Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
J Insect Sci ; 24(4)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39023176

RESUMEN

Tephritis angustipennis (Diptera: Tephritidae) and Campiglossa loewiana (Diptera: Tephritidae) are phytophagous pests in China. Their damage has significantly impacted the collection and cultivation of germplasm resources of native Asteraceae plants. However, the genetic characteristics and structure of their population are unclear. This study focused on the highly damaging species of T. angustipennis and C. loewiana collected from the three-river source region (TRSR). We amplified the mitochondrial cytochrome C oxidase subunit I (mtCOI) gene sequences of these pests collected from this area and compared them with COI sequences from GenBank. We also analyzed their genetic diversity and structure. In T. angustipennis, 5 haplotypes were identified from 5 geographic locations; the genetic differentiation between France population FRPY (from Nylandia, Uusimaa) and China populations GLJZ (from Dehe Longwa Village, Maqin County), GLDR (from Zhique Village, Dari County), and GLMQ (from Rijin Village, Maqin County) was the strongest. GLJZ exhibited strong genetic differentiation from GLDR and GLMQ, with relatively low gene flow. For C. loewiana, 11 haplotypes were identified from 5 geographic locations; the genetic differentiation between the Chinese population GLMQ-YY (from Yangyu Forest Farm, Maqin County) and Finnish population FDNL (from Nylandia, Uusimaa) was the strongest, with relatively low gene flow, possibly due to geographical barriers in the Qinghai-Tibet plateau. Only 1 haplotype was identified across GLDR, GLMQ, and GLBM. High gene flow between distant locations indicates that human activities or wind dispersal may facilitate the dispersal of fruit flies and across different geographic. Geostatistical analysis suggested a recent population expansion of these 2 species in TRSR. Our findings provide technical references for identifying pests in the TRSR region and theoretical support for managing resistance, monitoring pest occurrences, analyzing environmental adaptability, and formulating biological control strategies for Tephritidae pests on Asteraceae plants.


Asunto(s)
Código de Barras del ADN Taxonómico , Complejo IV de Transporte de Electrones , Variación Genética , Tephritidae , Animales , Tephritidae/genética , China , Complejo IV de Transporte de Electrones/genética , Haplotipos , Filogenia , Proteínas de Insectos/genética
2.
J Insect Sci ; 24(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38195069

RESUMEN

The Asian citrus psyllid (ACP) is the main vector of Citrus Huanglongbing, the most damaging citrus disease, causing significant financial losses in the citrus industry. Global warming has expanded the habitat of this pest, allowing it to continue its northward migration to China. Population genetic information of ACP is fundamentally essential for species management. This study investigated the genetic diversity and population structure of Chinese ACP using the mitochondrial cytochrome oxidase subunit I gene by dataset comprised 721 sequences from 27 geographic sites in China. Low haplotype diversity (0.323 ±â€…0.022) and low nucleotide diversity (0.00071 ±â€…0.00007) were observed in the entire population, which may indicate recent founder events. Twenty-three haplotypes were identified and clustered into 2 haplogroups: haplogroup I and haplogroup II. Haplogroup II included only 2 unique haplotypes, which occurred exclusively in the Southwest China ACP population. Genetic differentiation analyses were also indicative of Southwest China population was significantly differentiated from the remaining populations. Demographic history analysis showed that ACP population in China has experienced demographic expansion. Our results provided a better understanding of the genetic distribution patterns and structures of ACP populations in China.


Asunto(s)
Citrus , Hemípteros , Animales , Hemípteros/genética , China , Citrus/genética , Variación Genética
3.
Glob Ecol Biogeogr ; 32(9): 1508-1521, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38708411

RESUMEN

Aim: To investigate the drivers of intra-specific genetic diversity in centipedes, a group of ancient predatory soil arthropods. Location: Asia, Australasia and Europe. Time Period: Present. Major Taxa Studied: Centipedes (Class: Chilopoda). Methods: We assembled a database of 1245 mitochondrial cytochrome c oxidase subunit I sequences representing 128 centipede species from all five orders of Chilopoda. This sequence dataset was used to estimate genetic diversity for centipede species and compare its distribution with estimates from other arthropod groups. We studied the variation in centipede genetic diversity with species traits and biogeography using a beta regression framework, controlling for the effect of shared evolutionary history within a family. Results: A wide variation in genetic diversity across centipede species (0-0.1713) falls towards the higher end of values among arthropods. Overall, 27.57% of the variation in mitochondrial COI genetic diversity in centipedes was explained by a combination of predictors related to life history and biogeography. Genetic diversity decreased with body size and latitudinal position of sampled localities, was greater in species showing maternal care and increased with geographic distance among conspecifics. Main Conclusions: Centipedes fall towards the higher end of genetic diversity among arthropods, which may be related to their long evolutionary history and low dispersal ability. In centipedes, the negative association of body size with genetic diversity may be mediated by its influence on local abundance or the influence of ecological strategy on long-term population history. Species with maternal care had higher genetic diversity, which goes against expectations and needs further scrutiny. Hemispheric differences in genetic diversity can be due to historic climatic stability and lower seasonality in the southern hemisphere. Overall, we find that despite the differences in mean genetic diversity among animals, similar processes related to life-history strategy and biogeography are associated with the variation within them.

4.
Plant Dis ; 107(7): 2070-2080, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36691277

RESUMEN

The distribution range of root-knot nematode Meloidogyne graminicola is rapidly expanding, posing a severe threat to rice production. In this study, the sequences of cytochrome oxidase subunit I (COI) genes of rice M. graminicola populations from all reported provinces in China were amplified and sequenced by PCR. The distribution pattern and phylogenetic tree showed that all 54 M. graminicola populations in China have distinct geographical distribution characteristics; specifically, cluster 1 (southern China), cluster 2 (central south and southwest China), and cluster 3 (central and eastern China). The high haplotype diversity (Hd = 0.646) and low nucleotide diversity (π = 0.00682), combined with the negative value of Tajima's D (-1.252) and Fu's Fs (-3.06764), suggested that all nematode populations were expanding. The existence of high genetic differentiation (Fst = 0.5933) and low gene flow (Nm = 0.3333) indicated that there was a block of gene exchange between most populations. Mutation accumulation with population expansion might be directly responsible for the high genetic differentiation; therefore, the tested nematode population showed high within-group genetic variation (96.30%). The haplotype Hap8 was located at the bottom of the network topology, with the widest distribution and the highest frequency (59.26%), indicating that it was the ancestral haplotype. The populations in cluster 3 were newly invasive according to the lowest frequency of occurrence of Hap8, the highest number of endemic haplotypes, and the highest total haplotype frequency (60%). In contrast, cluster 1 having the highest genetic diversity (Hd = 0.772, π = 0.01127) indicated that it was the most primitive. Interestingly, the highest gene flow (Nm > 1), lowest genetic differentiation (Fst ≤ 0.33), and closest genetic distance (0.000) only occurred between the Guangdong/Hainan population and others, which suggested that there might be channels for gene exchange between them and that long-distance dispersal occurred. This suggestion is further confirmed by the weak correlation between genetic distance and geographical distance. Based on these data, a hypothesis can be drawn that M. graminicola populations in China were spreading from south to north, specifically from Guangdong and Hainan Provinces to other regions. Natural selection (including anthropogenic) and genetic drift were the main drivers of their evolution. Coincidentally, this hypothesis was consistent with the gradual warming trend and the chronological order of reporting these populations. The main factors influencing current M. graminicola population expansion and distribution patterns might be geography, climate, long-distance seedling transport, interregional operations of agricultural machinery, and rotation mode. It reminds human beings of the necessity to be vigilant about preventing nematode disease according to local conditions all year round.


Asunto(s)
Oryza , Tylenchoidea , Animales , Humanos , Filogenia , Tylenchoidea/genética , Geografía , Flujo Genético , China
5.
Phytopathology ; 112(9): 1988-1997, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35509208

RESUMEN

Heterodera avenae, a globally distributed plant-parasitic nematode, is one of the most significant pests on cereal crops. In China, it is widely distributed in cereal-growing areas of 16 provinces and causes serious yield losses. In the present study, a total of 98 populations of H. avenae were collected from major wheat-growing regions in China and six other countries. The mitochondrial COI genes were amplified and analyzed. Forty-one mitochondrial COI haplotypes were identified, suggesting a high genetic diversity and endemism level of H. avenae in China. Phylogenetic analysis showed that H. avenae populations in China were divided into four clades. Significant evolutionary and genetic differences were found between Chinese (except Hubei) and foreign populations. Hap1, the most widely distributed haplotype, was considered to be a separate evolutionary origin in China. The gene flow of H. avenae from the northwestern region to the north China region and Huang-Huai-Hai region was significant, so as the direction between north China and Huang-Huai-Hai region. We speculate that water flowing from the Yellow River and mechanical harvesters promoted gene exchange among these groups. A distance-based redundancy analysis showed that genetic distances observed among H. avenae populations were explained foremost not only by geographic distance but also by temperature and precipitation. This study provides theoretical support for the origin and spread of H. avenae populations in China and elsewhere in the world.


Asunto(s)
Quistes , Tylenchoidea , Animales , Grano Comestible/parasitología , Filogenia , Filogeografía , Enfermedades de las Plantas/parasitología , Tylenchoidea/genética
6.
Biochem Genet ; 60(3): 969-986, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34611791

RESUMEN

To investigate the genetic diversity and genetic variations of four wild (Geoje, Jinhae, Yeosu, and Boryeong) and two hatchery (Goheung and Geoje) populations of purplish Washington clam (Saxidomus purpuratus), 421 bp sequences of the mitochondrial cytochrome c oxidase subunit I (COI) gene were analyzed. A total of 149 haplotypes were identified from 358 individuals from the four wild and two hatchery populations with 109 substitutions. The genetic diversity of the wild populations and Geoje hatchery population were high, whereas the total number of haplotypes, population-specific haplotypes, and haplotype diversity were comparatively low in the Goheung hatchery population. The fixation index (FST) indicated that there was no significant genetic difference between the four wild populations. However, the Goheung hatchery population was significantly different from that of the Geoje hatchery, exhibiting the most pronounced difference, and two wild populations (Jinhae and Yeosu). The low genetic diversity indices exhibited by the Goheung hatchery population might have resulted from farm propagation using a limited parental stock. Therefore, to maintain genetic diversity, a proper breeding management program using more progenitors is required in hatcheries, in addition to regular monitoring of both hatchery and wild populations.


Asunto(s)
Bivalvos , Explotaciones Pesqueras , Animales , Bivalvos/genética , Genes Mitocondriales , Variación Genética , Genética de Población , Haplotipos , Humanos
7.
Zoolog Sci ; 38(3): 223-230, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34057346

RESUMEN

Copepods in the family Dirivultidae are one of the most successful meiofauna in deep-sea hydrothermal vent fields and are abundant near venting fluid. Although vents are spatially limited ocean habitats, they are distributed widely in the Atlantic, Pacific, and Indian Oceans. However, knowledge of dirivultid biogeography and phylogeography remains limited, especially in the northwestern Pacific. Here, we obtained partial mitochondrial COI gene sequences of three dirivultids from the northwestern Pacific-Stygiopontius senokuchiae and an unidentified Chasmatopontius species from vent fields in the Izu-Bonin Arc and Stygiopontius senckenbergi associated with the squat lobster Shinkaia crosnieri in the Okinawa Trough-and analyzed them in comparison with existing data. The among-species sequence diversity exceeded 80 out of 560 bp (14% or 0.166 in Kimura 2-parameter distance), whereas the within-species diversity was less than 10 bp (2% or 0.018 in Kimura 2-parameter distance), with no genetic saturation. Each species formed a monophyletic clade and the genetic region targeted is deemed reliable for identifying species and populations for these copepods. Among the three genera targeted, only Chasmatopontius formed a monophyletic cluster, while Aphotopontius and Stygiopontius did not. Species delimitation analyses suggested the existence of cryptic species in Chasmatopontius. Subdivision among local populations was observed in Aphotopontius, but not in Stygiopontius in the same distribution, implying potential differences in dispersal ability among different genera of dirivultids. Further sampling is required, to fill the spatial gaps to elucidate the biogeography and evolution of dirivultids in the global deep ocean.


Asunto(s)
Distribución Animal , Copépodos/genética , Variación Genética , Respiraderos Hidrotermales , Animales , Océano Pacífico , Filogenia
8.
Parasitol Res ; 120(6): 2269-2274, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34002260

RESUMEN

The genus Eustrongylides Jägerskiöld, 1909 includes parasitic nematodes (Dioctophymatidae) affecting various fish species and piscivorous birds of freshwater ecosystems. Currently, there is little information on the molecular characterization of E. excisus based on nuclear ribosomal internal transcribed spacer (ITS) rDNA regions. However, before the present study, there had been no reports of characterizing the E. excisus using nuclear small subunit ribosomal RNA (SSU rRNA) and mitochondrial cytochrome c oxidase subunit I (COI) genes sequences. In the present study, Eustrongylides spp. larvae were collected from pike-perch Sander lucioperca (L.) in Northern Turkey, and characterized by sequencing of ITS regions, SSU rRNA, and COI markers. Larvae herein morphologically identified as the fourth stage of Eustrongylides spp. were genetically identified as E. excisus based on the ITS sequence analysis. This study is the first record of SSU rRNA and COI sequences for E. excisus in GenBank. This is also a molecular characterization of E. excisus for the first time in Turkey. The ITS, SSU rRNA, and COI sequences of E. excisus can be used to establish the phylogenetic relationships of Eustrongylides species from Turkey and worldwide for further studies.


Asunto(s)
Dioctophymatoidea/genética , Enfermedades de los Peces/parasitología , Percas/parasitología , Animales , ADN Ribosómico , Dioctophymatoidea/anatomía & histología , Dioctophymatoidea/clasificación , Ecosistema , Femenino , Agua Dulce , Larva/clasificación , Masculino , Filogenia , Turquía
9.
BMC Evol Biol ; 20(1): 154, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33213363

RESUMEN

BACKGROUND: The white-backed planthopper (WBPH), Sogatella furcifera (Horváth) (Hemiptera, Delphacidae), is a migratory pest of rice in Asia. Shandong Province, in northern China, is located on the migration pathway of WBPH between southern and northeast China. The potential sources of WBPH in northern China are poorly understood. We studied the sources of WBPH in Shandong Province by determining the population genetic structure of WBPH in 18 sites distributed in Shandong and in six regions of the Greater Mekong Subregion (GMS). We used mitochondrial gene and single-nucleotide polymorphism (SNP) markers for analysis. RESULTS: All of the WBPH populations studied in the seven regions had low genetic diversity. Pairwise FST values based on mtDNA ranged from - 0.061 to 0.285, while FST based on SNP data ranged from - 0.007 to 0.009. These two molecular markers revealed that 4.40% (mtDNA) and 0.19% (SNP) genetic variation could be explained by the interpopulation variation, while the rest came from intrapopulation variation. The populations in the seven geographic regions comprised four hypothetical genetic clusters (K = 4) not associated with geographic location. Eighty-four of 129 individuals distributed across the given area were designated as recent migrants or of admixed ancestry. Although the substantial migration presented, a weak but significant correlation between genetic and geographic distances was found (r = 0.083, P = 0.004). CONCLUSION: The Greater Mekong Subregion was the main genetic source of WBPH in Shandong, while other source populations may also exist. The genetic structure of WBPH is shaped by both migration and geographic barriers. These results help clarify the migration route and the source of WBPH in northern China.


Asunto(s)
Migración Animal , ADN Mitocondrial/genética , Genética de Población , Hemípteros , Polimorfismo de Nucleótido Simple , Animales , Asia , China , Hemípteros/genética , Oryza
10.
Zoolog Sci ; 37(4): 314-322, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32729709

RESUMEN

Acoel flatworms are simple bilaterians that lack digestive lumens and coelomic cavities. Although they are a significant taxon for evaluating the evolution of metazoans, suitable species for biological experiments are not available in Japan. We recently focused on Praesagittifera naikaiensis, which inhabits the sandy shores of intertidal zones in the Seto Inland Sea in Japan, as a candidate for a representative acoel species to be used in experiments. However, reports on its distribution range remain limited. Here, we surveyed the habitats of P. naikaiensis on 108 beaches along the Seto Inland Sea. Praesagittifera naikaiensis is reported here from 37 sites (six previously known and 31 newly discovered sites) spread over a wide area of the Seto Inland Sea, from Awaji Island in Hyogo Prefecture to Fukuoka Prefecture (364 km direct distance). Based on the mitochondrial cytochrome oxidase subunit I (COI) gene haplotypes, we evaluated the genetic diversity of 145 individuals collected from 33 sites. Out of 42 COI haplotypes, 13 haplotypes were shared by multiple individuals. The most frequent haplotype was observed in 67 individuals collected from 31 sites. Eight other haplotypes were detected at geographically distant locations (maximum of 299 km direct distance). Multiple haplotypes were found at 32 sites. These results demonstrate that sufficient genetic flow exists among P. naikaiensis populations throughout the Seto Inland Sea. Molecular phylogenetic analysis of the COI haplotypes of P. naikaiensis revealed that all specimens were grouped into one clade. The genetic homogeneity of the animals in this area favors their use as an experimental animal.


Asunto(s)
Distribución Animal , Filogenia , Platelmintos/genética , Platelmintos/fisiología , Animales , Haplotipos , Japón , Océanos y Mares , Platelmintos/anatomía & histología , Platelmintos/clasificación , Especificidad de la Especie
11.
J Nematol ; 522020.
Artículo en Inglés | MEDLINE | ID: mdl-33829187

RESUMEN

Root-knot nematode, Meloidogyne mali can cause damage in trees, shrubs, and herbaceous plants, and was placed on the EPPO Alert List in 2014. In the present study, we report a population isolated from Japanese maple. The recovered population is described by detailed morphological and molecular approaches. The molecular phylogentic analysis based on 28S rRNA, ITS, and mitochondrial COI genes places the population in the clade together with other M. mali sequences available in GenBank. The cloned sequences of the 28S rRNA gene revealed a high intragenomic rRNA polymorphism where the polymorphic copies are spread across M. mali clade. Similarly, we also found high variation in the mitochondrial COI gene. Among four haplotypes in M. mali, three occur in the newly found population. Our study provides the first report of intragenomic polymorphism in M. mali, and the results suggest that intragenomic polymorphism maybe widespread in Meloidogyne.

12.
J Nematol ; 522020.
Artículo en Inglés | MEDLINE | ID: mdl-33829207

RESUMEN

During a field survey for entomopathogenic nematodes in Georgia, in the territory of Borjomi-Kharagauli, a nematode population was isolated from the body of single dead beetle of Lucanus ibericus Motschulsky 1845 (Coleoptera: Lucanidae). Based on morphological characters and molecular analyses, the nematode species is identical to Pelodera strongyloides (Schneider, 1860, 1866), being the first record of this species in Georgia. Morphometrics of the Georgian population agree with the original description, and females differ from males by very few characters. The Georgian population of P. strongyloides was molecularly characterized by sequencing the D2 to D3 expansion domains of the 28S rRNA gene and two new molecular markers as the ITS and the mitochondrial COI gene. Phylogenetic analyses revealed that all P. strongyloides sequences grouped together along with all other Pelodera species.

13.
Bull Entomol Res ; 109(3): 300-308, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30269692

RESUMEN

The Asian chestnut gall wasp, Dryocosmus kuriphilus, is an invasive pest causing significant damage to chestnut trees (Castanea spp., Fagaceae). Originating from China, it has recently invaded a wide range of regions in Europe and North America. Understanding the population genetic structure of important invasive pests is very useful for improving the knowledge concerning routes of expansion and colonizing capacity. Despite its economic importance, limited attention has been given to D. kuriphilus origin and spread, or to its genetic structure. In this study, D. kuriphilus populations sampled in eight European countries were screened using both mitochondrial (cytochrome c oxidase subunit 1; COI) and nuclear (internal transcribed spacer 2; ITS2) sequences, and Amplified Fragment Length Polymorphism (AFLP) markers. The molecular markers COI and ITS2 highlighted the presence of a single haplotype in all the studied populations. The recorded mitochondrial haplotype was identical to one of the most widespread haplotypes occurring in the native area (China). AFLP results indicated that D. kuriphilus individuals belong to two genetically distinct clusters without any further geographic clustering. These results suggest that D. kuriphilus populations in Europe could be the result of a single introduction of a Chinese founder population characterized by two genetically distinct lineages that subsequently spread rapidly across Europe. However, the possibility that populations originated from multiple introductions of the same Chinese mitochondrial haplotype cannot be excluded. The reported results provide useful information concerning this invasive species, potentially facilitating integrated pest management.


Asunto(s)
Distribución Animal , Especies Introducidas , Avispas/clasificación , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Animales , Código de Barras del ADN Taxonómico , ADN Mitocondrial , ADN Espaciador Ribosómico , Europa (Continente) , Fagaceae/parasitología , Haplotipos , Análisis de Secuencia de ADN , Avispas/genética
14.
Syst Biol ; 65(6): 1024-1040, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27288478

RESUMEN

The proliferation of DNA data is revolutionizing all fields of systematic research. DNA barcode sequences, now available for millions of specimens and several hundred thousand species, are increasingly used in algorithmic species delimitations. This is complicated by occasional incongruences between species and gene genealogies, as indicated by situations where conspecific individuals do not form a monophyletic cluster in a gene tree. In two previous reviews, non-monophyly has been reported as being common in mitochondrial DNA gene trees. We developed a novel web service "Monophylizer" to detect non-monophyly in phylogenetic trees and used it to ascertain the incidence of species non-monophyly in COI (a.k.a. cox1) barcode sequence data from 4977 species and 41,583 specimens of European Lepidoptera, the largest data set of DNA barcodes analyzed from this regard. Particular attention was paid to accurate species identification to ensure data integrity. We investigated the effects of tree-building method, sampling effort, and other methodological issues, all of which can influence estimates of non-monophyly. We found a 12% incidence of non-monophyly, a value significantly lower than that observed in previous studies. Neighbor joining (NJ) and maximum likelihood (ML) methods yielded almost equal numbers of non-monophyletic species, but 24.1% of these cases of non-monophyly were only found by one of these methods. Non-monophyletic species tend to show either low genetic distances to their nearest neighbors or exceptionally high levels of intraspecific variability. Cases of polyphyly in COI trees arising as a result of deep intraspecific divergence are negligible, as the detected cases reflected misidentifications or methodological errors. Taking into consideration variation in sampling effort, we estimate that the true incidence of non-monophyly is ∼23%, but with operational factors still being included. Within the operational factors, we separately assessed the frequency of taxonomic limitations (presence of overlooked cryptic and oversplit species) and identification uncertainties. We observed that operational factors are potentially present in more than half (58.6%) of the detected cases of non-monophyly. Furthermore, we observed that in about 20% of non-monophyletic species and entangled species, the lineages involved are either allopatric or parapatric-conditions where species delimitation is inherently subjective and particularly dependent on the species concept that has been adopted. These observations suggest that species-level non-monophyly in COI gene trees is less common than previously supposed, with many cases reflecting misidentifications, the subjectivity of species delimitation or other operational factors.


Asunto(s)
Clasificación/métodos , Lepidópteros/clasificación , Lepidópteros/genética , Filogenia , Animales , Sesgo , Código de Barras del ADN Taxonómico , ADN Mitocondrial , Genes Mitocondriales
15.
Mol Phylogenet Evol ; 94(Pt B): 814-826, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26484942

RESUMEN

A molecular taxonomic study of the bladed Bangiales of the South Eastern Pacific (coast of Chile) was undertaken based on sequence data of the mitochondrial COI and chloroplast rbcL for 193 specimens collected from Arica (18°S) in the north to South Patagonia (53°S) in the south. The results revealed for the first time that four genera, Porphyra, Pyropia, Fuscifolium and Wildemania were present in the region. Species delimitation was determined based on a combination of a General Mixed Yule Coalescence model (GMYC) and Automatic Barcode Gap Discovery (ABGD) coupled with detection of monophyly in tree reconstruction. The overall incongruence between the species delimitation methods within each gene was 29%. The GMYC method led to over-splitting groups, whereas the ABGD method had a tendency to lump groups. Taking a conservative approach to the number of putative species, at least 18 were recognized and, with the exception of the recently described Pyropia orbicularis, all were new to the Chilean flora. Porphyra and Pyropia were the most diverse genera with eight 'species' each, whereas only a 'single' species each was found for Fuscifolium and Wildemania. There was also evidence of recently diverging groups: Wildemania sp. was distinct but very closely related to W. amplissima from the Northern Hemisphere and raises questions in relation to such disjunct distributions. Pyropia orbicularis was very closely related to two other species, making species delimitation very difficult but provides evidence of an incipient speciation. The difference between the 'species' discovered and those previously reported for the region is discussed in relation to the difficulty of distinguishing species based on morphological identification.


Asunto(s)
Rhodophyta/clasificación , Evolución Biológica , Chile , Código de Barras del ADN Taxonómico/métodos , Marcadores Genéticos , Especiación Genética , Variación Genética , Filogenia , Porphyra , Rhodophyta/genética
16.
Zoolog Sci ; 33(4): 401-6, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27498799

RESUMEN

We investigated the phylogenetic relationships and divergence times within the genus Auritibicen(Cicadidae: Cicadinae: Cryptotympanini), analyzing five Japanese species (A. japonicus, A. bihamatus,A. kyushyuensis, A. esakii and A. flammatus) and three species from East Asian mainland and Taiwan (A. atrofasciatus, A. intermedius and A. chujoi) using mitochondrial cytochrome oxidase subunit I (COI) and nuclear elongation factor 1-alpha (EF-1a) gene sequences. Although the EF-1a gene tree did not resolve the relationships among these Auritibicen species, the trees based on COI gene and the combined data set showed that Japanese taxa comprised three distinct lineages: the individual species A. flammatus and A. bihamatus, and the A. japonicus group, comprising A. japonicus, A. esakii and A. kyushyuensis from Japan and A. intermedius from Korea. In A. kyushyuensis, which comprises three populations in Kyushu, western Honshu and Shikoku, the specimens from western Honshu and Shikoku were closely related to each other, but not to the specimen from Kyushu; instead, they were sister to the Korean A. intermedius. The incongruence between the gene tree and species tree necessitates further population genetic and morphological studies to confirm the classification and species status of the western Honshu and Shikoku populations of A. kyushyuensis, which were originally described as two independent species. Divergence time estimation suggested that the most recent common ancestor of Auritibicen species studied dated back to the late Pliocene and that the species of the A. japonicus group diverged during the mid Pleistocene. Thus, the Pleistocene climatic fluctuation may have promoted the divergence of the Auritibicen species.


Asunto(s)
ADN Mitocondrial/genética , Hemípteros/genética , Filogenia , Animales , Secuencia de Bases , Japón
17.
Bull Entomol Res ; 106(1): 63-72, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26490301

RESUMEN

Aphids are among pests of economic importance throughout the world. Together with transmitting plant viruses, aphids are capable of inflicting severe crop production losses. They also excrete honeydew that favours the growth of sooty mold which reduces the quality of vegetables and fruits and hence their market values. Rapid and accurate identification of aphids to the species level is a critical component in effective pest management and plant quarantine systems. Even though morphological taxonomy has made a tremendous impact on species-level identifications, polymorphism, morphological plasticity and immature stages are among the many challenges to accurate identification. In addition, their small size, presence of cryptic species and damaged specimens dictate the need for a strategy that will ensure timely and accurate identification. In this study, polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP)-based on mitochondrial cytochrome c oxidase subunit I gene and DNA barcoding were applied to identify different aphid species collected from different agro-ecological zones of Kenya. Three restriction enzymes RsaI, AluI and Hinf1 produced patterns that allowed unambiguous identification of the species except Aphis craccivora and Aphis fabae. Analyses of the barcode region indicated intraspecific and interspecific sequence divergences of 0.08 and 6.63%, respectively. DNA barcoding identified all species, including the morphologically indistinguishable A. craccivora and A. fabae and separated two subspecies of A. fabae. Based on these results, both PCR-RFLPs and DNA barcoding could provide quick and accurate tools for identification of aphid species within Aphididae subsequently aiding in effective pest management programmes and enhance plant quarantine systems.


Asunto(s)
Áfidos/clasificación , Código de Barras del ADN Taxonómico , Control de Insectos , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , Animales , Áfidos/genética , Áfidos/crecimiento & desarrollo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Kenia , Datos de Secuencia Molecular , Ninfa/clasificación , Ninfa/genética , Ninfa/crecimiento & desarrollo , Filogenia , Análisis de Secuencia de ADN
18.
Ecotoxicology ; 24(7-8): 1557-65, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25967938

RESUMEN

Neanthes glandicincta (Nereididae, Polychaeta) is the first numerically dominant benthic infauna in the Mai Po international Ramsar site, Hong Kong and also an economically important species for food source of birds and fishes. In present study, highly conserved nuclear ribosomal DNA (SSU and LSU rDNA) and mitochondrial COI gene were employed to study the population structure of N. glandicincta in the subtropical mudflat. The specimens were collected from five localities in February 2006, February-August 2007 and preserved at -80 °C, methanol or formalin, respectively. DNA extraction efficiency was the highest in fresh materials and lowest in formalin-fixed samples. The 18S (1774 bp), 28S D1 (383 bp) and COI genes were sequenced and analyzed. Both 18S and 28S D1 rDNA were highly conserved and showed no difference among the populations, whereas COI gene exhibited relatively high-level intraspecific polymorphism (2.2 %). The population from onshore and near mangrove station was phylogenetic different from other sites, indicating restricted gene exchange between the region of river mouth and mangrove forest. The mangrove may form a barrier for the dispersal of pelagic/benthic larvae of the population, which indicates that the population genetic difference is related to different habitats.


Asunto(s)
Poliquetos/genética , Polimorfismo Genético , Animales , Complejo IV de Transporte de Electrones/genética , Hong Kong , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 18S/genética , ARN Ribosómico 28S/genética , Análisis de Secuencia de ADN
19.
J Insect Sci ; 152015.
Artículo en Inglés | MEDLINE | ID: mdl-26136498

RESUMEN

The genetic differentiation and genetic structure of the peach fruit moth, Carposina sasakii Matsumura (Lepidoptera: Carposinidae), was investigated in China, where the moth is native. The mitochondrial cytochrome c oxidase I (COI) gene of 180 individuals from 16 collections were sequenced and analyzed. The results showed that two sympatric and cryptic mtDNA lineages existed within C. sasakii in China. The genetic differentiation has significant correlation with the geographical distance, but has no evidence for host plant associations. Our results of haplotype distribution suggest that the C. sasakii individuals can naturally move between areas, while the movement of individuals between long-distance locations may be associated with human activities such as the transport of fruit. Finally, an mitochondrial COI gene PCR-RFLP method was developed to differentiate the two cryptic mtDNA lineages within C. sasakii, which provides rapid and reliable tool for the future research of the two lineages.


Asunto(s)
Especiación Genética , Mariposas Nocturnas/genética , Simpatría , Animales , Secuencia de Bases , China , Complejo IV de Transporte de Electrones/genética , Proteínas de Insectos/genética , Larva/clasificación , Larva/crecimiento & desarrollo , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Mariposas Nocturnas/clasificación , Mariposas Nocturnas/crecimiento & desarrollo , Filogenia , Alineación de Secuencia
20.
Mol Phylogenet Evol ; 79: 179-98, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24931730

RESUMEN

We sequenced COI and COII mitochondrial genes of 141 Neotropical woolly monkeys to provide new insights concerning their phylogeography and phylogenetic relationships. For the first time, eight individuals of the endemic and extremely rare Peruvian yellow-tailed woolly monkey (flavicauda) were sequenced at these genes and compared with other Lagothrix taxa (poeppigii, lagotricha, lugens and cana). There were four main results. (1) L. flavicauda showed a gene diversity of zero, whereas poeppigii and lugens showed high levels of gene diversity and lagotricha and cana showed more modest levels of gene diversity. The absence of gene diversity found for L. flavicauda strongly supports that it is one of the 25 more endangered primates on earth; (2) Our genetic distance and phylogenetic analyses, which included many cases of genetic introgression and recent hybridization, suggest that all woolly monkeys could be included in one unique genus, Lagotrix, divided into two species: L. flavicauda and L. lagotricha. The last species is divided into at least four subspecies. Our molecular results agree with Fooden's (1963) classification, but do not support the classification proposed by Groves (2001). (3) Poeppigii was the first taxon within L. lagotricha to experience a mitochondrial haplotype diversification, while cana and lagotricha experienced more recent mitochondrial haplotype diversification; (4) Poeppigii and lagotricha were the taxa which showed the greatest evidence of population expansions in different Pleistocene periods, whereas lugens experienced a population declination in the last 25,000 YA.


Asunto(s)
Atelinae/clasificación , Genes Mitocondriales , Especiación Genética , Filogenia , Animales , Atelinae/genética , Variación Genética , Haplotipos , Hibridación Genética , Modelos Genéticos , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda