Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Brief Bioinform ; 25(1)2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-38205966

RESUMEN

Multi-omics data integration is a complex and challenging task in biomedical research. Consensus clustering, also known as meta-clustering or cluster ensembles, has become an increasingly popular downstream tool for phenotyping and endotyping using multiple omics and clinical data. However, current consensus clustering methods typically rely on ensembling clustering outputs with similar sample coverages (mathematical replicates), which may not reflect real-world data with varying sample coverages (biological replicates). To address this issue, we propose a new consensus clustering with missing labels (ccml) strategy termed ccml, an R protocol for two-step consensus clustering that can handle unequal missing labels (i.e. multiple predictive labels with different sample coverages). Initially, the regular consensus weights are adjusted (normalized) by sample coverage, then a regular consensus clustering is performed to predict the optimal final cluster. We applied the ccml method to predict molecularly distinct groups based on 9-omics integration in the Karolinska COSMIC cohort, which investigates chronic obstructive pulmonary disease, and 24-omics handprint integrative subgrouping of adult asthma patients of the U-BIOPRED cohort. We propose ccml as a downstream toolkit for multi-omics integration analysis algorithms such as Similarity Network Fusion and robust clustering of clinical data to overcome the limitations posed by missing data, which is inevitable in human cohorts consisting of multiple data modalities. The ccml tool is available in the R language (https://CRAN.R-project.org/package=ccml, https://github.com/pulmonomics-lab/ccml, or https://github.com/ZhoulabCPH/ccml).


Asunto(s)
Asma , Multiómica , Adulto , Humanos , Consenso , Análisis por Conglomerados , Algoritmos , Asma/genética
2.
Neural Netw ; 165: 60-76, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37276811

RESUMEN

Hashing-based cross-modal retrieval methods have become increasingly popular due to their advantages in storage and speed. While current methods have demonstrated impressive results, there are still several issues that have not been addressed. Specifically, many of these approaches assume that labels are perfectly assigned, despite the fact that in real-world scenarios, labels are often incomplete or partially missing. There are two reasons for this, as manual labeling can be a complex and time-consuming task, and annotators may only be interested in certain objects. As such, cross-modal retrieval with missing labels is a significant challenge that requires further attention. Moreover, the similarity between labels is frequently ignored, which is important for exploring the high-level semantics of labels. To address these limitations, we propose a novel method called Cross-Modal Hashing with Missing Labels (CMHML). Our method consists of several key components. First, we introduce Reliable Label Learning to preserve reliable information from the observed labels. Next, to infer the uncertain part of the predicted labels, we decompose the predicted labels into latent representations of labels and samples. The representation of samples is extracted from different modalities, which assists in inferring missing labels. We also propose Label Correlation Preservation to enhance the similarity between latent representations of labels. Hash codes are then learned from the representation of samples through Global Approximation Learning. We also construct a similarity matrix according to predicted labels and embed it into hash codes learning to explore the value of labels. Finally, we train linear classifiers to map original samples to a low-dimensional Hamming space. To evaluate the efficacy of CMHML, we conduct extensive experiments on four publicly available datasets. Our method is compared to other state-of-the-art methods, and the results demonstrate that our model performs competitively even when most labels are missing.


Asunto(s)
Aprendizaje , Semántica , Incertidumbre
3.
Front Neurol ; 14: 1165267, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37305756

RESUMEN

Introduction: Machine learning (ML) has great potential for using health data to predict clinical outcomes in individual patients. Missing data are a common challenge in training ML algorithms, such as when subjects withdraw from a clinical study, leaving some samples with missing outcome labels. In this study, we have compared three ML models to determine whether accounting for label uncertainty can improve a model's predictions. Methods: We used a dataset from a completed phase-III clinical trial that evaluated the efficacy of minocycline for delaying the conversion from clinically isolated syndrome to multiple sclerosis (MS), using the McDonald 2005 diagnostic criteria. There were a total of 142 participants, and at the 2-year follow-up 81 had converted to MS, 29 remained stable, and 32 had uncertain outcomes. In a stratified 7-fold cross-validation, we trained three random forest (RF) ML models using MRI volumetric features and clinical variables to predict the conversion outcome, which represented new disease activity within 2 years of a first clinical demyelinating event. One RF was trained using subjects with the uncertain labels excluded (RFexclude), another RF was trained using the entire dataset but with assumed labels for the uncertain group (RFnaive), and a third, a probabilistic RF (PRF, a type of RF that can model label uncertainty) was trained on the entire dataset, with probabilistic labels assigned to the uncertain group. Results: Probabilistic random forest outperformed both the RF models with the highest AUC (0.76, compared to 0.69 for RFexclude and 0.71 for RFnaive) and F1-score (86.6% compared to 82.6% for RFexclude and 76.8% for RFnaive). Conclusion: Machine learning algorithms capable of modeling label uncertainty can improve predictive performance in datasets in which a substantial number of subjects have unknown outcomes.

4.
Front Radiol ; 1: 796078, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37492176

RESUMEN

In breast cancer screening, binary classification of mammograms is a common task aiming to determine whether a case is malignant or benign. A Computer-Aided Diagnosis (CADx) system based on a trainable classifier requires clean data and labels coming from a confirmed diagnosis. Unfortunately, such labels are not easy to obtain in clinical practice, since the histopathological reports of biopsy may not be available alongside mammograms, while normal cases may not have an explicit follow-up confirmation. Such ambiguities result either in reducing the number of samples eligible for training or in a label uncertainty that may decrease the performances. In this work, we maximize the number of samples for training relying on multi-task learning. We design a deep-neural-network-based classifier yielding multiple outputs in one forward pass. The predicted classes include binary malignancy, cancer probability estimation, breast density, and image laterality. Since few samples have all classes available and confirmed, we propose to introduce the uncertainty related to the classes as a per-sample weight during training. Such weighting prevents updating the network's parameters when training on uncertain or missing labels. We evaluate our approach on the public INBreast and private datasets, showing statistically significant improvements compared to baseline and independent state-of-the-art approaches. Moreover, we use mammograms from Susan G. Komen Tissue Bank for fine-tuning, further demonstrating the ability to improve the performances in our multi-task learning setup from raw clinical data. We achieved the binary classification performance of AUC = 80.46 on our private dataset and AUC = 85.23 on the INBreast dataset.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda