Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Mol Cell ; 73(5): 915-929.e6, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30849395

RESUMEN

DNA replication errors generate complex chromosomal rearrangements and thereby contribute to tumorigenesis and other human diseases. One mechanism that triggers these errors is mitotic entry before the completion of DNA replication. To address how mitosis might affect DNA replication, we used Xenopus egg extracts. When mitotic CDK (Cyclin B1-CDK1) is used to drive interphase egg extracts into a mitotic state, the replicative CMG (CDC45/MCM2-7/GINS) helicase undergoes ubiquitylation on its MCM7 subunit, dependent on the E3 ubiquitin ligase TRAIP. Whether replisomes have stalled or undergone termination, CMG ubiquitylation is followed by its extraction from chromatin by the CDC48/p97 ATPase. TRAIP-dependent CMG unloading during mitosis is also seen in C. elegans early embryos. At stalled forks, CMG removal results in fork breakage and end joining events involving deletions and templated insertions. Our results identify a mitotic pathway of global replisome disassembly that can trigger replication fork collapse and DNA rearrangements.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclina B1/metabolismo , Daño del ADN , Replicación del ADN , ADN/biosíntesis , Reordenamiento Génico , Mitosis , Proteínas Quinasas/metabolismo , Proteínas de Xenopus/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Ciclina B1/genética , ADN/genética , Reparación del ADN , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteínas de Xenopus/genética , Xenopus laevis/genética , Xenopus laevis/metabolismo , ADN Polimerasa theta
2.
J Virol ; 96(9): e0033322, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35412344

RESUMEN

Vertical transmission of Zika virus (ZIKV) leads with high frequency to congenital ZIKV syndrome (CZS), whose worst outcome is microcephaly. However, the mechanisms of congenital ZIKV neurodevelopmental pathologies, including direct cytotoxicity to neural progenitor cells (NPC), placental insufficiency, and immune responses, remain incompletely understood. At the cellular level, microcephaly typically results from death or insufficient proliferation of NPC or cortical neurons. NPC replicate fast, requiring efficient DNA damage responses to ensure genome stability. Like congenital ZIKV infection, mutations in the polynucleotide 5'-kinase 3'-phosphatase (PNKP) gene, which encodes a critical DNA damage repair enzyme, result in recessive syndromes often characterized by congenital microcephaly with seizures (MCSZ). We thus tested whether there were any links between ZIKV and PNKP. Here, we show that two PNKP phosphatase inhibitors or PNKP knockout inhibited ZIKV replication. PNKP relocalized from the nucleus to the cytoplasm in infected cells, colocalizing with the marker of ZIKV replication factories (RF) NS1 and resulting in functional nuclear PNKP depletion. Although infected NPC accumulated DNA damage, they failed to activate the DNA damage checkpoint kinases Chk1 and Chk2. ZIKV also induced activation of cytoplasmic CycA/CDK1 complexes, which trigger unscheduled mitotic entry. Inhibition of CDK1 activity inhibited ZIKV replication and the formation of RF, supporting a role of cytoplasmic CycA/CDK1 in RF morphogenesis. In brief, ZIKV infection induces mitotic catastrophe resulting from unscheduled mitotic entry in the presence of DNA damage. PNKP and CycA/CDK1 are thus host factors participating in ZIKV replication in NPC, and pathogenesis to neural progenitor cells. IMPORTANCE The 2015-2017 Zika virus (ZIKV) outbreak in Brazil and subsequent international epidemic revealed the strong association between ZIKV infection and congenital malformations, mostly neurodevelopmental defects up to microcephaly. The scale and global expansion of the epidemic, the new ZIKV outbreaks (Kerala state, India, 2021), and the potential burden of future ones pose a serious ongoing risk. However, the cellular and molecular mechanisms resulting in microcephaly remain incompletely understood. Here, we show that ZIKV infection of neuronal progenitor cells results in cytoplasmic sequestration of an essential DNA repair protein itself associated with microcephaly, with the consequent accumulation of DNA damage, together with an unscheduled activation of cytoplasmic CDK1/Cyclin A complexes in the presence of DNA damage. These alterations result in mitotic catastrophe of neuronal progenitors, which would lead to a depletion of cortical neurons during development.


Asunto(s)
Daño del ADN , Enzimas Reparadoras del ADN , Mitosis , Células-Madre Neurales , Fosfotransferasas (Aceptor de Grupo Alcohol) , Infección por el Virus Zika , Enzimas Reparadoras del ADN/genética , Humanos , Microcefalia/virología , Células-Madre Neurales/citología , Células-Madre Neurales/virología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Virus Zika , Infección por el Virus Zika/patología
3.
J Pathol ; 243(1): 123-134, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28678347

RESUMEN

Regulation of tumour cell proliferation by molecular chaperones is still a complex issue. Here, the role of the HSP90 molecular chaperone TRAP1 in cell cycle regulation was investigated in a wide range of human breast, colorectal, and lung carcinoma cell lines, and tumour specimens. TRAP1 modulates the expression and/or the ubiquitination of key cell cycle regulators through a dual mechanism: (i) transcriptional regulation of CDK1, CYCLIN B1, and MAD2, as suggested by gene expression profiling of TRAP1-silenced breast carcinoma cells; and (ii) post-transcriptional quality control of CDK1 and MAD2, being the ubiquitination of these two proteins enhanced upon TRAP1 down-regulation. Mechanistically, TRAP1 quality control on CDK1 is crucial for its regulation of mitotic entry, since TRAP1 interacts with CDK1 and prevents CDK1 ubiquitination in cooperation with the proteasome regulatory particle TBP7, this representing the limiting factor in TRAP1 regulation of the G2-M transition. Indeed, TRAP1 silencing results in enhanced CDK1 ubiquitination, lack of nuclear translocation of CDK1/cyclin B1 complex, and increased MAD2 degradation, whereas CDK1 forced up-regulation partially rescues low cyclin B1 and MAD2 levels and G2-M transit in a TRAP1-poor background. Consistently, the CDK1 inhibitor RO-3306 is less active in a TRAP1-high background. Finally, a significant correlation was observed between TRAP1 and Ki67, CDK1 and/or MAD2 expression in breast, colorectal, and lung human tumour specimens. This study represents the first evidence that TRAP1 is relevant in the control of the complex machinery that governs cell cycle progression and mitotic entry and provides a strong rationale to regard TRAP1 as a biomarker to select tumours with deregulated cell cycle progression and thus likely poorly responsive to novel cell cycle inhibitors. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Proliferación Celular , Quinasas Ciclina-Dependientes/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas Mad2/metabolismo , Neoplasias/enzimología , ATPasas Asociadas con Actividades Celulares Diversas , Adulto , Anciano , Anciano de 80 o más Años , Proteína Quinasa CDC2 , Línea Celular Tumoral , Ciclina B1/metabolismo , Quinasas Ciclina-Dependientes/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Proteínas HSP90 de Choque Térmico/genética , Humanos , Antígeno Ki-67/metabolismo , Proteínas Mad2/genética , Masculino , Persona de Mediana Edad , Neoplasias/genética , Neoplasias/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Interferencia de ARN , Transducción de Señal , Factores de Tiempo , Transcripción Genética , Transfección , Ubiquitinación
4.
Proc Natl Acad Sci U S A ; 111(44): 15768-73, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25324523

RESUMEN

Rapid progression through the cell cycle and a very short G1 phase are defining characteristics of embryonic stem cells. This distinct cell cycle is driven by a positive feedback loop involving Rb inactivation and reduced oscillations of cyclins and cyclin-dependent kinase (Cdk) activity. In this setting, we inquired how ES cells avoid the potentially deleterious consequences of premature mitotic entry. We found that the pluripotency transcription factor Oct4 (octamer-binding transcription factor 4) plays an unappreciated role in the ES cell cycle by forming a complex with cyclin-Cdk1 and inhibiting Cdk1 activation. Ectopic expression of Oct4 or a mutant lacking transcriptional activity recapitulated delayed mitotic entry in HeLa cells. Reduction of Oct4 levels in ES cells accelerated G2 progression, which led to increased chromosomal missegregation and apoptosis. Our data demonstrate an unexpected nontranscriptional function of Oct4 in the regulation of mitotic entry.


Asunto(s)
Quinasas Ciclina-Dependientes/metabolismo , Células Madre Embrionarias/metabolismo , Fase G2/fisiología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Animales , Proteína Quinasa CDC2 , Quinasas Ciclina-Dependientes/genética , Ciclinas/genética , Ciclinas/metabolismo , Células Madre Embrionarias/citología , Activación Enzimática/fisiología , Fase G1/fisiología , Células HeLa , Humanos , Ratones , Factor 3 de Transcripción de Unión a Octámeros/genética , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo
5.
Bio Protoc ; 14(6): e4959, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38841288

RESUMEN

Proliferating cells need to cope with extensive cytoskeletal and nuclear remodeling as they prepare to divide. These events are tightly regulated by the nuclear translocation of the cyclin B1-CDK1 complex, that is partly dependent on nuclear tension. Standard experimental approaches do not allow the manipulation of forces acting on cells in a time-resolved manner. Here, we describe a protocol that enables dynamic mechanical manipulation of single cells with high spatial and temporal resolution and its application in the context of cell division. In addition, we also outline a method for the manipulation of substrate stiffness using polyacrylamide hydrogels. Finally, we describe a static cell confinement setup, which can be used to study the impact of prolonged mechanical stimulation in populations of cells. Key features • Protocol for microfabrication of confinement devices. • Single-cell dynamic confinement coupled with high-resolution microscopy. • Static cell confinement protocol that can be combined with super-resolution STED microscopy. • Analysis of the mechanical control of mitotic entry in a time-resolved manner.

6.
Biology (Basel) ; 12(6)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37372141

RESUMEN

Timely mitosis is critically important for early embryo development. It is regulated by the activity of the conserved protein kinase CDK1. The dynamics of CDK1 activation must be precisely controlled to assure physiologic and timely entry into mitosis. Recently, a known S-phase regulator CDC6 emerged as a key player in mitotic CDK1 activation cascade in early embryonic divisions, operating together with Xic1 as a CDK1 inhibitor upstream of the Aurora A and PLK1, both CDK1 activators. Herein, we review the molecular mechanisms that underlie the control of mitotic timing, with special emphasis on how CDC6/Xic1 function impacts CDK1 regulatory network in the Xenopus system. We focus on the presence of two independent mechanisms inhibiting the dynamics of CDK1 activation, namely Wee1/Myt1- and CDC6/Xic1-dependent, and how they cooperate with CDK1-activating mechanisms. As a result, we propose a comprehensive model integrating CDC6/Xic1-dependent inhibition into the CDK1-activation cascade. The physiological dynamics of CDK1 activation appear to be controlled by the system of multiple inhibitors and activators, and their integrated modulation ensures concomitantly both the robustness and certain flexibility of the control of this process. Identification of multiple activators and inhibitors of CDK1 upon M-phase entry allows for a better understanding of why cells divide at a specific time and how the pathways involved in the timely regulation of cell division are all integrated to precisely tune the control of mitotic events.

7.
Curr Biol ; 31(4): 794-808.e6, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33357450

RESUMEN

The phosphorylation of mitotic proteins is bistable, which contributes to the decisiveness of the transitions into and out of M phase. The bistability in substrate phosphorylation has been attributed to bistability in the activation of the cyclin-dependent kinase Cdk1. However, more recently it has been suggested that bistability also arises from positive feedback in the regulation of the Cdk1-counteracting phosphatase PP2A-B55. Here, we demonstrate biochemically using Xenopus laevis egg extracts that the Cdk1-counteracting phosphatase PP2A-B55 functions as a bistable switch, even when the bistability of Cdk1 activation is suppressed. In addition, Cdk1 regulates PP2A-B55 in a biphasic manner; low concentrations of Cdk1 activate PP2A-B55 and high concentrations inactivate it. As a consequence of this incoherent feedforward regulation, PP2A-B55 activity rises concurrently with Cdk1 activity during interphase and suppresses substrate phosphorylation. PP2A-B55 activity is then sharply downregulated at the onset of mitosis. During mitotic exit, Cdk1 activity initially falls with no obvious change in substrate phosphorylation; dephosphorylation then commences once PP2A-B55 spikes in activity. These findings suggest that changes in Cdk1 activity are permissive for mitotic entry and exit but that the changes in PP2A-B55 activity are the ultimate trigger.


Asunto(s)
Mitosis , Proteína Fosfatasa 2/metabolismo , Animales , Proteína Quinasa CDC2/metabolismo , Extractos Celulares , Activación Enzimática , Retroalimentación Fisiológica , Interfase , Óvulo/enzimología , Fosforilación , Proteína Fosfatasa 2/genética , Especificidad por Sustrato , Xenopus
8.
Cells ; 9(9)2020 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-32961751

RESUMEN

Cells recovering from the G2/M DNA damage checkpoint rely more on Aurora A-PLK1 signaling than cells progressing through an unperturbed G2 phase, but the reason for this discrepancy is not known. Here, we devised a method based on a FRET reporter for PLK1 activity to sort cells in distinct populations within G2 phase. We employed mass spectroscopy to characterize changes in protein levels through an unperturbed G2 phase and validated that ATAD2 levels decrease in a proteasome-dependent manner. Comparing unperturbed cells with cells recovering from DNA damage, we note that at similar PLK1 activities, recovering cells contain higher levels of Cyclin B1 and increased phosphorylation of CDK1 targets. The increased Cyclin B1 levels are due to continuous Cyclin B1 production during a DNA damage response and are sustained until mitosis. Whereas partial inhibition of PLK1 suppresses mitotic entry more efficiently when cells recover from a checkpoint, partial inhibition of CDK1 suppresses mitotic entry more efficiently in unperturbed cells. Our findings provide a resource for proteome changes during G2 phase, show that the mitotic entry network is rewired during a DNA damage response, and suggest that the bottleneck for mitotic entry shifts from CDK1 to PLK1 after DNA damage.


Asunto(s)
Proteína Quinasa CDC2/genética , Proteínas de Ciclo Celular/genética , Fibroblastos/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Puntos de Control de la Fase M del Ciclo Celular/genética , Mitosis/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Ciclina B1/genética , Ciclina B1/metabolismo , Daño del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Citometría de Flujo , Transferencia Resonante de Energía de Fluorescencia , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Regulación de la Expresión Génica , Humanos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Proteína 1 de Unión al Supresor Tumoral P53/genética , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Cinostatina/farmacología , Quinasa Tipo Polo 1
9.
Cell Rep ; 31(8): 107681, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32460023

RESUMEN

Centrosome separation in late G2/ early prophase requires precise spatial coordination that is determined by a balance of forces promoting and antagonizing separation. The major effector of centrosome separation is the kinesin Eg5. However, the identity and regulation of Eg5-antagonizing forces is less well characterized. By manipulating candidate components, we find that centrosome separation is reversible and that separated centrosomes congress toward a central position underneath the flat nucleus. This positioning mechanism requires microtubule polymerization, as well as actin polymerization. We identify perinuclear actin structures that form in late G2/early prophase and interact with microtubules emanating from the centrosomes. Disrupting these structures by breaking the interactions of the linker of nucleoskeleton and cytoskeleton (LINC) complex with perinuclear actin filaments abrogates this centrosome positioning mechanism and causes an increase in subsequent chromosome segregation errors. Our results demonstrate how geometrical cues from the cell nucleus coordinate the orientation of the emanating spindle poles before nuclear envelope breakdown.


Asunto(s)
Actinas/metabolismo , Centrosoma/metabolismo , Segregación Cromosómica/genética , Profase/genética , Humanos
10.
Cell Rep ; 24(3): 546-556, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-30021153

RESUMEN

The key mitotic regulator Polo-like kinase 1 (Plk1) is activated during G2 phase by Aurora A kinase (AurkA)-mediated phosphorylation of its activation loop, which is important for timely mitotic entry. The mechanism for Plk1 activation remains incompletely understood. Here, we report that the activation of Plk1 requires WAC, a WW domain-containing adaptor protein with a coiled-coil region that predominantly localizes to the nucleus in interphase. Cyclin-dependent kinase 1 (Cdk1) phosphorylates WAC, priming its direct interaction with the polo-box domain of Plk1. Knockdown of WAC compromises Plk1 activity and delays mitotic entry. These defects are rescued by exogenous expression of wild-type WAC, but not the Plk1-binding-deficient mutant. WAC also binds AurkA and can enhance Plk1 phosphorylation by AurkA in vitro. Taken together, these results indicate an important role for WAC in promoting Plk1 activation and the timely entry into mitosis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mitosis , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/química , Activación Enzimática , Fase G2 , Células HeLa , Humanos , Metafase , Fosforilación , Unión Proteica , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/química , Proteínas Proto-Oncogénicas/química , Quinasa Tipo Polo 1
11.
Cell Cycle ; 15(5): 730-9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26890478

RESUMEN

In order to determine the relative contribution of checkpoint abrogation and subsequent aberrant mitotic entry to gemcitabine chemosensitization by CHK1 inhibition, we established a model utilizing the CDK inhibitors roscovitine or purvalanol A to re-establish cell cycle arrest and prevent aberrant mitotic entry in pancreatic cancer cells treated with gemcitabine and the CHK inhibitor AZD7762. In this study, we report that the extent of aberrant mitotic entry, as determined by flow cytometry for the mitotic marker phospho-Histone H3 (Ser10), did not reflect the relative sensitivities of pancreatic cancer cell lines to gemcitabine chemosensitization by AZD7762. In addition, re-establishing gemcitabine-induced cell cycle arrest either pharmacologically, with roscovitine or purvalanol A, or genetically, with cyclin B1 siRNA, did not inhibit chemosensitization uniformly across the cell lines. Furthermore, we found that AZD7762 augmented high-intensity γH2AX signaling in gemcitabine-treated cells, suggesting the presence of replication stress when CHK1 is inhibited. Finally, the ability of roscovitine to prevent chemosensitization correlated with its ability to inhibit AZD7762-induced high-intensity γH2AX, but not aberrant pHH3, suggesting that the effects of AZD7762 on DNA replication or repair rather than aberrant mitotic entry determine gemcitabine chemosensitization in pancreatic cancer cells.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Desoxicitidina/análogos & derivados , Tiofenos/farmacología , Urea/análogos & derivados , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Ciclina B1/metabolismo , Daño del ADN , Desoxicitidina/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Puntos de Control de la Fase G2 del Ciclo Celular , Humanos , Mitosis , Nocodazol/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Urea/farmacología , Gemcitabina
12.
Cell Cycle ; 14(17): 2764-76, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26114227

RESUMEN

We previously reported that Aurora-A and the hNinein binding protein AIBp facilitate centrosomal structure maintenance and contribute to spindle formation. Here, we report that AIBp also interacts with Plk1, raising the possibility of functional similarity to Bora, which subsequently promotes Aurora-A-mediated Plk1 activation at Thr210 as well as Aurora-A activation at Thr288. In kinase assays, AIBp acts not only as a substrate but also as a positive regulator of both Aurora-A and Plk1. However, AIBp functions as a negative regulator to block phosphorylation of hNinein mediated by Aurora-A and Plk1. These findings suggest a novel AIBp-dependent regulatory machinery that controls mitotic entry. Additionally, knockdown of hNinein caused failure of AIBp to target the centrosome, whereas depletion of AIBp did not affect the localization of hNinein and microtubule nucleation. Notably, knockdown of AIBp in HeLa cells impaired both Aurora-A and Plk1 kinase, resulting in phenotypes with multiple spindle pole formation and chromosome misalignment. Our data show that depletion of AIBp results in the mis-localization of TACC3 and ch-TOG, but not CEP192 and CEP215, suggesting that loss of AIBp dominantly affects the Aurora-A substrate to cause mitotic aberrations. Collectively, our data demonstrate that AIBp contributes to mitotic entry and bipolar spindle assembly and may partially control localization, phosphorylation, and activation of both Aurora-A and Plk1 via hNinein during mitotic progression.


Asunto(s)
Aurora Quinasa A/metabolismo , Proteínas Portadoras/fisiología , Proteínas de Ciclo Celular/metabolismo , Mitosis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Huso Acromático/metabolismo , Aurora Quinasa A/genética , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN , Células HEK293 , Células HeLa , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Huso Acromático/genética , Quinasa Tipo Polo 1
13.
Biochem Pharmacol ; 94(1): 12-21, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25615907

RESUMEN

Tubulin is an important target for anticancer therapy. Taxanes and vinca alkaloids are two groups of tubulin-binding agents in cancer chemotherapy. Besides tubulin binding, these groups of agents can also down-regulate protein levels of matrix metalloproteinase (MMP)-2 and -9, two important cancer-associated zinc-dependent endopeptidases in invasion and metastasis. However, the mechanism of action waits to be explored. In this study, protein levels but not mRNA expressions of MMP-2 and -9 were down-regulated by paclitaxel (a microtubule-stabilization agent), vincristine and evodiamine (two tubulin-depolymerization agents). These agents induced an increase of protein expression of cyclin B1, MPM2 (mitosis-specific phosphoprotein) and polo-like kinase (PLK) 1 phosphorylation. The data showed a negative relationship between the levels of mitotic proteins and MMP-2 and -9 expressions. MG132 (a specific cell-permeable proteasome inhibitor) blocked mitotic entry and arrested cell cycle at G2 phase, preventing down-regulation of MMP-2 and -9. Cell cycle synchronization experiments by thymidine block or nocodazole treatment showed that mitotic exit inhibited the down-regulation of MMP-2 and -9, confirming negative relationship between cell mitosis and protein levels of MMP-2 and -9 expressions. Cyclin-dependent kinase (Cdk) 1 is a key kinase in mitotic entry. Knockdown of Cdk1 almost completely inhibited the down-regulation of MMP-2 and -9 induced by tubulin-binding agents. In conclusion, the data suggest that mitotic entry and Cdk1 plays a central role in down-regulation of MMP-2 and -9 protein expressions. Tubulin-binding agents cause mitotic arrest and Cdk1 activation, which may contribute largely to the down-regulation of both MMP-2 and -9 expressions.


Asunto(s)
Antineoplásicos/farmacología , Quinasas Ciclina-Dependientes/genética , Regulación Neoplásica de la Expresión Génica , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/genética , Moduladores de Tubulina/farmacología , Apoptosis/efectos de los fármacos , Proteína Quinasa CDC2 , Proteínas de Ciclo Celular/agonistas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Ciclina B1/agonistas , Ciclina B1/genética , Ciclina B1/metabolismo , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/metabolismo , Resistencia a Antineoplásicos/genética , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Humanos , Leupeptinas/farmacología , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Mitosis/efectos de los fármacos , Nocodazol/farmacología , Paclitaxel/farmacología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/agonistas , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Quinazolinas/farmacología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Vincristina/farmacología , Quinasa Tipo Polo 1
14.
Cell Cycle ; 14(7): 1070-81, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25602147

RESUMEN

Stathmin/Oncoprotein 18, a microtubule destabilizing protein, is required for survival of p53-deficient cells. Stathmin-depleted cells are slower to enter mitosis, but whether delayed mitotic entry triggers cell death or whether stathmin has a separate pro-survival function was unknown. To test these possibilities, we abrogated the cell cycle delay by inhibiting Wee1 in synchronized, stathmin-depleted cells and found that apoptosis was reduced to control levels. Synchronized cells treated with a 4 hour pulse of inhibitors to CDK1 or both Aurora A and PLK1 delayed mitotic entry and apoptosis was triggered only in p53-deficient cells. We did not detect mitotic defects downstream of the delayed mitotic entry, indicating that cell death is activated by a mechanism distinct from those activated by prolonged mitotic arrest. Cell death is triggered by initiator caspase 8, based on its cleavage to the active form and by rescue of viability after caspase 8 depletion or treatment with a caspase 8 inhibitor. In contrast, initiator caspase 9, activated by prolonged mitotic arrest, is not activated and is not required for apoptosis under our experimental conditions. P53 upregulates expression of cFLIPL, a protein that blocks caspase 8 activation. cFLIPL levels are lower in cells lacking p53 and these levels are reduced to a greater extent after stathmin depletion. Expression of FLAG-tagged cFLIPL in p53-deficient cells rescues them from apoptosis triggered by stathmin depletion or CDK1 inhibition during G2. These data indicate that a cell cycle delay in G2 activates caspase 8 to initiate apoptosis specifically in p53-deficient cells.


Asunto(s)
Caspasa 8/fisiología , Mitosis , Proteína p53 Supresora de Tumor/metabolismo , Apoptosis , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Caspasa 9/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular , Células HCT116 , Células HeLa , Humanos , Estatmina/metabolismo
15.
Methods Cell Biol ; 118: 383-400, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24295319

RESUMEN

The Golgi complex of mammalian cells is composed of interconnected stacks of flattened cisternae that form a continuous membrane system in the pericentriolar region of the cell. At the onset of mitosis, this so-called Golgi ribbon is converted into small tubular-vesicular clusters in a tightly regulated fragmentation process, which leads to a temporary loss of the physical Golgi-centrosome proximity. Mitotic Golgi breakdown is required for Golgi partitioning into the two daughter cells, cell cycle progression and may contribute to the dispersal of Golgi-associated signaling molecules. Here, we review our current understanding of the mechanisms that control mitotic Golgi reorganization, its biological significance, and assays that are used to study this process.


Asunto(s)
Aparato de Golgi/fisiología , Mitosis , Transducción de Señal , Animales , Células Cultivadas , Humanos , Membranas Intracelulares/metabolismo
16.
Cell Cycle ; 12(10): 1501-9, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23598718

RESUMEN

Entry into mitosis is regulated by a checkpoint at the boundary between the G2 and M phases of the cell cycle (G2/M). In many organisms, this checkpoint surveys DNA damage and cell size and is controlled by both the activation of mitotic cyclin-dependent kinases (Cdks) and the inhibition of an opposing phosphatase, protein phosphatase 2A (PP2A). Misregulation of mitotic entry can often lead to oncogenesis or cell death. Recent research has focused on discovering the signaling pathways that feed into the core checkpoint control mechanisms dependent on Cdk and PP2A. Herein, we review the conserved mechanisms of the G2/M transition, including recently discovered upstream signaling pathways that link cell growth and DNA replication to cell cycle progression. Critical consideration of the human, frog and yeast models of mitotic entry frame unresolved and emerging questions in this field, providing a prediction of signaling molecules and pathways yet to be discovered.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Quinasas Ciclina-Dependientes/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Humanos , Mitosis , Proteína Fosfatasa 2/antagonistas & inhibidores , Saccharomyces cerevisiae/metabolismo , Transducción de Señal
17.
Biol Open ; 2(9): 924-31, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24143279

RESUMEN

Cell cycle events are driven by Cyclin dependent kinases (CDKs) and by their counter-acting phosphatases. Activation of the Cdk1:Cyclin B complex during mitotic entry is controlled by the Wee1/Myt1 inhibitory kinases and by Cdc25 activatory phosphatase, which are themselves regulated by Cdk1:Cyclin B within two positive circuits. Impairing these two feedbacks with chemical inhibitors induces a transient entry into M phase referred to as mitotic collapse. The pathology of mitotic collapse reveals that the positive circuits play a significant role in maintaining the M phase state. To better understand the function of these feedback loops during G2/M transition, we propose a simple model for mitotic entry in mammalian cells including spatial control over Greatwall kinase phosphorylation. After parameter calibration, the model is able to recapture the complex and non-intuitive molecular dynamics reported by Potapova et al. (Potapova et al., 2011). Moreover, it predicts the temporal patterns of other mitotic regulators which have not yet been experimentally tested and suggests a general design principle of cell cycle control: latching switches buffer the cellular stresses which accompany cell cycle processes to ensure that the transitions are smooth and robust.

18.
Biol Open ; 1(2): 82-91, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23213400

RESUMEN

The cullin-RING family of ubiquitin ligases regulates diverse cellular functions, such as cell cycle control, via ubiquitylation of specific substrates. CUL3 targets its substrates through BTB proteins. Here we show that depletion of CUL3 and the BTB protein KLHL18 causes a delay in mitotic entry. Centrosomal activation of Aurora-A, a kinase whose activity is required for entry into mitosis, is also delayed in depleted cells. Moreover, we identify Aurora-A as a KLHL18-interacting partner. Overexpression of KLHL18 and CUL3 promotes Aurora-A ubiquitylation in vivo, and the CUL3-KLHL18-ROC1 ligase ubiquitylates Aurora-A in vitro. Our study reveals that the CUL3-KLHL18 ligase is required for timely entry into mitosis, as well as for the activation of Aurora-A at centrosomes. We propose that the CUL3-KLHL18 ligase regulates mitotic entry through an Aurora-A-dependent pathway.

20.
Transcription ; 1(1): 32-5, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21327155

RESUMEN

When the DNA of a cell is damaged, cell cycle progression is arrested and cell cycle-specific transcription is inhibited. However, cell cycle-specific transcription is required for eventual recovery from the DNA damage-induced arrest. Here we discuss recent findings that demonstrate how transcription is fine-tuned during the DNA damage response and how this controls the capacity to recover from a DNA damage arrest in G(2) phase.


Asunto(s)
Daño del ADN , Puntos de Control de la Fase G2 del Ciclo Celular , Regulación de la Expresión Génica , Transcripción Genética , Animales , Ciclo Celular , Humanos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda