Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Small ; 20(32): e2308784, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38593360

RESUMEN

Interconnect materials play the critical role of routing energy and information in integrated circuits. However, established bulk conductors, such as copper, perform poorly when scaled down beyond 10 nm, limiting the scalability of logic devices. Here, a multi-objective search is developed, combined with first-principles calculations, to rapidly screen over 15,000 materials and discover new interconnect candidates. This approach simultaneously optimizes the bulk electronic conductivity, surface scattering time, and chemical stability using physically motivated surrogate properties accessible from materials databases. Promising local interconnects are identified that have the potential to outperform ruthenium, the current state-of-the-art post-Cu material, and also semi-global interconnects with potentially large skin depths at the GHz operation frequency. The approach is validated on one of the identified candidates, CoPt, using both ab initio and experimental transport studies, showcasing its potential to supplant Ru and Cu for future local interconnects.

2.
Small ; 20(27): e2309050, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38312107

RESUMEN

With the growing global energy demand and environmental issues, energy saving technologies are becoming increasingly important in the building sector. Conventional windows lack energy saving and thermal insulation capabilities, while Low emissivity glass (Low-e glass) attenuates mobile communication signals while reflecting infrared. Therefore, this paper aims to design a type of windows for the "Sub 6GHz" frequency band of 5G. These windows combine the inherent transparency of traditional glass windows with the energy saving properties of Low-e glass, while also ensuring optimal communication performance within the 5G (Sub 6G) band. The metasurface glass is fabricated and subjected to simulation-guided experiments to evaluate their reliability and practicality. The metasurface glass is rigorously assessed in terms of microwave transmission performance, infrared low emissivity performance, and energy saving and thermal insulation capabilities.

3.
Sensors (Basel) ; 24(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38544062

RESUMEN

In order to improve the real-time performance of gesture recognition by a micro-Doppler map of mmWave radar, the point cloud based gesture recognition for mmWave radar is proposed in this paper. Two steps are carried out for mmWave radar-based gesture recognition. The first step is to estimate the point cloud of the gestures by 3D-FFT and the peak grouping. The second step is to train the TRANS-CNN model by combining the multi-head self-attention and the 1D-convolutional network so as to extract the features in the point cloud data at a deeper level to categorize the gestures. In the experiments, TI mmWave radar sensor IWR1642 is used as a benchmark to evaluate the feasibility of the proposed approach. The results show that the accuracy of the gesture recognition reaches 98.5%. In order to prove the effectiveness of our approach, a simply 2Tx2Rx radar sensor is developed in our lab, and the accuracy of recognition reaches 97.1%. The results show that our proposed gesture recognition approach achieves the best performance in real time with limited training data in comparison with the existing methods.

4.
Sensors (Basel) ; 24(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38544245

RESUMEN

This paper presents a 5G new radio (NR) FR2 beamforming system with an integrated transceiver module. A real-time operating module providing enhanced flexibility and capability has been proposed. The integrated RF beamforming system with an integrated transceiver module can be operated in 8Tx-8Rx mode configuration simultaneously. A series-fed structure 8 × 7 microstrip antenna array for compact size and improved directivity is employed in the RF beamforming module. The RF beamforming module incorporates a custom 28 GHz, eight-channel fully differential beamforming IC (BFIC). An eight-channel BFIC in a phased-array beamforming system offers advantages in terms of increased antenna density and improved beam steering precision. The RF beamforming module is integrated with an RF transceiver module that enables the simultaneous up-conversion and down-conversion of the baseband signal. The RF transmitter module consists of a transmitter, a receiver, a signal generator, a power supply, and a control unit. The RF beamforming system can scan horizontally from -50° to +50° with a step of 10°. To achieve an optimized beam pattern, a calibration was conducted. The transmit and receive conversion gain of around 20 dB is achieved with the transceiver module. To verify the communication performance of the manufactured integrated RF beamforming system, a real-time wireless video transmission/reception test was performed at a frequency of 28 GHz, and the video file was transmitted smoothly in real time without interruption within a range of ±50°.

5.
Sensors (Basel) ; 24(7)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38610448

RESUMEN

This paper presents a high-gain low-noise amplifier (LNA) operating at the 5G mm-wave band. The full design combines two conventional cascode stages: common base (CB) and common emitter (CS). The design technique reduces the miller effect and uses low-voltage supply and low-current-density transistors to simultaneously achieve high gain and low noise figures (NFs). The two-stage LNA topology is analyzed and designed using 0.25 µm SiGe BiCMOS process technology from NXP semiconductors. The measured circuit shows a small signal gain at 26 GHz of 26 dB with a gain error below 1 dB on the entire frequency band (26-28 GHz). The measured average NF is 3.84 dB, demonstrated over the full frequency band under 15 mA current consumption per stage, supplied with a voltage of 3.3 V.

6.
Sensors (Basel) ; 24(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38475053

RESUMEN

As the fifth-generation (5G) network is introduced in the millimetre-wave (mmWave) spectrum, and the widespread deployment of 5G standalone (SA) is approaching, it becomes essential to establish scientifically grounded exposure limits in the mmWave frequency band. To achieve this, conducting experiments at specific frequencies is crucial for obtaining reliable evidence of potential biological impacts. However, there is a literature gap where experimental research either does not utilise the mmWave high band (e.g., the 26 Gigahertz (GHz) band) or most studies mainly rely on computational approaches. Moreover, some experimental studies do not establish reproducible test environment and exposure systems. Addressing these gaps is vital for a comprehensive exploration of the biological implications associated with mmWave exposure. This study was designed to develop and implement a mmWave exposure system operating at 26 GHz. The step-by-step design and development of the system are explained. This specialised system was designed and implemented within an anechoic chamber to minimise external electromagnetic (EM) interference, creating a controlled and reproducible environment for experiments involving high-frequency EM fields. The exposure system features a 1 cm radiation spot size, enabling highly localised exposure for various biological studies. This configuration facilitates numerous dosimetry studies related to mmWave frequencies.

7.
Sensors (Basel) ; 24(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38733016

RESUMEN

Within the context of a smart home, detecting the operating status of appliances in the environment plays a pivotal role, estimating power consumption, issuing overuse reminders, and identifying faults. The traditional contact-based approaches require equipment updates such as incorporating smart sockets or high-precision electric meters. Non-constant approaches involve the use of technologies like laser and Ultra-Wideband (UWB) radar. The former can only monitor one appliance at a time, and the latter is unable to detect appliances with extremely tiny vibrations and tends to be susceptible to interference from human activities. To address these challenges, we introduce HomeOSD, an advanced appliance status-detection system that uses mmWave radar. This innovative solution simultaneously tracks multiple appliances without human activity interference by measuring their extremely tiny vibrations. To reduce interference from other moving objects, like people, we introduce a Vibration-Intensity Metric based on periodic signal characteristics. We present the Adaptive Weighted Minimum Distance Classifier (AWMDC) to counteract appliance vibration fluctuations. Finally, we develop a system using a common mmWave radar and carry out real-world experiments to evaluate HomeOSD's performance. The detection accuracy is 95.58%, and the promising results demonstrate the feasibility and reliability of our proposed system.

8.
Sensors (Basel) ; 24(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38400215

RESUMEN

With an aging population, numerous assistive and monitoring technologies are under development to enable older adults to age in place. To facilitate aging in place, predicting risk factors such as falls and hospitalization and providing early interventions are important. Much of the work on ambient monitoring for risk prediction has centered on gait speed analysis, utilizing privacy-preserving sensors like radar. Despite compelling evidence that monitoring step length in addition to gait speed is crucial for predicting risk, radar-based methods have not explored step length measurement in the home. Furthermore, laboratory experiments on step length measurement using radars are limited to proof-of-concept studies with few healthy subjects. To address this gap, a radar-based step length measurement system for the home is proposed based on detection and tracking using a radar point cloud followed by Doppler speed profiling of the torso to obtain step lengths in the home. The proposed method was evaluated in a clinical environment involving 35 frail older adults to establish its validity. Additionally, the method was assessed in people's homes, with 21 frail older adults who had participated in the clinical assessment. The proposed radar-based step length measurement method was compared to the gold-standard Zeno Walkway Gait Analysis System, revealing a 4.5 cm/8.3% error in a clinical setting. Furthermore, it exhibited excellent reliability (ICC(2,k) = 0.91, 95% CI 0.82 to 0.96) in uncontrolled home settings. The method also proved accurate in uncontrolled home settings, as indicated by a strong consistency (ICC(3,k) = 0.81 (95% CI 0.53 to 0.92)) between home measurements and in-clinic assessments.


Asunto(s)
Fragilidad , Humanos , Anciano , Radar , Reproducibilidad de los Resultados , Vida Independiente , Velocidad al Caminar , Marcha
9.
Sensors (Basel) ; 24(12)2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38931529

RESUMEN

A design for a pogo-pin probe card featuring a metallic socket is proposed to eliminate signal leakage and coupling loss in a multi-port environment. The proposed metallic pogo-pin socket includes a metal wall structure between adjacent pogo pins, ensuring complete isolation. This metal wall offers an advantage in removing coupling issues between pogo pins that can occur with typical dielectric pogo-pin sockets. The designed probe card is fabricated as a prototype and verified for its performance. Measurement results using a test through line show that coupled power is minimized, providing a low-loss transmission performance of -2.14 dB to an RF chip at 50 GHz, all within a compact size. Although the dielectric spacer used to secure the pogo pins allows for some leakage, it can maintain a low coupling performance of under -15 dB in the millimeter-wave band. The prototype probe card can deliver an RF signal to a 5G circuit with a low loss of -0.7 dB at 28 GHz and -1.9 dB at 39 GHz frequency. The designed probe card is capable of transmitting multiple RF signals to the RF system without signal distortion in a multi-port environment.

10.
Sensors (Basel) ; 24(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39065825

RESUMEN

In this paper, we present the design of a millimeter-wave 1 × 4 linear MIMO array antenna that operates across multiple resonance frequency bands: 26.28-27.36 GHz, 27.94-28.62 GHz, 32.33-33.08 GHz, and 37.59-39.47 GHz, for mm-wave wearable biomedical telemetry application. The antenna is printed on a flexible substrate with dimensions of 11.0 × 44.0 mm2. Each MIMO antenna element features a modified slot-loaded triangular patch, incorporating 'cross'-shaped slots in the ground plane to improve impedance matching. The MIMO antenna demonstrates peak gains of 6.12, 8.06, 5.58, and 8.58 dBi at the four resonance frequencies, along with a total radiation efficiency exceeding 75%. The proposed antenna demonstrates excellent diversity metrics, with an ECC < 0.02, DG > 9.97 dB, and CCL below 0.31 bits/sec/Hz, indicating high performance for mm-wave applications. To verify its properties under flexible conditions, a bending analysis was conducted, showing stable S-parameter results with deformation radii of 40 mm (Rx) and 25 mm (Ry). SAR values for the MIMO antenna are calculated at 28.0/38.0 GHz. The average SAR values for 1 gm/10 gm of tissues at 28.0 GHz are found to be 0.0125/0.0079 W/Kg, whereas, at 38.0 GHz, average SAR values are 0.0189/0.0094 W/Kg, respectively. Additionally, to demonstrate the telemetry range of biomedical applications, a link budget analysis at both 28.0 GHz and 38.0 GHz frequencies indicated strong signal strength of 33.69 dB up to 70 m. The fabricated linear MIMO antenna effectively covers the mm-wave 5G spectrum and is suitable for wearable and biomedical applications due to its flexible characteristics.


Asunto(s)
Telemetría , Dispositivos Electrónicos Vestibles , Telemetría/instrumentación , Telemetría/métodos , Humanos , Tecnología Inalámbrica/instrumentación , Diseño de Equipo
11.
IEEE Trans Electron Devices ; 70(6): 2643-2655, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37250956

RESUMEN

The application of radio frequency (RF) vacuum electronics for the betterment of the human condition began soon after the invention of the first vacuum tubes in the 1920s and has not stopped since. Today, microwave vacuum devices are powering important applications in health treatment, material and biological science, wireless communication-terrestrial and space, Earth environment remote sensing, and the promise of safe, reliable, and inexhaustible energy. This article highlights some of the exciting application frontiers of vacuum electronics.

12.
Sensors (Basel) ; 23(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37896648

RESUMEN

This manuscript presents the Microwave Temperature and Humidity Profiler (MTHP), a dual-band spectroradiometer designed for measuring multi-incidence angle temperature and humidity atmospheric profiles from an aircraft platform. The MTHP bands are at 60 GHz for measuring the oxygen complex lines, therefore at this band, MTHP has a hyperspectral radiometer able to provide 2048 channels over an 8 GHz bandwidth, and 183 GHz for measuring water vapor, which only uses four channels since this absorption band's spectral richness is simpler. The MTHP builds upon the Microwave Temperature Profiler (MTP) with the inclusion of the hyperspectral radiometer. The instrument's design, components, and calibration methods are discussed in detail, with a focus on the three-point calibration scheme involving internal calibration loads and static air temperature readings. Preliminary results from the Technological Innovation into Iodine and GV aircraft Environmental Research (TI3GER) campaign are presented, showcasing the instrument's performance during flights across diverse geographical regions. The manuscript presents successful antenna temperature measurements at 60 GHz and 183 GHz. The hyperspectral measurements are compared with a simulated antenna temperature using the Atmospheric Radiative Transfer Simulator (ARTS) showing an agreement better than R2 > 0.88 for three of the flights analyzed. Additionally, the manuscript draws attention to potential Radio Frequency Interference (RFI) effects observed during a specific flight, underscoring the instrument's sensitivity to external interference. This is the first-ever airborne demonstration of a broadband and hyperspectral multi-incidence angle 60 GHz measurement. Future work on the MTHP could result in an improved spatial resolution of the atmospheric temperature vertical profile and, hence, help in estimating the Planetary Boundary Layer (PBL) with better accuracy. The MTHP and its hyperspectral multi-incidence angle at 60 GHz have the potential to be a valuable tool for investigating the PBL's role in atmospheric dynamics, offering insights into its impact on Earth's energy, water, and carbon cycles.

13.
Sensors (Basel) ; 23(23)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38067806

RESUMEN

In the realm of mmWave communication and connectivity, integrating chips and antennas into a cohesive system is paramount. Given this, planar antenna arrays have become indispensable. In this article, we introduce a novel antenna array tailored for mmWave applications, characterized by its high directivity. Distinctively, this new array employs a flat-panel radiator, ensuring an augmented gain without necessitating additional superstrate layers. To validate its potency, a 4 × 4 flat-panel array with dimensions of 3.74 λ0 × 3.74 λ0 × 0.106 λ0 at 28 GHz including a ground plane was designed and tested for n257 band. The standalone array element exhibited a bandwidth of 20.6%, centered at 28.5 GHz. Furthermore, a 1 × 16 mmWave feed network was designed and amalgamated with the array elements to assess the comprehensive antenna performance. The measured peak gain of 21.3 dBi at 28.5 GHz was observed with the measured half power beamwidth of 15° while the gain variation within the operation band was less than 3 dB.

14.
Sensors (Basel) ; 23(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37420681

RESUMEN

The large number of estimated parameters in a reconfigurable intelligent surface (RIS) makes it difficult to achieve accurate channel estimation accuracy in 6G. Therefore, we suggest a novel two-phase channel estimation framework for uplink multiuser communication. In this context, we propose an orthogonal matching pursuit (OMP)-based linear minimum mean square error (LMMSE) channel estimation approach. The OMP algorithm is used in the proposed algorithm to update the support set and pick the columns of the sensing matrix that are most correlated with the residual signal, which successfully reduces pilot overhead by removing redundancy. Here, we use LMMSE's advantages for handling noise to address the problem of inadequate channel estimation accuracy when the signal-to-noise ratio (SNR) is low. Simulation findings demonstrate that the proposed approach outperforms least-squares (LS), traditional OMP, and other OMP-based algorithms in terms of estimate accuracy.


Asunto(s)
Algoritmos , Simulación por Computador , Relación Señal-Ruido , Análisis de los Mínimos Cuadrados
15.
Sensors (Basel) ; 23(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37960603

RESUMEN

Human gesture detection, obstacle detection, collision avoidance, parking aids, automotive driving, medical, meteorological, industrial, agriculture, defense, space, and other relevant fields have all benefited from recent advancements in mmWave radar sensor technology. A mmWave radar has several advantages that set it apart from other types of sensors. A mmWave radar can operate in bright, dazzling, or no-light conditions. A mmWave radar has better antenna miniaturization than other traditional radars, and it has better range resolution. However, as more data sets have been made available, there has been a significant increase in the potential for incorporating radar data into different machine learning methods for various applications. This review focuses on key performance metrics in mmWave-radar-based sensing, detailed applications, and machine learning techniques used with mmWave radar for a variety of tasks. This article starts out with a discussion of the various working bands of mmWave radars, then moves on to various types of mmWave radars and their key specifications, mmWave radar data interpretation, vast applications in various domains, and, in the end, a discussion of machine learning algorithms applied with radar data for various applications. Our review serves as a practical reference for beginners developing mmWave-radar-based applications by utilizing machine learning techniques.

16.
Sensors (Basel) ; 23(5)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36904796

RESUMEN

Antennas that generate orbital angular momentum (OAM) have the potential to significantly enhance the channel capacity of upcoming wireless systems. This is because different OAM modes that are excited from a shared aperture are orthogonal, which means that each mode can carry a distinct stream of data. As a result, it is possible to transmit multiple data streams at the same time and frequency using a single OAM antenna system. To achieve this, there is a need to develop antennas that can create several OAM modes. This study employs an ultrathin dual-polarized Huygens' metasurface to design a transmit array (TA) that can generate mixed-OAM modes. Two concentrically-embedded TAs are used to excite the desired modes by achieving the required phase difference according to the coordinate position of each unit cell. The prototype of the TA, which operates at 28 GHz and has a size of 11 × 11 cm 2, generates mixed OAM modes of -1 and -2 using dual-band Huygens' metasurfaces. To the best of the authors' knowledge, this is the first time that such a low-profile and dual-polarized OAM carrying mixed vortex beams has been designed using TAs. The maximum gain of the structure is 16 dBi.

17.
Sensors (Basel) ; 23(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36904977

RESUMEN

As a critical enabler for beyond fifth-generation (B5G) technology, millimeter wave (mmWave) beamforming for mmWave has been studied for many years. Multi-input multi-output (MIMO) system, which is the baseline for beamforming operation, rely heavily on multiple antennas to stream data in mmWave wireless communication systems. High-speed mmWave applications face challenges such as blockage and latency overhead. In addition, the efficiency of the mobile systems is severely impacted by the high training overhead required to discover the best beamforming vectors in large antenna array mmWave systems. In order to mitigate the stated challenges, in this paper, we propose a novel deep reinforcement learning (DRL) based coordinated beamforming scheme where multiple base stations serve one mobile station (MS) jointly. The constructed solution then uses a proposed DRL model and predicts the suboptimal beamforming vectors at the base stations (BSs) out of possible beamforming codebook candidates. This solution enables a complete system that facilitates highly mobile mmWave applications with dependable coverage, minimal training overhead, and low latency. Numerical results demonstrate that our proposed algorithm remarkably increases the achievable sum rate capacity for the highly mobile mmWave massive MIMO scenario while ensuring low training and latency overhead.

18.
Sensors (Basel) ; 23(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36850878

RESUMEN

The large bandwidths that are available at millimeter-wave frequencies enable fixed wireless access (FWA) applications, in which fixed point-to-point wireless links are used to provide internet connectivity. In FWA networks, a wireless mesh is created and data are routed from the customer premises equipment (CPE) towards the point of presence (POP), which is the interface with the wired internet infrastructure. The performance of the wireless links depends on the radio propagation characteristics, as well as the wireless technology that is used. The radio propagation characteristics depend on the environment and on the considered frequency. In this work, we analyzed the network characteristics of FWA networks using radio propagation models for different wireless technologies using millimeter-wave (mmWave) frequencies of 28 GHz, 60 GHz, and 140 GHz. Different scenarios and environments were considered, and the influence of rain, vegetation, and the number of subscribers was investigated. A network planning algorithm is presented that defines a route for each CPE towards the POP based on a predefined location of customer devices and considering the available capacity of the wireless links. Rain does not have a considerable effect on the system capacity. Even though the higher frequencies exhibit a larger path loss, resulting in a lower power of the received signal, the larger bandwidths enable a higher channel capacity.

19.
Sensors (Basel) ; 23(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37430531

RESUMEN

For W-band long-range mm-wave wireless transmission systems, nonlinearity issues resulting from photoelectric devices, optical fibers, and wireless power amplifiers can be handled by deep learning equalization algorithms. In addition, the PS technique is considered an effective measure to further increase the capacity of the modulation-constraint channel. However, since the probabilistic distribution of m-QAM varies with the amplitude, there have been difficulties in learning valuable information from the minority class. This limits the benefit of nonlinear equalization. To overcome the imbalanced machine learning problem, we propose a novel two-lane DNN (TLD) equalizer using the random oversampling (ROS) technique in this paper. The combination of PS at the transmitter and ROS at the receiver improved the overall performance of the W-band wireless transmission system, and our 4.6-km ROF delivery experiment verified its effectiveness for the W-band mm-wave PS-16QAM system. Based on our proposed equalization scheme, we achieved single-channel 10-Gbaud W-band PS-16QAM wireless transmission over a 100 m optical fiber link and a 4.6 km wireless air-free distance. The results show that compared with the typical TLD without ROS, the TLD-ROS can improve the receiver's sensitivity by 1 dB. Furthermore, a reduction of 45.6% in complexity was achieved, and we were able to reduce training samples by 15.5%. Considering the actual wireless physical layer and its requirements, there is much to be gained from the joint use of deep learning and balanced data pre-processing techniques.

20.
Sensors (Basel) ; 23(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37112273

RESUMEN

The reconfigurable intelligent surface (RIS) and rate-splitting multiple access (RSMA) are considered as promising technologies for the beyond Fifth-Generation (B5G) and Sixth-Generation (6G) wireless systems by controlling the propagation environment, which attenuates the transmitted signal, and by managing the interference by splitting the user message into common and private messages. Because conventional RIS elements have each impedance connected to the ground, the sum-rate performance improvement of the RIS is limited. Therefore, the new RISs, which have impedance elements connected to each other, have been proposed recently. To be more adaptive to each channel, the optimization of the grouping of the RIS elements is required. Furthermore, since the solution of the optimal rate-splitting (RS) power-splitting ratio is complex, the value should be simply optimized to be more practical in the wireless system. In this paper, the grouping scheme of the RIS elements according to the user scheduling and the solution of the RS power-splitting ratio based on fractional programming (FP) are proposed. The simulation results showed that the proposed RIS-assisted RSMA system achieved a high sum-rate performance compared to the conventional RIS-assisted spatial-division multiple access (SDMA) system. Therefore, the proposed scheme can perform adaptively for the channel and has a flexible interference management. Furthermore, it can be a more suitable technique for B5G and 6G.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda