Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Chem Biodivers ; 20(10): e202301049, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37728228

RESUMEN

Mimosa pudica L. (MP) is well-known plant in traditional medicinal system, especially in India. Unfortunately, leaves of MP are less explored. To determine the food and nutritional value of the neglected part of Mimosa pudica L. (MP), that is MP leaves, phytochemicals and metal ions of MP were quantified by newly developed HPLC and ICPOES-based methods. The content of phytochemicals observed using HPLC analysis for chlorogenic acid, catechin, and epicatechin was 141.823 (±8.171), 666.621 (±11.432), and 293.175 (±12.743) µg/g, respectively. Using GC/MS/MS analysis, fatty acid like oleic acid were identified. In ICP-OES analysis, a significant content of Na, K, Ca, Cu, Fe, Mg, Mn, and Zn was observed. The observed TPC and TFC for MP leaf extracts was 44.327 (±1.041) mg GAE/ g of wt. and 214.217 (±4.372) mg QCE/ g of wt., respectively. The DPPH assay depicted a strong antioxidant activity of MP leaf extracts with IC50 values of 0.796 (±0.081) mg/mL and a TEAC value of 0.0356 (±0.0003). A significant antacid activity (666 mg MP+400 mg CaCO3 >400 mg CaCO3 ≫666 mg Gelusil) of MP leaves was noticed. The methanolic extract of MP leaves demonstrated anti-microbial activity against Staphylococcus aureus (15±2mm), Pseudomonas aeruginosa (12±2mm) and Escherichia coli (10±2mm). In silico studies confirmed the in vitro results obtained for antioxidant, antiacid, and anti-microbial activities. In addition, in silico studies revealed the anti-cancerous and anti-inflammatory potential of the MP leaves. In summary, this study demonstrated the medicinal significance of MP leaves and the conversion of agro-waste or the under-utilized part of MP into pharmaceutical potent materials. Consequently, the present study highlighted that MP leaves alone have medicinal importance with good nutritional utility and possess large promise in the pharma industry along with improving bio-valorization and the environment.

2.
Saudi Pharm J ; 31(8): 101695, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37520120

RESUMEN

The current research was to develop nanoparticles based on Mimosa pudica mucilage (MPM) that could encapsulate losartan potassium (LP). Nanoparticles (NPs) produced through ionic-gelation method; the polymerization of the mucilage carried out using calcium chloride as cross-linking agent. The MPMLP-NPs demonstrated vastly enhanced pharmaceutical characteristics, presented discrete surface with spherical shape of 198.4-264.6 nm with PDI ranging 0.326-0.461 and entrapment efficiency was in the range of 80.65 ± 0.82-90.79 ± 0.96%. FTIR and DSC indicated the stability of drug during the formulation of nanoparticles. An acute oral toxicity investigation found no significant alterations in behavior and histopathology criteria. The MPMLP-NPs formulation revealed the better rates and sustained effect as assessed with the commercial product. Moreover, low dose of MPMLP-NPs showed similar anti-hypertensive effect as assessed with the marketed tablet.

3.
Molecules ; 27(12)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35744923

RESUMEN

Plants and their derived molecules have been traditionally used to manage numerous pathological complications, including male erectile dysfunction (ED). Mimosa pudica Linn. commonly referred to as the touch-me-not plant, and its extract are important sources of new lead molecules in drug discovery research. The main goal of this study was to predict highly effective molecules from M. pudica Linn. for reaching and maintaining penile erection before and during sexual intercourse through in silico molecular docking and dynamics simulation tools. A total of 28 bioactive molecules were identified from this target plant through public repositories, and their chemical structures were drawn using Chemsketch software. Graph theoretical network principles were applied to identify the ideal target (phosphodiesterase type 5) and rebuild the network to visualize the responsible signaling genes, proteins, and enzymes. The 28 identified bioactive molecules were docked against the phosphodiesterase type 5 (PDE5) enzyme and compared with the standard PDE5 inhibitor (sildenafil). Pharmacokinetics (ADME), toxicity, and several physicochemical properties of bioactive molecules were assessed to confirm their drug-likeness property. Molecular dynamics (MD) simulation modeling was performed to investigate the stability of PDE5-ligand complexes. Four bioactive molecules (Bufadienolide (-12.30 kcal mol-1), Stigmasterol (-11.40 kcal mol-1), Isovitexin (-11.20 kcal mol-1), and Apigetrin (-11.20 kcal mol-1)) showed the top binding affinities with the PDE5 enzyme, much more powerful than the standard PDE5 inhibitor (-9.80 kcal mol-1). The four top binding bioactive molecules were further validated for a stable binding affinity with the PDE5 enzyme and conformation during the MD simulation period as compared to the apoprotein and standard PDE5 inhibitor complexes. Further, the four top binding bioactive molecules demonstrated significant drug-likeness characteristics with lower toxicity profiles. According to the findings, the four top binding molecules may be used as potent and safe PDE5 inhibitors and could potentially be used in the treatment of ED.


Asunto(s)
Afrodisíacos , Disfunción Eréctil , Mimosa , Afrodisíacos/uso terapéutico , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5 , Disfunción Eréctil/tratamiento farmacológico , Humanos , Masculino , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Fosfodiesterasa 5/química
4.
J Basic Microbiol ; 61(4): 293-304, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33491813

RESUMEN

Enterobacter tabaci 4M9 (CCB-MBL 5004) was reported to have plant growth-promoting and heavy metal tolerance traits. It was able to tolerate more than 300 mg/L Cd, 600 mg/L As, and 500 mg/L Pb and still maintained the ability to produce plant growth-promoting substances under metal stress conditions. To explore the genetic basis of these beneficial traits, the complete genome sequencing of 4M9 was carried out using Pacific Bioscience (PacBio) sequencing technology. The complete genome consisted of one chromosome of 4,654,430 bp with a GC content of 54.6% and one plasmid of 51,135 bp with a GC content of 49.4%. Genome annotation revealed several genes involved in plant growth-promoting traits, including the production of siderophore, indole acetic acid, and 1-aminocyclopropane-1-carboxylate deaminase; solubilization of phosphate and potassium; and nitrogen metabolism. Similarly, genes involved in heavy metals (As, Co, Zn, Cu, Mn, Se, Cd, and Fe) tolerance were detected. These support its potential as a heavy metal-tolerant plant growth-promoting bacterium and a good genetic resource that can be employed to improve phytoremediation efficiency of heavy metal-contaminated soil via biotechnological techniques. This, to the best of our knowledge, is the first report on the complete genome sequence of heavy metal-tolerant plant growth-promoting E. tabaci.


Asunto(s)
Enterobacter/efectos de los fármacos , Enterobacter/genética , Enterobacter/fisiología , Metales Pesados/toxicidad , Desarrollo de la Planta/efectos de los fármacos , Secuenciación Completa del Genoma , Biodegradación Ambiental , ADN Bacteriano , Plantas/metabolismo , ARN Ribosómico 16S/genética , Suelo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo
5.
Int J Syst Evol Microbiol ; 70(5): 3316-3322, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32375984

RESUMEN

An endophytic actinomycete, strain 3MP-10T, isolated from the root of Mimosa pudica was taxonomically studied based upon polyphasic approaches. This strain formed spiral spore chains on aerial mycelia. ll-Diaminopimelic acid, glucose and ribose were found in the whole-cell hydrolysates. It belonged to the genus Streptomyces and was closely related to Streptomyces zhaozhouensis DSM 42101T (98.9 %) and Streptomyces sedi JCM 16909T (98.6 %) based on 16S rRNA gene sequence analysis results. The major menaquinones were MK-10(H8), MK-10(H6) and MK-9(H8). The predominant cellular fatty acids were iso-C16 : 0, anteiso-C15 : 0 and anteiso-C17 : 0. The detected phospholipids were diphosphatidylglycerol, phosphatidylinositol mannoside, phosphatidylinositol, phosphatidylethanolamine and phosphatidylglycerol. Strain 3MP-10T had a genome size of 7.2 Mb with a genome G+C content of 73.4 mol%. Results of in silico genome-based similarity analysis revealed ANIb values of 84.94 and 84.77 %, ANIm values of 88.01 and 87.92 %, and dDDH values of 29.9 and 29.6 % when compared with S. zhaozhouensis DSM 42101T and S. sedi JCM 16909T, respectively. Based on the polyphasic approach, digital DNA-DNA relatedness and average nucleotide identity, we propose that the novel actinomycete represents a novel species, Streptomyces mimosae, with type strain 3MP-10T (=JCM 33328T=TISTR 2646T).


Asunto(s)
Mimosa/microbiología , Filogenia , Raíces de Plantas/microbiología , Streptomyces/clasificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Streptomyces/aislamiento & purificación , Tailandia , Vitamina K 2/química
6.
Mol Plant Microbe Interact ; 32(12): 1635-1648, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31617792

RESUMEN

The ß-rhizobium Cupriavidus taiwanensis is a nitrogen-fixing symbiont of Mimosa pudica. Nod factors produced by this species were previously found to be pentameric chitin-oligomers carrying common C18:1 or C16:0 fatty acyl chains, N-methylated and C-6 carbamoylated on the nonreducing terminal N-acetylglucosamine and sulfated on the reducing terminal residue. Here, we report that, in addition, C. taiwanensis LMG19424 produces molecules where the reducing sugar is open and oxidized. We identified a novel nodulation gene located on the symbiotic plasmid pRalta, called noeM, which is involved in this atypical Nod factor structure. noeM encodes a transmembrane protein bearing a fatty acid hydroxylase domain. This gene is expressed during symbiosis with M. pudica and requires NodD and luteolin for optimal expression. The closest noeM homologs formed a separate phylogenetic clade containing rhizobial genes only, which are located on symbiosis plasmids downstream from a nod box. Corresponding proteins, referred to as NoeM, may have specialized in symbiosis via the connection to the nodulation pathway and the spread in rhizobia. noeM was mostly found in isolates of the Mimoseae tribe, and specifically detected in all tested strains able to nodulate M. pudica. A noeM deletion mutant of C. taiwanensis was affected for the nodulation of M. pudica, confirming the role of noeM in the symbiosis with this legume.


Asunto(s)
Cupriavidus , Mimosa , Rhizobium , Cupriavidus/clasificación , Cupriavidus/genética , Genes Bacterianos/genética , Mimosa/microbiología , Filogenia , Plásmidos/genética , Simbiosis/genética
7.
Fish Shellfish Immunol ; 92: 913-924, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31306761

RESUMEN

A feeding trial was performed to compare the effects of five ethanol herbal extracts (bhumi amla, Phyllanthus amarus Schum and Thonn [Pa]; guava, Psidium guajava L. [Pg]; sensitive plant, Mimosa pudica L. [Mp]; neem, Azadirachta indica A. Juss [Ai] and asthma plant, Euphorbia hirta L. [Eh]) on the immune response and disease resistance against Edwardsiella ictaluri infection of striped catfish (Pangasianodon hypophthalmus). Fish were fed diets supplemented with two doses of each plant extract (0% [basal diet], 0.4% Eh [Eh0.4], 2.0% Eh [Eh2.0], 0.2% Pa [Pa0.2], 1.0% Pa [Pa1.0], 0.2% Pg [Pg0.2], 1.0% Pg [Pg1.0], 0.4% Mp [Mp0.4], 2.0% Mp [Mp2.0], 0.4% Ai [Ai0.4], 2.0% Ai [Ai2.0]) for 8 weeks. Results showed that hematological parameters (total red blood cells, white blood cells, lymphocytes, monocytes, and neutrophils) of fish fed extract-based diets were significantly higher than in those fed the control diet (p < 0.05) after 4 and 8 weeks. Plasma lysozyme activity increased in fish whose diets contained both doses of Eh (p < 0.05) in week 4 (W4), whereas lysozyme activity increased in fish fed 0.2% Pa and Pg, and 2.0% Ai and Eh (p < 0.05) in week 8 (W8). The lysozyme levels in skin mucus did not significantly differ between treatments (p > 0.05) in W4 and after the bacterial challenge test. At the end of the feeding trial, levels of ACH50 significantly increased in most of extract groups compared to the control group (p < 0.05). Total immunoglobulin increased considerably in both the plasma and skin mucus of fish fed extract-supplemented diets after 8 weeks. In addition, dietary supplementation with Pg, Mp, Pa0.2, Eh2.0, and Ai0.4 for 8 weeks considerably reduced the cumulative mortality against E. ictaluri infection in striped catfish. The results suggest that plant extracts possibly modulate the striped catfish immune response in a time and dose dependent manner. Specifically, diets enriched with extracts of P. guajava at 0.2 and 1.0%, or M. pudica at 2.0% for 8 weeks, have great potential for improving striped catfish health by enhancing the immune system and reducing mortality against bacterial challenges.


Asunto(s)
Inmunidad Adaptativa/efectos de los fármacos , Bagres/inmunología , Resistencia a la Enfermedad/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Extractos Vegetales/metabolismo , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos/análisis , Relación Dosis-Respuesta a Droga , Edwardsiella ictaluri/fisiología , Infecciones por Enterobacteriaceae/inmunología , Enfermedades de los Peces/inmunología , Extractos Vegetales/administración & dosificación , Distribución Aleatoria
8.
Bull Environ Contam Toxicol ; 102(1): 140-145, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30478613

RESUMEN

This study aimed to investigate the effects of Nitrilotriacetic acid (NTA) and Elthylenediaminetetraacetic acid (EDTA) on the bioaccumulation and translocation of arsenic (As) by Mimosa pudica L. using soils with 5 mg/kg of added As and NTA and EDTA concentrations of 50, 100, and 200 mg/kg. Soil and plant samples were collected every 30-120 days to analyze the As concentrations in the soil, underground part of the plants (root), and aboveground parts of the plants (shoots and leaves). The results showed that the plants with EDTA concentrations of 100 mg/kg had the highest As accumulation. At 120 days, M. pudica L. had a higher accumulation in the underground parts (29.71 mg/kg) than in the aboveground parts (6.32 mg/kg), with statistical significance (p < 0.05). The As translocation factor in the aboveground parts was less than 1, indicating As accumulation in the underground part only. With EDTA concentrations of 50 and 100 mg/kg, M. pudica L. had the highest bioaccumulation potential of As of 8.00 and 8.44, respectively. However, this research did not examine the reaction between As and any growth promoters. Further research should investigate the details of such a reaction at the molecular level, as well as explore how fertilizer factors might affect the As absorption of M. pudica L.


Asunto(s)
Arsénico/análisis , Biodegradación Ambiental , Ácido Edético/química , Mimosa/metabolismo , Ácido Nitrilotriacético/química , Contaminantes del Suelo/análisis , Mimosa/efectos de los fármacos , Suelo/química
9.
Am J Bot ; 105(9): 1491-1498, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30199086

RESUMEN

PREMISE OF THE STUDY: The rapid leaf movement of Mimosa pudica is expected to be costly because of energetic trade-offs with other processes such as growth and reproduction. Here, we assess the photosynthetic opportunity cost and energetic cost of the unique leaf closing behavior of M. pudica. METHODS: In the greenhouse, we employed novel touch-stimulation machines to expose plants to one of three treatments: (1) untouched control plants; (2) plants touch-stimulated to close their leaves during the day to incur energetic costs associated with leaf movement and reduced photosynthesis; (3) plants touched at night to assess the effects of touch alone. M. pudica is nyctinastic and closes its leaves at night; thus, touching at night does not impart additional costs. We directly assessed costs by comparing physical traits. Leaf re-opening response was measured to assess the potential for plant behavioral plasticity to impact photosynthetic opportunity costs. KEY RESULTS: The cost of rapid leaf closure behavior was expressed as a 47% reduction in reproductive biomass accounting for the effect of touch. Touch itself changed physical traits such as biomass, with touched plants being generally bigger. Plants touched at night re-opened their leaflets 26% quicker than plants touched during the day. CONCLUSIONS: We reason that the reproductive allocation costs incurred by M. pudica can be attributed to a combination of photosynthetic opportunity cost and the energetic cost associated with increased stimulation of leaf movement and that behavioral plasticity has the potential to alter photosynthetic opportunity costs.


Asunto(s)
Metabolismo Energético , Mimosa/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Biomasa , Mimosa/fisiología , Hojas de la Planta/fisiología
10.
Pathophysiology ; 25(4): 293-297, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29739640

RESUMEN

Cadmium is a known environmental and industrial pollutant with an enormous tissue disrupting potential. Mimosa pudica (M. pudica) is a creeping annual or perennial herb known to possess anti asthmatic, anti-epileptic, anti-tumour, anti-fertility, aphrodisiac, analgesic, anti-depressant, sedative, emetic properties and a strong radical scavenging activity. This research was aimed at investigating the ameliorative effects of M. pudica on cadmium-induced testicular damage in adult male Sprague Dawley rats. Twenty adult Sprague Dawley rats were employed in the study. They were divided into 4 groups (A-D) of 5 rats each, and toxicity was induced by administering 0.4 mg/ml cadmium chloride through drinking water to groups B-D for 21days. M. pudica extract was administered orally at 250 and 500 mg/kg to groups C and D. Animals in Groups C and D showed remarkable histological improvements in testicular tissue and markedly reduced damages when compared with group B.The active sperm motility of group B (6.00 ±â€¯1.00%) was significantly (p = 0.0001) decreased compared to that of the groups A (15.00 ±â€¯0.00%)) and C (13.00 ±â€¯1.22%). Sperm count analysis of group B (1.36 ±â€¯0.28 × 106/cc), C (4.18 ±â€¯0.81 × 106/cc) and D (2.54 ±â€¯1.13 × 106/cc) were significantly lower (p = <0.05) when compared with group A (12.78 ±â€¯0.92 × 106/cc), respectively. Sperm morphology of group A (70.00 ±â€¯3.16%), B (66.00 ±â€¯2.50), C (74.00 ±â€¯2.45%) and D (64.00 ±â€¯2.45%) recorded no significant difference. This study demonstrates that M. pudica has potential protective and restorative properties on the histoarchitecture of the testes of cadmium-treated rats.

11.
Compr Rev Food Sci Food Saf ; 15(2): 303-315, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33371596

RESUMEN

Mimosa pudica Linn. (Family: Mimosaceae) is used as an ornamental plant due to its thigmonastic and nyctinastic movements. M. pudica is also used to avoid or cure several disorders like cancer, diabetes, hepatitis, obesity, and urinary infections. M. pudica is famous for its anticancer alkaloid, mimosine, along with several valuable secondary metabolites like tannins, steroids, flavonoids, triterpenes, and glycosylflavones. A wide array of pharmacological properties like antioxidant, antibacterial, antifungal, anti-inflammatory, hepatoprotective, antinociceptive, anticonvulsant, antidepressant, antidiarrheal, hypolipidemic activities, diuretic, antiparasitic, antimalarial, and hypoglycemic have been attributed to different parts of M. pudica. Glucuronoxylan polysaccharide extruded from seeds of M. pudica is used for drug release formulations due to its high swelling index. This review covers a thorough examination of functional bioactives as well as pharmacological and phytomedicinal attributes of the plant with the purpose of exploring its pharmaceutical and nutraceutical potentials.

12.
Toxicon ; 247: 107844, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-38960289

RESUMEN

A Mimosa pudica var. unijuga-associated toxicity affecting horses occurred in Araguari, Triângulo Mineiro, Southeast Brazil. Affected horses had gradual hair loss of the mane and tail and endocrine dermatosis after grazing for three months during the dry season on a paddock invaded by the plant. The main histological lesions include compact ortho-keratotic hyperkeratosis and numerous flame follicles. Toxicological analysis by HPLC-UV demonstrated 0.8 mg/g of mimosine in the leaves.


Asunto(s)
Enfermedades de los Caballos , Mimosa , Animales , Caballos , Enfermedades de los Caballos/inducido químicamente , Brasil , Alopecia/veterinaria , Hojas de la Planta/química , Enfermedades de la Piel/veterinaria , Enfermedades de la Piel/patología , Intoxicación por Plantas/veterinaria , Cromatografía Líquida de Alta Presión
13.
J Pharm Bioallied Sci ; 16(Suppl 2): S1330-S1334, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38882777

RESUMEN

A new area of nanotechnology, "green synthesis" studies nanomaterials utilizing natural biomaterials like plants, flowers, and microbesGreen nanoparticle synthesis offers various benefits, such as cost efficiency, pollution reduction, and environmental compatibility. Among nanoparticles, metallic variants have garnered the greatest attention due to their unique physical and chemical attributes. Strontium (Sr), known for promoting growth, aiding bone regeneration, and stimulating calcium signaling, holds significance in the medical domain. Consequently, Sr-based nanoparticles have gained interest in medical and dental applications due to their resemblance to calcium properties. Researchers worldwide are drawn to Mimosa pudica because of its pharmacological properties, including its ability to treat wounds, and its anti-diabetic, anti-toxin, anti-hepatotoxin, and antioxidant effects. Mimosa pudica mediated strontium nanoparticles' antioxidant activity was tested against FRAP assay, H2O2 assay, and DPPH assay with ascorbic acid as standard, where in all three assays, increasing concentration of Mimosa pudica mediated strontium nanoparticles exhibited increasing antioxidant activity which was similar to the ascorbic acid. Hence, this can be used as a novel antioxidant agent in the near future.

14.
Int J Biol Macromol ; 268(Pt 2): 131832, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38663704

RESUMEN

In this comprehensive investigation, a novel pH-responsive hydrogel system comprising mimosa seed mucilage (MSM), ß-cyclodextrin (ß-CD), and methacrylic acid (MAA) was developed via free radical polymerization technique to promote controlled drug delivery. The hydrogel synthesis involved strategic variations in polymer, monomer, and crosslinker content in fine-tuning its drug-release properties. The resultant hydrogel exhibited remarkable pH sensitivity, selectively liberating the model drug (Capecitabine = CAP) under basic conditions while significantly reducing release in an acidic environment. Morphological, thermal, and structural analyses proved that CAP has a porous texture, high stability, and an amorphous nature. In vitro drug release experiments showcased a sustained and controlled release profile. Optimum release (85.33 %) results were recorded over 24 h at pH 7.4 in the case of MMB9. Pharmacokinetic evaluation in healthy male rabbits confirmed bioavailability enhancement and sustained release capabilities. Furthermore, rigorous toxicity evaluations and histopathological analyses ensured the safety and biocompatibility of the hydrogel. This pH-triggered drug delivery system can be a promising carrier system for drugs involving frequent administrations.


Asunto(s)
Preparaciones de Acción Retardada , Liberación de Fármacos , Hidrogeles , Mimosa , Semillas , beta-Ciclodextrinas , Concentración de Iones de Hidrógeno , Animales , Conejos , Hidrogeles/química , Mimosa/química , Semillas/química , beta-Ciclodextrinas/química , Masculino , Sistemas de Liberación de Medicamentos , Mucílago de Planta/química , Portadores de Fármacos/química , Ácidos Polimetacrílicos/química
15.
J Ethnopharmacol ; 330: 118226, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38670401

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing pulmonary disorder that has a poor prognosis and high mortality. Although there has been extensive effort to introduce several new anti-fibrotic agents in the past decade, IPF remains an incurable disease. Mimosa pudica L., an indigenous Vietnamese plant, has been empirically used to treat respiratory disorders. Nevertheless, the therapeutic effects of M. pudica (MP) on lung fibrosis and the mechanisms underlying those effects remain unclear. AIM OF THE STUDY: This study investigated the protective effect of a crude ethanol extract of the above-ground parts of MP against pulmonary fibrogenesis. MATERIALS AND METHODS: Inflammatory responses triggered by TNFα in structural lung cells were examined in normal human lung fibroblasts and A549 alveolar epithelial cells using Western blot analysis, reverse transcription-quantitative polymerase chain reaction assays, and immunocytochemistry. The epithelial-to-mesenchymal transition (EMT) was examined via cell morphology observations, F-actin fluorescent staining, gene and protein expression measurements, and a wound-healing assay. Anti-fibrotic assays including collagen release, differentiation, and measurements of fibrosis-related gene and protein expression levels were performed on TGFß-stimulated human lung fibroblasts and lung fibroblasts derived from mice with fibrotic lungs. Finally, in vitro anti-fibrotic activities were validated using a mouse model of bleomycin-induced pulmonary fibrosis. RESULTS: MP alleviated the inflammatory responses of A549 alveolar epithelial cells and lung fibroblasts, as revealed by inhibition of TNFα-induced chemotactic cytokine and chemokine expression, along with inactivation of the MAPK and NFκB signalling pathways. MP also partially reversed the TGFß-promoted EMT via downregulation of mesenchymal markers in A549 cells. Importantly, MP decreased the expression levels of fibrosis-related genes/proteins including collagen I, fibronectin, and αSMA; moreover, it suppressed collagen secretion and prevented myofibroblast differentiation in lung fibroblasts. These effects were mediated by FOXO3 stabilization through suppression of TGFß-induced ERK1/2 phosphorylation. MP consistently protected mice from the onset and progression of bleomycin-induced pulmonary fibrosis. CONCLUSION: This study explored the multifaceted roles of MP in counteracting the pathobiological processes of lung fibrosis. The results suggest that further evaluation of MP could yield candidate therapies for IPF.


Asunto(s)
Transición Epitelial-Mesenquimal , Proteína Forkhead Box O3 , Sistema de Señalización de MAP Quinasas , Extractos Vegetales , Fibrosis Pulmonar , Animales , Humanos , Masculino , Ratones , Células A549 , Antifibróticos/farmacología , Bleomicina , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Proteína Forkhead Box O3/metabolismo , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/patología , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Endogámicos C57BL , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/inducido químicamente
16.
Int J Biol Macromol ; 270(Pt 2): 132390, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754657

RESUMEN

Mimosa pudica (MP) is an ornamental plant due to seismonastic movements that close leaves and fall petioles in response to touch, wind, light, heat, cold, and vibration. The seeds of MP secrete smart, biocompatible, and non-toxic mucilage that has captivated researchers due to its widespread use in various fields such as pharmaceuticals and biotechnology. The mucilage is responsive to pH, salt solutions, and solvents and acts as a binder in tablet formulations for targeted drug delivery. The mucilage is chemically modifiable via acetylation, succinylation, and graft polymerization. Chemically modified MP mucilage appeared supersorbent for heavy metal ion uptake. Nanoparticles synthesized using mucilage as a reducing and capping agent displayed significant antimicrobial and wound-healing potential. Crosslinking of mucilage using citric acid as a crosslinking agent offers a sustained release of drugs. The present review is aimed to discuss extraction optimization, structure, modification, and the stimuli-responsive nature of mucilage. The review article will cover the potential of mucilage as emulsifying, suspending, bio-adhesive, gelling, and thickening agent. The role of mucilage as a capping and reducing agent for nanoparticles will also be discussed.


Asunto(s)
Mimosa , Mucílago de Planta , Semillas , Semillas/química , Mimosa/química , Mucílago de Planta/química , Nanopartículas/química
17.
J Pharm Bioallied Sci ; 16(Suppl 2): S1340-S1344, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38882787

RESUMEN

Nanotechnology is emerging as a promising approach in the development of novel therapeutic strategies. Nanoparticles, due to their unique physicochemical properties and small size, have the potential to improve the delivery of therapeutic agents, enhance their bioavailability, and increase their efficacy. Among various types of nanoparticles, strontium nanoparticles have gained attention due to their potential antidiabetic activity and cytotoxic effects against cancer cells. Mimosa pudica, also known as "Sensitive Plant" or "Touch-Me-Not," is a medicinal plant known for its diverse pharmacological activities, including antidiabetic and anticancer properties. Recent research has focused on the synthesis of strontium nanoparticles by using Mimosa pudica as a green and sustainable approach. These nanoparticles have shown promising results in terms of their antidiabetic activity and cytotoxic effects against cancer cells. Thus, in this study, the antidiabetic effect was studied using the alpha-amylase inhibitor assay, and the cytotoxic effect was studied using the brine shrimp lethality assay. In these assays, increasing concentration of Mimosa pudica-mediated strontium nanoparticles exhibited increasing antidiabetic and cytotoxic effects, which was similar to the standard used, which is acarbose. Hence, this can be used as a novel antidiabetic and cytotoxic agent in the future.

18.
J Pharm Bioallied Sci ; 16(Suppl 2): S1335-S1339, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38882793

RESUMEN

Background: Considerable focus has been directed toward green synthesis as a dependable, sustainable, and environmentally friendly approach for synthesizing various nanomaterials. Mimosa pudica, a quickly grown pantropical weed, has been used widely for its anti-inflammatory and antimicrobial activity in traditional medicine. The development of strontium-based nanoparticles and nanoparticles linked with strontium has garnered attention in recent years due to their established utility in diverse domains such as effective drug distribution, bioimaging, cancer treatment, and advancements in bone engineering. Aims and Objectives: To examine the green synthesise of strontium nanoparticles using Mimosa pudica and its anti-inflammatory activity. Material and Methods: Mimosa pudica-mediated strontium nanoparticles' anti-inflammatory activity was tested using bovine serum albumin denaturation assay, egg albumin denaturation assay, and membrane stabilization assay with diclofenac sodium as the standard. Result: In all three assays, increasing concentration of Mimosa pudica-mediated strontium nanoparticles exhibited an increasing anti-inflammatory effect, which was similar to the standard diclofenac sodium. Conclusion: Consequently, this holds promise as a new potential anti-inflammatory agent in forthcoming applications.

19.
Ann Bot ; 112(1): 179-96, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23712450

RESUMEN

BACKGROUND AND AIMS: The large monophyletic genus Mimosa comprises approx. 500 species, most of which are native to the New World, with Central Brazil being the main centre of radiation. All Brazilian Mimosa spp. so far examined are nodulated by rhizobia in the betaproteobacterial genus Burkholderia. Approximately 10 Mya, transoceanic dispersal resulted in the Indian subcontinent hosting up to six endemic Mimosa spp. The nodulation ability and rhizobial symbionts of two of these, M. hamata and M. himalayana, both from north-west India, are here examined, and compared with those of M. pudica, an invasive species. METHODS: Nodules were collected from several locations, and examined by light and electron microscopy. Rhizobia isolated from them were characterized in terms of their abilities to nodulate the three Mimosa hosts. The molecular phylogenetic relationships of the rhizobia were determined by analysis of 16S rRNA, nifH and nodA gene sequences. KEY RESULTS: Both native Indian Mimosa spp. nodulated effectively in their respective rhizosphere soils. Based on 16S rRNA, nifH and nodA sequences, their symbionts were identified as belonging to the alphaproteobacterial genus Ensifer, and were closest to the 'Old World' Ensifer saheli, E. kostiensis and E. arboris. In contrast, the invasive M. pudica was predominantly nodulated by Betaproteobacteria in the genera Cupriavidus and Burkholderia. All rhizobial strains tested effectively nodulated their original hosts, but the symbionts of the native species could not nodulate M. pudica. CONCLUSIONS: The native Mimosa spp. in India are not nodulated by the Burkholderia symbionts of their South American relatives, but by a unique group of alpha-rhizobial microsymbionts that are closely related to the 'local' Old World Ensifer symbionts of other mimosoid legumes in north-west India. They appear not to share symbionts with the invasive M. pudica, symbionts of which are mostly beta-rhizobial.


Asunto(s)
Especies Introducidas , Mimosa/microbiología , Rhizobium/fisiología , Simbiosis , Inoculantes Agrícolas/genética , Alphaproteobacteria/genética , Alphaproteobacteria/aislamiento & purificación , Biodiversidad , Burkholderia/genética , Burkholderia/aislamiento & purificación , Cupriavidus/genética , Cupriavidus/aislamiento & purificación , Genes Bacterianos , India , Filogenia , Raíces de Plantas/genética , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética , América del Sur
20.
BMC Complement Med Ther ; 23(1): 232, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37438777

RESUMEN

BACKGROUND: Candida albicans causes high-mortality candidiasis. Antifungal drug resistance demands the development of virulence factor-targeting drugs, particularly antibiofilm. This study screened the effects of five invasive plants growing in Indonesia (Mimosa pudica, Lantana camara, Acacia mangium, Ageratina riparia, and Mikania micrantha) against C. albicans biofilms. Antifungal activity, antiphospholipase activity, biofilm morphology of C. albicans, and cytotoxic capacity were also evaluated. METHODS: Maceration was used to extract the plants, and the most active extract inhibiting the biofilms was fractionated using liquid-liquid fractionation. Antibiofilm activity was determined by a colorimetric assay, MTT. Antifungal activity was tested using the broth microdilution method. A phospholipase assay was performed using the egg-yolk agar method. Influence on the C. albicans morphology was assessed using scanning electron microscopy (SEM). The cytotoxic effect was carried out against Vero and HeLa cell lines. RESULTS: M. pudica extracts showed the most potent antifungal efficacy with minimum inhibitory concentration (MIC) of 15.62 µg/mL and 7.81 µg/mL for aerial parts and roots, respectively. At high concentrations (500 µg/mL and 250 µg/mL), ethanol extract of M. pudica aerial parts strongly inhibited the phospholipase activity. Ethyl-acetate fraction of M. pudica aerial parts demonstrated the most potent antibiofilm activity against 24 h old biofilm of C. albicans with an inhibitory concentration (53.89%) of 62.5 µg/mL showed no cytotoxicity in both Vero and HeLa cells. This fraction affected the morphology of C. albicans and contained promising compounds for inhibiting the 24 h old biofilm of C. albicans. CONCLUSIONS: Invasive M. pudica plant inhibited the growth of planktonic C. albicans cells and its ethyl acetate fraction decreased the metabolic activity of C. albicans biofilms. This result demonstrates the potential of invasive M. pudica plant to reduce biofilm-associated candida infection.


Asunto(s)
Candida albicans , Candidiasis , Humanos , Células HeLa , Indonesia , Antifúngicos/farmacología , Biopelículas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda