Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Sensors (Basel) ; 23(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37687962

RESUMEN

Mobile sensors can extend the range of monitoring and overcome static sensors' limitations and are increasingly used in real-life applications. Since there can be significant errors in mobile sensor localization using the Monte Carlo Localization (MCL), this paper improves the food digestion algorithm (FDA). This paper applies the improved algorithm to the mobile sensor localization problem to reduce localization errors and improve localization accuracy. Firstly, this paper proposes three inter-group communication strategies to speed up the convergence of the algorithm based on the topology that exists between groups. Finally, the improved algorithm is applied to the mobile sensor localization problem, reducing the localization error and achieving good localization results.

2.
Sensors (Basel) ; 23(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37765905

RESUMEN

In structural vibration response sensing, mobile sensors offer outstanding benefits as they are not dedicated to a certain structure; they also possess the ability to acquire dense spatial information. Currently, most of the existing literature concerning mobile sensing involves human drivers manually driving through the bridges multiple times. While self-driving automated vehicles could serve for such studies, they might entail substantial costs when applied to structural health monitoring tasks. Therefore, in order to tackle this challenge, we introduce a formation control framework that facilitates automatic multi-agent mobile sensing. Notably, our findings demonstrate that the proposed formation control algorithm can effectively control the behavior of the multi-agent systems for structural response sensing purposes based on user choice. We leverage vibration data collected by these mobile sensors to estimate the full-field vibration response of the structure, utilizing a compressive sensing algorithm in the spatial domain. The task of estimating the full-field response can be represented as a spatiotemporal response matrix completion task, wherein the suite of multi-agent mobile sensors sparsely populates some of the matrix's elements. Subsequently, we deploy the compressive sensing technique to obtain the dense full-field vibration complete response of the structure and estimate the reconstruction accuracy. Results obtained from two different formations on a simply supported bridge are presented in this paper, and the high level of accuracy in reconstruction underscores the efficacy of our proposed framework. This multi-agent mobile sensing approach showcases the significant potential for automated structural response measurement, directly applicable to health monitoring and resilience assessment objectives.

3.
Sensors (Basel) ; 23(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36772178

RESUMEN

The aim of this study was to develop a physical activity advisory system supporting the correct implementation of sport exercises using inertial sensors and machine learning algorithms. Specifically, three mobile sensors (tags), six stationary anchors and a system-controlling server (gateway) were employed for 15 scenarios of the series of subsequent activities, namely squats, pull-ups and dips. The proposed solution consists of two modules: an activity recognition module (ARM) and a repetition-counting module (RCM). The former is responsible for extracting the series of subsequent activities (so-called scenario), and the latter determines the number of repetitions of a given activity in a single series. Data used in this study contained 488 three defined sport activity occurrences. Data processing was conducted to enhance performance, including an overlapping and non-overlapping window, raw and normalized data, a convolutional neural network (CNN) with an additional post-processing block (PPB) and repetition counting. The developed system achieved satisfactory accuracy: CNN + PPB: non-overlapping window and raw data, 0.88; non-overlapping window and normalized data, 0.78; overlapping window and raw data, 0.92; overlapping window and normalized data, 0.87. For repetition counting, the achieved accuracies were 0.93 and 0.97 within an error of ±1 and ±2 repetitions, respectively. The archived results indicate that the proposed system could be a helpful tool to support the correct implementation of sport exercises and could be successfully implemented in further work in the form of web application detecting the user's sport activity.

4.
J Med Internet Res ; 24(3): e25643, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35302502

RESUMEN

BACKGROUND: Sleep influences moods and mood disorders. Existing methods for tracking the quality of people's sleep are laborious and obtrusive. If a method were available that would allow effortless and unobtrusive tracking of sleep quality, it would mark a significant step toward obtaining sleep data for research and clinical applications. OBJECTIVE: Our goal was to evaluate the potential of mobile sensing data to obtain information about a person's sleep quality. For this purpose, we investigated to what extent various automatically gathered mobile sensing features are capable of predicting (1) subjective sleep quality (SSQ), (2) negative affect (NA), and (3) depression; these variables are associated with objective sleep quality. Through a multiverse analysis, we examined how the predictive quality varied as a function of the selected sensor, the extracted feature, various preprocessing options, and the statistical prediction model. METHODS: We used data from a 2-week trial where we collected mobile sensing and experience sampling data from an initial sample of 60 participants. After data cleaning and removing participants with poor compliance, we retained 50 participants. Mobile sensing data involved the accelerometer, charging status, light sensor, physical activity, screen activity, and Wi-Fi status. Instructions were given to participants to keep their smartphone charged and connected to Wi-Fi at night. We constructed 1 model for every combination of multiverse parameters to evaluate their effects on each of the outcome variables. We evaluated the statistical models by applying them to training, validation, and test sets to prevent overfitting. RESULTS: Most models (on either of the outcome variables) were not informative on the validation set (ie, predicted R2≤0). However, our best models achieved R2 values of 0.658, 0.779, and 0.074 for SSQ, NA, and depression, respectively on the training set and R2 values of 0.348, 0.103, and 0.025, respectively on the test set. CONCLUSIONS: The approach demonstrated in this paper has shown that different choices (eg, preprocessing choices, various statistical models, different features) lead to vastly different results that are bad and relatively good as well. Nevertheless, there were some promising results, particularly for SSQ, which warrant further research on this topic.


Asunto(s)
Calidad del Sueño , Trastornos del Sueño-Vigilia , Afecto , Ejercicio Físico , Humanos , Sueño
5.
Sensors (Basel) ; 22(13)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35808264

RESUMEN

Air pollution has become a serious problem in all megacities. It is necessary to continuously monitor the state of the atmosphere, but pollution data received using fixed stations are not sufficient for an accurate assessment of the aerosol pollution level of the air. Mobility in measuring devices can significantly increase the spatiotemporal resolution of the received data. Unfortunately, the quality of readings from mobile, low-cost sensors is significantly inferior to stationary sensors. This makes it necessary to evaluate the various characteristics of monitoring systems depending on the properties of the mobile sensors used. This paper presents an approach in which the time of pollution detection is considered a random variable. To the best of our knowledge, we are the first to deduce the cumulative distribution function of the pollution detection time depending on the features of the monitoring system. The obtained distribution function makes it possible to optimize some characteristics of air pollution detection systems in a smart city.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Aerosoles , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Ciudades , Monitoreo del Ambiente , Material Particulado/análisis
6.
Sensors (Basel) ; 22(6)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35336285

RESUMEN

Wireless networks and the Internet of things (IoT) have proven rapid growth in the development and management of smart environments. These technologies are applied in numerous research fields, such as security surveillance, Internet of vehicles, medical systems, etc. The sensor technologies and IoT devices are cooperative and allow the collection of unpredictable factors from the observing field. However, the constraint resources of distributed battery-powered sensors decrease the energy efficiency of the IoT network and increase the delay in receiving the network data on users' devices. It is observed that many solutions are proposed to overcome the energy deficiency in smart applications; though, due to the mobility of the nodes, lots of communication incurs frequent data discontinuity, compromising the data trust. Therefore, this work introduces a D2D multi-criteria learning algorithm for IoT networks using secured sensors, which aims to improve the data exchange without imposing additional costs and data diverting for mobile sensors. Moreover, it reduces the compromising threats in the presence of anonymous devices and increases the trustworthiness of the IoT-enabled communication system with the support of machine learning. The proposed work was tested and analyzed using broad simulation-based experiments and demonstrated the significantly improved performance of the packet delivery ratio by 17%, packet disturbances by 31%, data delay by 22%, energy consumption by 24%, and computational complexity by 37% for realistic network configurations.


Asunto(s)
Internet de las Cosas , Algoritmos , Comunicación , Simulación por Computador , Aprendizaje Automático
7.
Sensors (Basel) ; 21(5)2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33806555

RESUMEN

Realizing autonomic management control loops is pivotal for achieving self-driving networks. Some studies have recently evidence the feasibility of using Automated Planning (AP) to carry out these loops. However, in practice, the use of AP is complicated since network administrators, who are non-experts in Artificial Intelligence, need to define network management policies as AP-goals and combine them with the network status and network management tasks to obtain AP-problems. AP planners use these problems to build up autonomic solutions formed by primitive tasks that modify the initial network state to achieve management goals. Although recent approaches have investigated transforming network management policies expressed in specific languages into low-level configuration rules, transforming these policies expressed in natural language into AP-goals and, subsequently, build up AP-based autonomic management loops remains unexplored. This paper introduces a novel approach, called NORA, to automatically generate AP-problems by translating Goal Policies expressed in natural language into AP-goals and combining them with both the network status and the network management tasks. NORA uses Natural Language Processing as the translation technique and templates as the combination technique to avoid network administrators to learn policy languages or AP-notations. We used a dataset containing Goal Policies to evaluate the NORA's prototype. The results show that NORA achieves high precision and spends a short-time on generating AP-problems, which evinces NORA aids to overcome barriers to using AP in autonomic network management scenarios.

8.
Sensors (Basel) ; 21(2)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466882

RESUMEN

The urban population, worldwide, is growing exponentially and with it the demand for information on pollution levels, vehicle traffic, or available parking, giving rise to citizens connected to their environment. This article presents an experimental long range (LoRa) and low power consumption network, with a combination of static and mobile wireless sensors (hybrid architecture) to tune and validate concentrator placement, to obtain a large coverage in an urban environment. A mobile node has been used, carrying a gateway and various sensors. The Activation By Personalization (ABP) mode has been used, justified for urban applications requiring multicasting. This allows to compare the coverage of each static gateway, being able to make practical decisions about its location. With this methodology, it has been possible to provide service to the city of Malaga, through a single concentrator node. The information acquired is synchronized in an external database, to monitor the data in real time, being able to geolocate the dataframes through web mapping services. This work presents the development and implementation of a hybrid wireless sensor network of long range and low power, configured and tuned to achieve efficient performance in a mid-size city, and tested in experiments in a real urban environment.

9.
Sensors (Basel) ; 21(14)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34300458

RESUMEN

With the advancement of technology and the arrival of miniaturized environmental sensors that offer greater performance, the idea of building mobile network sensing for air quality has quickly emerged to increase our knowledge of air pollution in urban environments. However, with these new techniques, the difficulty of building mathematical models capable of aggregating all these data sources in order to provide precise mapping of air quality arises. In this context, we explore the spatio-temporal geostatistics methods as a solution for such a problem and evaluate three different methods: Simple Kriging (SK) in residuals, Ordinary Kriging (OK), and Kriging with External Drift (KED). On average, geostatistical models showed 26.57% improvement in the Root Mean Squared Error (RMSE) compared to the standard Inverse Distance Weighting (IDW) technique in interpolating scenarios (27.94% for KED, 26.05% for OK, and 25.71% for SK). The results showed less significant scores in extrapolating scenarios (a 12.22% decrease in the RMSE for geostatisical models compared to IDW). We conclude that univariable geostatistics is suitable for interpolating this type of data but is less appropriate for an extrapolation of non-sampled places since it does not create any information.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente , Modelos Teóricos , Análisis Espacial
10.
Sensors (Basel) ; 21(4)2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33669745

RESUMEN

As an important application of wireless sensor networks (WSNs), deployment of mobile sensors to periodically monitor (sweep cover) a set of points of interest (PoIs) arises in various applications, such as environmental monitoring and data collection. For a set of PoIs in an Eulerian graph, the point sweep coverage problem of deploying the fewest sensors to periodically cover a set of PoIs is known to be Non-deterministic Polynomial Hard (NP-hard), even if all sensors have the same velocity. In this paper, we consider the problem of finding the set of PoIs on a line periodically covered by a given set of mobile sensors that has the maximum sum of weight. The problem is first proven NP-hard when sensors are with different velocities in this paper. Optimal and approximate solutions are also presented for sensors with the same and different velocities, respectively. For M sensors and N PoIs, the optimal algorithm for the case when sensors are with the same velocity runs in O(MN) time; our polynomial-time approximation algorithm for the case when sensors have a constant number of velocities achieves approximation ratio 12; for the general case of arbitrary velocities, 12α and 12(1-1/e) approximation algorithms are presented, respectively, where integer α≥2 is the tradeoff factor between time complexity and approximation ratio.

11.
Sensors (Basel) ; 21(6)2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-33805841

RESUMEN

During the past decade, the technological advancement have allowed the gambling industry worldwide to deploy various platforms such as the web and mobile applications. Government agencies and local authorities have placed strict regulations regarding the location and amount allowed for gambling. These efforts are made to prevent gambling addictions and monitor fraudulent activities. The revenue earned from gambling provides a considerable amount of tax revenue. The inception of internet gambling have allowed professional gamblers to par take in unlawful acts. However, the lack of studies on the technical inspections and systems to prohibit unlawful internet gambling has caused incidents such as the Walkerhill Hotel incident in 2016, where fraudsters placed bets abnormally by modifying an Internet of Things (IoT)-based application called "MyCard". This paper investigates the logic used by smartphone IoT applications to validate the location of users and then confirm continuous threats. Hence, our research analyzed transactions made on applications that operated using location authentication through IoT devices. Drawing on gambling transaction data from the Korea Racing Authority, this research used time series machine learning algorithms to identify anomalous activities and transactions. In our research, we propose a method to detect and prevent these anomalies by conducting a comparative analysis of the results of existing anomaly detection techniques and novel techniques.

12.
Sensors (Basel) ; 21(1)2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33383935

RESUMEN

We formulate and analyze a generic coverage optimization problem arising in wireless sensor networks with sensors of limited mobility. Given a set of targets to be covered and a set of mobile sensors, we seek a sensor dispatch algorithm maximizing the covered targets under the constraint that the maximal moving distance for each sensor is upper-bounded by a given threshold. We prove that the problem is NP-hard. Given its hardness, we devise four algorithms to solve it heuristically or approximately. Among the approximate algorithms, we first develop randomized (1-1/e)-optimal algorithm. We then employ a derandomization technique to devise a deterministic (1-1/e)-approximation algorithm. We also design a deterministic approximation algorithm with nearly ▵-1 approximation ratio by using a colouring technique, where denotes the maximal number of subsets covering the same target. Experiments are also conducted to validate the effectiveness of the algorithms in a variety of parameter settings.

13.
Dev Psychobiol ; 61(3): 444-464, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30883745

RESUMEN

Rapidly maturing technologies for sensing and activity recognition can provide unprecedented access to the complex structure daily activity and interaction, promising new insight into the mechanisms by which experience shapes developmental outcomes. Motion data, autonomic activity, and "snippets" of audio and video recordings can be conveniently logged by wearable sensors (Lazer et al., 2009). Machine learning algorithms can process these signals into meaningful markers, from child and parent behavior to outcomes such as depression or teenage drinking. Theoretically motivated aspects of daily activity can be combined and synchronized to examine reciprocal effects between children's behaviors and their environments or internal processes. Captured over longitudinal time, such data provide a new opportunity to study the processes by which individual differences emerge and stabilize. This paper introduces the reader to developments in sensing and activity recognition with implications for developmental phenomena across the lifespan, sketching a framework for leveraging mobile sensors for transactional analyses that bridge micro- and longitudinal- timescales of development. It finishes by detailing resources and best practices to facilitate the next generation of developmentalists to contribute to this emerging area.


Asunto(s)
Actividades Cotidianas , Afecto/fisiología , Desarrollo Humano/fisiología , Relaciones Interpersonales , Monitoreo Ambulatorio , Actividad Motora/fisiología , Dispositivos Electrónicos Vestibles , Humanos
14.
Sensors (Basel) ; 19(2)2019 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-30642131

RESUMEN

Realization of navigation in virtual environments remains a challenge as it involves complex operating conditions. Decomposition of such complexity is attainable by fusion of sensors and machine learning techniques. Identifying the right combination of sensory information and the appropriate machine learning technique is a vital ingredient for translating physical actions to virtual movements. The contributions of our work include: (i) Synchronization of actions and movements using suitable multiple sensor units, and (ii) selection of the significant features and an appropriate algorithm to process them. This work proposes an innovative approach that allows users to move in virtual environments by simply moving their legs towards the desired direction. The necessary hardware includes only a smartphone that is strapped to the subjects' lower leg. Data from the gyroscope, accelerometer and campus sensors of the mobile device are transmitted to a PC where the movement is accurately identified using a combination of machine learning techniques. Once the desired movement is identified, the movement of the virtual avatar in the virtual environment is realized. After pre-processing the sensor data using the box plot outliers approach, it is observed that Artificial Neural Networks provided the highest movement identification accuracy of 84.2% on the training dataset and 84.1% on testing dataset.


Asunto(s)
Pierna/fisiología , Aprendizaje Automático , Teléfono Inteligente , Interfaz Usuario-Computador , Algoritmos , Humanos , Movimiento , Redes Neurales de la Computación
15.
Sensors (Basel) ; 19(6)2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901817

RESUMEN

In increasingly hyper-connected societies, where individuals rely on short and fast online communications to consume information, museums face a significant survival challenge. Collaborations between scientists and museums suggest that the use of the technological framework known as Internet of Things (IoT) will be a key player in tackling this challenge. IoT can be used to gather and analyse visitor generated data, leading to data-driven insights that can fuel novel, adaptive and engaging museum experiences. We used an IoT implementation-a sensor network installed in the physical space of a museum-to look at how single visitors chose to enter and spend time in the different rooms of a curated exhibition. We collected a sparse, non-overlapping dataset of individual visits. Using various statistical analyses, we found that visitor attention span was very short. People visited five out of twenty rooms on average, and spent a median of two minutes in each room. However, the patterns of choice and time spent in rooms were not random. Indeed, they could be described in terms of a set of linearly separable visit patterns we obtained using principal component analysis. These results are encouraging for future interdisciplinary research that seeks to leverage IoT to get numerical proxies for people attention inside the museum, and use this information to fuel the next generation of possible museum interactions. Such interactions will based on rich, non-intrusive and diverse IoT driven conversation, dynamically tailored to visitors.

16.
Sensors (Basel) ; 19(15)2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31344813

RESUMEN

The constructivist approach is interested in creating knowledge through active engagement and encourages students to build their knowledge from their experiences in the world. Learning through digital game making is a constructivist approach that allows students to learn by developing their own games, enhancing problem-solving skills and fostering creativity. In this context two tools, Create@School App and the Project Management Dashboard (PMD), were developed to enable students from different countries to be able to adapt their learning material by programming and designing games for their academic subjects, therefore integrating the game mechanics, dynamics, and aesthetics into the academic curriculum. This paper focuses on presenting the validation context as well as the evaluation of these tools. The Hassenzahl model and AttrakDiff survey were used for measuring users' experience and satisfaction, and for understanding emotional responses, thus providing information that enables testing of the acceptability and usability of the developed apps. After two years of usage of code-making apps (i.e., Create@School and its pre-design version Pocket Code), the pupils processed knowledge from their academic subjects spontaneously as game-based embedded knowledge. The students demonstrated creativity, a practical approach, and enthusiasm regarding making games focused on academic content that led them to learning, using mobile devices, sensors, images, and contextual information. This approach was widely accepted by students and teachers as part of their everyday class routines.

17.
Sensors (Basel) ; 19(19)2019 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-31554304

RESUMEN

A mobile system that can detect viruses in real time is urgently needed, due to the combination of virus emergence and evolution with increasing global travel and transport. A biosensor called PAMONO (for Plasmon Assisted Microscopy of Nano-sized Objects) represents a viable technology for mobile real-time detection of viruses and virus-like particles. It could be used for fast and reliable diagnoses in hospitals, airports, the open air, or other settings. For analysis of the images provided by the sensor, state-of-the-art methods based on convolutional neural networks (CNNs) can achieve high accuracy. However, such computationally intensive methods may not be suitable on most mobile systems. In this work, we propose nanoparticle classification approaches based on frequency domain analysis, which are less resource-intensive. We observe that on average the classification takes 29 µ s per image for the Fourier features and 17 µ s for the Haar wavelet features. Although the CNN-based method scores 1-2.5 percentage points higher in classification accuracy, it takes 3370 µ s per image on the same platform. With these results, we identify and explore the trade-off between resource efficiency and classification performance for nanoparticle classification of images provided by the PAMONO sensor.

18.
Sensors (Basel) ; 19(1)2019 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-30626151

RESUMEN

Robots, or in general, intelligent vehicles, require large amounts of data to adapt their behavior to the environment and achieve their goals. When their missions take place in large areas, using additional information to that gathered by the onboard sensors frequently offers a more efficient solution of the problem. The emergence of Cyber-Physical Systems and Cloud computing allows this approach, but integration of sensory information, and its effective availability for the robots or vehicles is challenging. This paper addresses the development and implementation of a modular mobile node of a Wireless Sensor Network (WSN), designed to be mounted onboard vehicles, and capable of using different sensors according to mission needs. The mobile node is integrated with an existing static network, transforming it into a Hybrid Wireless Sensor Network (H-WSN), and adding flexibility and range to it. The integration is achieved without the need for multi-hop routing. A database holds the data acquired by both mobile and static nodes, allowing access in real-time to the gathered information. A Human⁻Machine Interface (HMI) presents this information to users. Finally, the system is tested in real urban scenarios in a use-case of measurement of gas levels.

19.
Nervenarzt ; 90(8): 787-795, 2019 Aug.
Artículo en Alemán | MEDLINE | ID: mdl-31309270

RESUMEN

Fitness and lifestyle trackers raise the awareness for wearable sensors in medical applications for clinical trials and healthcare. Various functional impairments of patients with neurological diseases are an ideal target to generate wearable-derived and patient-centered parameters that have the potential to support prevention, prediction, diagnostic procedures and therapy monitoring during the clinical work-up; however, substantial differences between clinical grade wearables and fitness trackers have to be acknowledged. For the application in clinical trials or individualized patient care distinct technical and clinical validation trials have to be conducted. The different test environments under laboratory conditions during standardized tests or under unsupervised home monitoring conditions have to be included in the algorithmic processing of sensor raw data in order to enable a clinical decision support under real-life conditions. This article presents the general understanding of the technical application for the most relevant functional impairments in neurology. While wearables used for sleep assessment have already reached a high level of technological readiness due to the defined test environment (bed, sleep), other wearable applications, e.g. for gait and mobility during home monitoring require further research in order to transfer the technical capabilities into real-life patient care.


Asunto(s)
Monitoreo Ambulatorio , Enfermedades del Sistema Nervioso , Dispositivos Electrónicos Vestibles , Ejercicio Físico , Monitores de Ejercicio/normas , Marcha , Humanos , Monitoreo Ambulatorio/instrumentación , Monitoreo Ambulatorio/tendencias , Enfermedades del Sistema Nervioso/terapia , Dispositivos Electrónicos Vestibles/normas
20.
Nervenarzt ; 90(12): 1215-1220, 2019 Dec.
Artículo en Alemán | MEDLINE | ID: mdl-31748866

RESUMEN

BACKGROUND: Reliable and valid diagnostics and treatment of bipolar disorders and affective episodes are subject to extensive, especially methodological limitations in the clinical practice. OBJECTIVE: The use of smartphones and mobile sensor technology for improvement in diagnostics and treatment of bipolar disorders. METHODS: Critical discussion of current research on the use of ambulatory monitoring and digital phenotyping with bipolar disorders. RESULTS: In many studies the observation periods were too short and the sensors applied were too inaccurate to enable reliable and valid detection of behavioral changes in the context of affective episodes. CONCLUSION: The clarification and operationalization of psychopathological constructs to allow for the measurement of objectively observable and ascertainable behavioral changes during depressive and (hypo)manic states are essential for the successful application of modern mobile technologies in the diagnostics and treatment of bipolar disorders.


Asunto(s)
Trastorno Bipolar , Monitoreo Ambulatorio , Trastorno Bipolar/diagnóstico , Trastorno Bipolar/terapia , Humanos , Psiquiatría/tendencias , Teléfono Inteligente
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda