagen por Resonancia Magnética , Enfermedad de Alzheimer/diagnóstico por imagen , Neuroimagen , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen
9.
Proc Natl Acad Sci U S A ; 119(21): e2113778119, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35594397

RESUMEN

Mild cognitive impairment (MCI) during aging is often a harbinger of Alzheimer's disease, and, therefore, early intervention to preserve cognitive abilities before the MCI symptoms become medically refractory is particularly critical. Functional MRI­guided transcranial magnetic stimulation is a promising approach for modulating hippocampal functional connectivity and enhancing memory in healthy adults. Here, we extend these previous findings to individuals with MCI and leverage theta burst stimulation (TBS) and white matter tractography derived from diffusion-weighted MRI to target the hippocampus. Our preliminary findings suggested that TBS could be used to improve associative memory performance and increase resting-state functional connectivity of the hippocampus and other brain regions, including the occipital fusiform, frontal orbital cortex, putamen, posterior parahippocampal gyrus, and temporal pole, along the inferior longitudinal fasciculus in MCI. Although the sample size is small, these results shed light on how TBS propagates from the superficial cortex around the parietal lobe to the hippocampus.


Asunto(s)
Disfunción Cognitiva , Memoria , Sustancia Blanca , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/terapia , Imagen de Difusión por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Memoria/fisiología , Estimulación Magnética Transcraneal/métodos , Sustancia Blanca/diagnóstico por imagen
10.
Stroke ; 55(5): 1288-1298, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38511349

RESUMEN

BACKGROUND: Lacunes are associated with cognitive impairment. We sought to identify strategic lacune locations associated with mild cognitive impairment (MCI) and subtypes of MCI among older adults, and further to examine the role of white matter hyperintensities and perivascular spaces in the association. METHODS: This population-based cross-sectional study included 1230 dementia-free participants in the brain magnetic resonance imaging substudy (2018-2020) in MIND-China (Multimodal Interventions to Delay Dementia and Disability in Rural China). Lacunes were visually identified in frontal lobe, parieto-occipital lobe, temporal lobe, insula, basal ganglia, thalamus, cerebellum, and brainstem. MCI, amnestic MCI (aMCI), and nonamnestic MCI (naMCI) were defined following the Petersen's criteria. Data were analyzed using logistic regression models. RESULTS: Of the 1230 participants (age, ≥60 years; mean age, 69.40; SD, 4.30 years; 58.5% women), lacunes were detected in 357 people and MCI was defined in 286 individuals, including 243 with aMCI and 43 with naMCI. Lacunes in the supratentorial area, internal capsula, putamen/pallidum, and insula was significantly associated with increased odds ratio of MCI (multivariable-adjusted odds ratio ranged 1.40-3.21; P<0.05) and aMCI (multivariable-adjusted odds ratio ranged 1.46-3.36; P<0.05), whereas lacunes in the infratentorial area and brainstem were significantly associated with naMCI (multivariable-adjusted odds ratio ranged 2.68-3.46; P<0.01). Furthermore, the associations of lacunes in insula and internal capsula with MCI and aMCI, as well as the associations of lacunes in infratentorial area and brainstem with naMCI were present independent of white matter hyperintensities volume and perivascular spaces number. CONCLUSIONS: Lacunes in the internal capsula, putamen/pallidum, insula, and brainstem may represent the strategic lacunes that are independently associated with MCI, aMCI, or naMCI in Chinese older adults. REGISTRATION: URL: https://www.chictr.org.cn; Unique identifier: ChiCTR1800017758.

11.
Neuroimage ; 296: 120663, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38843963

RESUMEN

INTRODUCTION: Timely diagnosis and prognostication of Alzheimer's disease (AD) and mild cognitive impairment (MCI) are pivotal for effective intervention. Artificial intelligence (AI) in neuroradiology may aid in such appropriate diagnosis and prognostication. This study aimed to evaluate the potential of novel diffusion model-based AI for enhancing AD and MCI diagnosis through superresolution (SR) of brain magnetic resonance (MR) images. METHODS: 1.5T brain MR scans of patients with AD or MCI and healthy controls (NC) from Alzheimer's Disease Neuroimaging Initiative 1 (ADNI1) were superresolved to 3T using a novel diffusion model-based generative AI (d3T*) and a convolutional neural network-based model (c3T*). Comparisons of image quality to actual 1.5T and 3T MRI were conducted based on signal-to-noise ratio (SNR), naturalness image quality evaluator (NIQE), and Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE). Voxel-based volumetric analysis was then conducted to study whether 3T* images offered more accurate volumetry than 1.5T images. Binary and multiclass classifications of AD, MCI, and NC were conducted to evaluate whether 3T* images offered superior AD classification performance compared to actual 1.5T MRI. Moreover, CNN-based classifiers were used to predict conversion of MCI to AD, to evaluate the prognostication performance of 3T* images. The classification performances were evaluated using accuracy, sensitivity, specificity, F1 score, Matthews correlation coefficient (MCC), and area under the receiver-operating curves (AUROC). RESULTS: Analysis of variance (ANOVA) detected significant differences in image quality among the 1.5T, c3T*, d3T*, and 3T groups across all metrics. Both c3T* and d3T* showed superior image quality compared to 1.5T MRI in NIQE and BRISQUE with statistical significance. While the hippocampal volumes measured in 3T* and 3T images were not significantly different, the hippocampal volume measured in 1.5T images showed significant difference. 3T*-based AD classifications showed superior performance across all performance metrics compared to 1.5T-based AD classification. Classification performance between d3T* and actual 3T was not significantly different. 3T* images offered superior accuracy in predicting the conversion of MCI to AD than 1.5T images did. CONCLUSIONS: The diffusion model-based MRI SR enhances the resolution of brain MR images, significantly improving diagnostic and prognostic accuracy for AD and MCI. Superresolved 3T* images closely matched actual 3T MRIs in quality and volumetric accuracy, and notably improved the prediction performance of conversion from MCI to AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/clasificación , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/clasificación , Anciano , Femenino , Masculino , Pronóstico , Anciano de 80 o más Años , Inteligencia Artificial , Imagen por Resonancia Magnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Persona de Mediana Edad , Imagen de Difusión por Resonancia Magnética/métodos , Neuroimagen/métodos , Neuroimagen/normas
12.
Neuroimage ; 292: 120605, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38615705

RESUMEN

Trust propensity (TP) relies more on social than economic rationality to transform the perceived probability of betrayal into positive reciprocity expectations in older adults with normal cognition. While deficits in social rationality have been observed in older adults with mild cognitive impairment (MCI), there is limited research on TP and its associated resting-state functional connectivity (RSFC) mechanisms in this population. To measure TP and related psychological functions (affect, motivation, executive cognition, and social cognition), MCI (n = 42) and normal healthy control (NHC, n = 115) groups completed a one-shot trust game and additional assessments of related psychological functions. RSFC associated with TP was analyzed using connectome-based predictive modeling (CPM) and lesion simulations. Our behavioral results showed that the MCI group trusted less (i.e., had lower TP) than the NHC group, with lower TP associated with higher sensitivity to the probability of betrayal in the MCI group. In the MCI group, only negative CPM models (RSFC negatively correlated with TP) significantly predicted TP, with a high salience network (SN) contribution. In contrast, in the NHC group, positive CPM models (RSFC positively correlated with TP) significantly predicted TP, with a high contribution from the default mode network (DMN). In addition, the total network strength of the NHC-specific positive network was lower in the MCI group than in the NHC group. Our findings demonstrated a decrease in TP in the MCI group compared to the NHC group, which is associated with deficits in social rationality (social cognition, associated with DMN) and increased sensitivity to betrayal (affect, associated with SN) in a trust dilemma. In conclusion, our study contributes to understanding MCI-related alterations in trust and their underlying neural mechanisms.


Asunto(s)
Disfunción Cognitiva , Conectoma , Imagen por Resonancia Magnética , Confianza , Humanos , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/diagnóstico por imagen , Masculino , Anciano , Conectoma/métodos , Femenino , Persona de Mediana Edad , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología
13.
Am J Physiol Renal Physiol ; 326(6): F894-F916, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38634137

RESUMEN

Mild cognitive impairment (MCI) is common in people with chronic kidney disease (CKD), and its prevalence increases with progressive loss of kidney function. MCI is characterized by a decline in cognitive performance greater than expected for an individual age and education level but with minimal impairment of instrumental activities of daily living. Deterioration can affect one or several cognitive domains (attention, memory, executive functions, language, and perceptual motor or social cognition). Given the increasing prevalence of kidney disease, more and more people with CKD will also develop MCI causing an enormous disease burden for these individuals, their relatives, and society. However, the underlying pathomechanisms are poorly understood, and current therapies mostly aim at supporting patients in their daily lives. This illustrates the urgent need to elucidate the pathogenesis and potential therapeutic targets and test novel therapies in appropriate preclinical models. Here, we will outline the necessary criteria for experimental modeling of cognitive disorders in CKD. We discuss the use of mice, rats, and zebrafish as model systems and present valuable techniques through which kidney function and cognitive impairment can be assessed in this setting. Our objective is to enable researchers to overcome hurdles and accelerate preclinical research aimed at improving the therapy of people with CKD and MCI.


Asunto(s)
Disfunción Cognitiva , Modelos Animales de Enfermedad , Insuficiencia Renal Crónica , Animales , Insuficiencia Renal Crónica/fisiopatología , Insuficiencia Renal Crónica/psicología , Insuficiencia Renal Crónica/complicaciones , Disfunción Cognitiva/etiología , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/psicología , Humanos , Ratones , Pez Cebra , Cognición , Ratas , Riñón/fisiopatología , Riñón/metabolismo
14.
Neurogenetics ; 25(3): 193-200, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38847891

RESUMEN

Most of the heritability in frontotemporal dementia (FTD) is accounted for by autosomal dominant hexanucleotide expansion in the chromosome 9 open reading frame 72 (C9orf72), pathogenic/likely pathogenic variants in progranulin (GRN), and microtubule-associated protein tau (MAPT) genes. Until now, there has been no systematic analysis of these genes in the Serbian population. Herein, we assessed the frequency of the C9orf72 expansion, pathogenic/likely pathogenic variants in GRN and MAPT in a well-characterized group of 472 subjects (FTD, Alzheimer's disease - AD, mild cognitive impairment - MCI, and unspecified dementia - UnD), recruited in the Memory Center, Neurology Clinic, University Clinical Center of Serbia. The C9orf72 repeat expansion was detected in 6.98% of FTD cases (13.46% familial; 2.6% sporadic). In the UnD subgroup, C9orf72 repeat expansions were detected in 4.08% (8% familial) individuals. Pathogenic variants in the GRN were found in 2.85% of familial FTD cases. Interestingly, no MAPT pathogenic/likely pathogenic variants were detected, suggesting possible geographical specificity. Our findings highlight the importance of wider implementation of genetic testing in neurological and psychiatric practice managing patients with cognitive-behavioral and motor symptoms.


Asunto(s)
Proteína C9orf72 , Demencia Frontotemporal , Progranulinas , Proteínas tau , Humanos , Proteínas tau/genética , Proteína C9orf72/genética , Progranulinas/genética , Femenino , Masculino , Anciano , Demencia Frontotemporal/genética , Persona de Mediana Edad , Serbia/epidemiología , Expansión de las Repeticiones de ADN/genética , Disfunción Cognitiva/genética , Disfunción Cognitiva/epidemiología , Enfermedad de Alzheimer/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Anciano de 80 o más Años
15.
Neurobiol Dis ; 193: 106464, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38452948

RESUMEN

Neuroinflammation contributes to the pathology and progression of Alzheimer's disease (AD), and it can be observed even with mild cognitive impairment (MCI), a prodromal phase of AD. Free water (FW) imaging estimates the extracellular water content and has been used to study neuroinflammation across several neurological diseases including AD. Recently, the role of gut microbiota has been implicated in the pathogenesis of AD. The relationship between FW imaging and gut microbiota was examined in patients with AD and MCI. Fifty-six participants underwent neuropsychological assessments, FW imaging, and gut microbiota analysis targeting the bacterial 16S rRNA gene. They were categorized into the cognitively normal control (NC) (n = 19), MCI (n = 19), and AD (n = 18) groups according to the neuropsychological assessments. The correlations of FW values, neuropsychological assessment scores, and the relative abundance of gut microbiota were analyzed. FW was higher in several white matter tracts and in gray matter regions, predominantly the frontal, temporal, limbic and paralimbic regions in the AD/MCI group than in the NC group. In the AD/MCI group, higher FW values in the temporal (superior temporal and temporal pole), limbic and paralimbic (insula, hippocampus and amygdala) regions were the most associated with worse neuropsychological assessment scores. In the AD/MCI group, FW values in these regions were negatively correlated with the relative abundances of butyrate-producing genera Anaerostipes, Lachnospiraceae UCG-004, and [Ruminococcus] gnavus group, which showed a significant decreasing trend in the order of the NC, MCI, and AD groups. The present study showed that increased FW in the gray matter regions related to cognitive impairment was associated with low abundances of butyrate producers in the AD/MCI group. These findings suggest an association between neuroinflammation and decreased levels of the short-chain fatty acid butyrate that is one of the major gut microbial metabolites having a potentially beneficial role in brain homeostasis.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Microbioma Gastrointestinal , Humanos , Sustancia Gris/patología , Enfermedad de Alzheimer/patología , Butiratos , Enfermedades Neuroinflamatorias , ARN Ribosómico 16S , Disfunción Cognitiva/patología , Imagen por Resonancia Magnética
16.
Neurobiol Dis ; 193: 106459, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423192

RESUMEN

BACKGROUND AND PURPOSE: Blood-based biomarkers are a non-invasive solution to predict the risk of conversion of mild cognitive impairment (MCI) to dementia. The utility of free plasma amyloid peptides (not bound to plasma proteins and/or cells) as an early indicator of conversion to dementia is still debated, as the results of studies have been contradictory. In this context, we investigated whether plasma levels of the free amyloid peptides Aß1-42 and Aß1-40 and the free plasma Aß1-42/Aß1-40 ratio are associated with the conversion of MCI to dementia, in particular AD, over three years of follow-up in a subgroup of the BALTAZAR cohort. We also compared their predictive value to that of total plasma Aß1-42 and Aß1-40 levels and the total plasma Aß1-42/Aß1-40 ratio. METHODS: The plasma Aß1-42 and Aß1-40 peptide assay was performed using the INNO-BIA kit (Fujirebio Europe). Free amyloid levels (defined by the amyloid fraction directly accessible to antibodies of the assay) were obtained with the undiluted plasma, whereas total amyloid levels were obtained after the dilution of plasma (1/3) with a denaturing buffer. Free and total Aß1-42 and Aß1-40 levels were measured at inclusion for a subgroup of participants (N = 106) with mild cognitive impairment (MCI) from the BALTAZAR study (a large-scale longitudinal multicenter cohort with a three-year follow-up). Associations between conversion and the free/total plasma Aß1-42 and Aß1-40 levels and Aß1-42/Aß1-40 ratio were analyzed using logistic and Cox Proportional Hazards models. Demographic, clinical, cognitive (MMSE, ADL and IADL), APOE, and MRI characteristics (relative hippocampal volume) were compared using non-parametric (Mann-Whitney) or parametric (Student) tests for quantitative variables and Chi-square or Fisher exact tests for qualitative variables. RESULTS: The risk of conversion to dementia was lower for patients in the highest quartile of free plasma Aß1-42/Aß1-40 (≥ 25.8%) than those in the three lower quartiles: hazard ratio = 0.36 (95% confidence interval [0.15-0.87]), after adjustment for age, sex, education, and APOE ε4 (p-value = 0.022). This was comparable to the risk of conversion in the highest quartile of total plasma Aß1-42/Aß1-40: hazard ratio = 0.37 (95% confidence interval [0.16-0.89], p-value = 0.027). However, while patients in the highest quartile of total plasma Aß1-42/Aß1-40 showed higher MMSE scores and a higher hippocampal volume than patients in the three lowest quartiles of total plasma Aß1-42/Aß1-40, as well as normal CSF biomarker levels, the patients in the highest quartile of free plasma Aß1-42/Aß1-40 did not show any significant differences in MMSE scores, hippocampal volume, or CSF biomarker levels relative to the three lowest quartiles of free plasma Aß1-42/Aß1-40. CONCLUSION: The free plasma Aß1-42/Aß1-40 ratio is associated with a risk of conversion from MCI to dementia within three years, with performance comparable to that of the total plasma Aß1-42/Aß1-40 ratio. Threshold levels of the free and total plasma Aß1-42/Aß1-40 ratio could be determined, with a 60% lower risk of conversion for patients above the threshold than those below.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Péptidos beta-Amiloides/metabolismo , Progresión de la Enfermedad , Disfunción Cognitiva/diagnóstico , Biomarcadores , Proteínas Amiloidogénicas , Fragmentos de Péptidos , Proteínas tau
17.
Hippocampus ; 34(4): 197-203, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38189156

RESUMEN

Tau pathology accumulates in the perirhinal cortex (PRC) of the medial temporal lobe (MTL) during the earliest stages of the Alzheimer's disease (AD), appearing decades before clinical diagnosis. Here, we leveraged perceptual discrimination tasks that target PRC function to detect subtle cognitive impairment even in nominally healthy older adults. Older adults who did not have a clinical diagnosis or subjective memory complaints were categorized into "at-risk" (score <26; n = 15) and "healthy" (score ≥26; n = 23) groups based on their performance on the Montreal Cognitive Assessment. The task included two conditions known to recruit the PRC: faces and complex objects (greebles). A scene condition, known to recruit the hippocampus, and a size control condition that does not rely on the MTL were also included. Individuals in the at-risk group were less accurate than those in the healthy group for discriminating greebles. Performance on either the face or size control condition did not predict group status above and beyond that of the greeble condition. Visual discrimination tasks that are sensitive to PRC function may detect early cognitive decline associated with AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Anciano , Lóbulo Temporal/patología , Hipocampo , Percepción Visual , Discriminación en Psicología , Enfermedad de Alzheimer/patología , Imagen por Resonancia Magnética , Disfunción Cognitiva/patología
18.
Eur J Neurosci ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38779858

RESUMEN

Alzheimer's disease (AD) is characterized by significant cerebral dysfunction, including increased amyloid deposition, gray matter atrophy, and changes in brain function. The involvement of highly connected network hubs, known as the "rich club," in the pathology of the disease remains inconclusive despite previous research efforts. In this study, we aimed to systematically assess the link between the rich club and AD using a multimodal neuroimaging approach. We employed network analyses of diffusion magnetic resonance imaging (MRI), longitudinal assessments of gray matter atrophy, amyloid deposition measurements using positron emission tomography (PET) imaging, and meta-analytic data on functional activation differences. Our study focused on evaluating the role of both the structural brain network's core and extended rich club regions in individuals with mild cognitive impairment (MCI) and those diagnosed with AD. Our findings revealed that structural rich club regions exhibited accelerated gray matter atrophy and increased amyloid deposition in both MCI and AD. Importantly, these regions remained unaffected by altered functional activation patterns observed outside the core rich club regions. These results shed light on the connection between two major AD biomarkers and the rich club, providing valuable insights into AD as a potential disconnection syndrome.

19.
Eur J Neurosci ; 59(12): 3376-3388, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38654447

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that primarily affects the hippocampus. Since hippocampal studies have highlighted a differential subregional regulation along its longitudinal axis, a more detailed analysis addressing subregional changes along the longitudinal hippocampal axis has the potential to provide new relevant biomarkers. This study included structural brain MRI data of 583 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Cognitively normal (CN) subjects, mild cognitively impaired (MCI) subjects and AD patients were conveniently selected considering the age and sex match between clinical groups. Structural MRI acquisitions were pre-processed and analysed with a new longitudinal axis segmentation method, dividing the hippocampus in three subdivisions (anterior, intermediate, and posterior). When normalizing the volume of hippocampal sub-divisions to total hippocampus, the posterior hippocampus negatively correlates with age only in CN subjects (r = -.31). The longitudinal ratio of hippocampal atrophy (anterior sub-division divided by the posterior one) shows a significant increase with age only in CN (r = .25). Overall, in AD, the posterior hippocampus is predominantly atrophied early on. Consequently, the anterior/posterior hippocampal ratio is an AD differentiating metric at early disease stages with potential for diagnostic and prognostic applications.


Asunto(s)
Enfermedad de Alzheimer , Atrofia , Disfunción Cognitiva , Hipocampo , Imagen por Resonancia Magnética , Humanos , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/diagnóstico por imagen , Hipocampo/patología , Hipocampo/diagnóstico por imagen , Femenino , Masculino , Anciano , Atrofia/patología , Imagen por Resonancia Magnética/métodos , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Disfunción Cognitiva/fisiopatología , Anciano de 80 o más Años , Persona de Mediana Edad
20.
Eur J Neurosci ; 59(9): 2391-2402, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38314647

RESUMEN

The brain's dynamic spontaneous neural activity is significant in supporting cognition; however, how brain dynamics go awry in subjective cognitive decline (SCD) and mild cognitive impairment (MCI) remains unclear. Thus, the current study aimed to investigate the dynamic amplitude of low-frequency fluctuation (dALFF) alterations in patients at high risk for Alzheimer's disease and to explore its correlation with clinical cognitive assessment scales, to identify an early imaging sign for these special populations. A total of 152 participants, including 72 SCD patients, 44 MCI patients and 36 healthy controls (HCs), underwent a resting-state functional magnetic resonance imaging and were assessed with various neuropsychological tests. The dALFF was measured using sliding-window analysis. We employed canonical correlation analysis (CCA) to examine the bi-multivariate correlations between neuropsychological scales and altered dALFF among multiple regions in SCD and MCI patients. Compared to those in the HC group, both the MCI and SCD groups showed higher dALFF values in the right opercular inferior frontal gyrus (voxel P < .001, cluster P < .05, correction). Moreover, the CCA models revealed that behavioural tests relevant to inattention correlated with the dALFF of the right middle frontal gyrus and right opercular inferior frontal gyrus, which are involved in frontoparietal networks (R = .43, P = .024). In conclusion, the brain dynamics of neural activity in frontal areas provide insights into the shared neural basis underlying SCD and MCI.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Imagen por Resonancia Magnética , Humanos , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/diagnóstico por imagen , Masculino , Femenino , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/diagnóstico por imagen , Anciano , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Pruebas Neuropsicológicas , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda