Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Pestic Biochem Physiol ; 201: 105854, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685234

RESUMEN

Pyridine alkylsulfone derivatives typified by oxazosulfyl (Sumitomo Chemical Company Ltd.) and compound A2 (Syngenta) represent a new class of insecticides, with potent activity against several insect orders. Whilst the MOA of this class has been attributed to interaction with the voltage-gated sodium channel (VGSC), here we present strong evidence that their toxicity to insects is mediated primarily through inhibition of the vesicular acetylcholine transporter (VAChT). Alkylsulfone intoxication in insects is characterised by (i) a reduction in cholinergic synaptic transmission efficiency demonstrated by a depression of cercal afferent activity in giant-interneurone preparations of American cockroach (Periplaneta americana), (ii) selective block of cholinergic-transmission dependent post-synaptic potentials in the Drosophila giant-fibre pathway and (iii) abolition of miniature excitatory post-synaptic currents (mEPSCs) in an identified synapse in Drosophila larvae. Ligand-binding studies using a tritiated example compound ([3H]-A1) revealed a single saturable binding-site, with low nanomolar Kd value, in membrane fractions of green bottle fly (Lucilia sericata). Binding is inhibited by vesamicol and by several examples of a previously identified class of insecticidal compounds known to target VAChT, the spiroindolines. Displacement of this binding by analogues of the radioligand reveals a strong correlation with insecticidal potency. No specific binding was detected in untransformed PC12 cells but a PC12 line stably expressing Drosophila VAChT showed similar affinity for [3H]-A1 as that seen in fly head membrane preparations. Previously identified VAChT point mutations confer resistance to the spiroindoline class of insecticides in Drosophila by Gal-4/UAS directed expression in cholinergic neurones and by CRISPR gene-editing of VAChT, but none of these flies show detectable cross-resistance to this new chemical class. Oxazosulfyl was previously shown to stabilise voltage-gated sodium channels in their slow-inactivated conformation with an IC50 value of 12.3µM but inhibits binding of [3H]-A1 with approximately 5000 times greater potency. We believe this chemistry class represents a novel mode-of-action with high potential for invertebrate selectivity.


Asunto(s)
Insecticidas , Sulfonas , Animales , Insecticidas/farmacología , Insecticidas/química , Sulfonas/farmacología , Sulfonas/química , Drosophila , Periplaneta/efectos de los fármacos , Periplaneta/metabolismo , Transmisión Sináptica/efectos de los fármacos , Acetilcolina/metabolismo
2.
Crit Rev Toxicol ; 53(6): 339-371, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37554099

RESUMEN

Following the European Commission Endocrine Disruptor Criteria, substances shall be considered as having endocrine disrupting properties if they (a) elicit adverse effects, (b) have endocrine activity, and (c) the two are linked by an endocrine mode-of-action (MoA) unless the MoA is not relevant for humans. A comprehensive, structured approach to assess whether substances meet the Endocrine Disruptor Criteria for the thyroid modality (EDC-T) is currently unavailable. Here, the European Centre for Ecotoxicology and Toxicology of Chemicals Thyroxine Task Force and CropLife Europe propose a Thyroid Function-Related Neurodevelopmental Toxicity Testing and Assessment Scheme (Thyroid-NDT-TAS). In Tier 0, before entering the Thyroid-NDT-TAS, all available in vivo, in vitro and in silico data are submitted to weight-of-evidence (WoE) evaluations to determine whether the substance of interest poses a concern for thyroid disruption. If so, Tier 1 of the Thyroid-NDT-TAS includes an initial MoA and human relevance assessment (structured by the key events of possibly relevant adverse outcome pathways) and the generation of supportive in vitro/in silico data, if relevant. Only if Tier 1 is inconclusive, Tier 2 involves higher-tier testing to generate further thyroid- and/or neurodevelopment-related data. Tier 3 includes the final MoA and human relevance assessment and an overarching WoE evaluation to draw a conclusion on whether, or not, the substance meets the EDC-T. The Thyroid-NDT-TAS is based on the state-of-the-science, and it has been developed to minimise animal testing. To make human safety assessments more accurate, it is recommended to apply the Thyroid-NDT-TAS during future regulatory assessments.


Asunto(s)
Disruptores Endocrinos , Glándula Tiroides , Animales , Humanos , Disruptores Endocrinos/toxicidad , Pruebas de Toxicidad , Ecotoxicología , Hormonas Tiroideas , Medición de Riesgo
3.
Crit Rev Toxicol ; 53(3): 131-167, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37366107

RESUMEN

This article addresses issues of importance for occupational exposure limits (OELs) and chemical carcinogens with a focus on non-threshold carcinogens. It comprises scientific as well as regulatory issues. It is an overview, not a comprehensive review. A central topic is mechanistic research and insights, and its implications for cancer risk assessment. Alongside scientific advancements, the approaches of hazard identification and qualitative and quantitative risk assessment have developed over the years. The key steps in a quantitative risk assessment are outlined, with special attention given to the dose-response assessment and the derivation of an OEL using risk calculations or default assessment factors. The work procedures of several bodies performing cancer hazard identifications and quantitative risk assessments, as well as regulatory procedures to derive OELs for non-threshold carcinogens, are presented. Non-threshold carcinogens for which the European Union (EU) introduced binding OELs in 2017-2019 serve as illustrations together with some currently used strategies in the EU and elsewhere. Available knowledge supports the derivation of health-based OELs (Hb-OELs) for non-threshold carcinogens, and the use of a risk-based approach with low-dose linear extrapolation (linear non-threshold, LNT) as the default for non-threshold carcinogens. However, there is a need to develop methods that allow recent years' advances in cancer research to be used for improving risk estimates. It is recommended that defined risk levels (terminology and numerical values) are harmonised, and that both collective and individual risks are considered and clearly communicated. Socioeconomic aspects should be dealt with transparently and separated from the scientific health risk assessment.


Asunto(s)
Neoplasias , Exposición Profesional , Salud Laboral , Humanos , Carcinógenos/toxicidad , Valores Limites del Umbral , Neoplasias/inducido químicamente , Medición de Riesgo
4.
Arch Toxicol ; 97(4): 931-946, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36797432

RESUMEN

This review addresses the need for a framework to increase the consistency, objectivity and transparency in the regulatory assessment of respiratory sensitisers and associated uncertainties. Principal issues are considered and illustrated through a case study (with methyl methacrylate). In the absence of test methods validated for regulatory use, formal documentation of the weight-of-evidence for hazard classification both at the level of integration of individual studies within lines of evidence and across a broad range of data streams was agreed to be critical for such a framework. An integrated approach is proposed to include not only occupational studies and clinical evidence for the regulatory assessment of respiratory sensitisers, but also information on structure and physical and chemical factors, predictive approaches such as structure activity analysis and in vitro and in vivo mechanistic and toxicokinetic findings. A weight-of-evidence protocol, incorporating integration of these sources of data based on predefined considerations, would contribute to transparency and consistency in the outcome of the assessment. In those cases where a decision may need to be taken on the basis of occupational findings alone, conclusions should be based on transparent weighting of relevant data on the observed prevalence of occupational asthma in various studies taking into account all relevant information including the range and nature of workplace exposures to the substance of interest, co-exposure to other chemicals and study quality.


Asunto(s)
Metacrilatos , Metilmetacrilato/toxicidad , Medición de Riesgo/métodos , Incertidumbre , Metacrilatos/toxicidad
5.
Regul Toxicol Pharmacol ; 145: 105521, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37863416

RESUMEN

Hexavalent chromium [Cr(VI)] is present in drinking water from natural and anthropogenic sources at approximately 1 ppb. Several regulatory bodies have recently developed threshold-based safety criteria for Cr(VI) of 30-100 ppb based on evidence that small intestine tumors in mice following exposure to ≥20,000 ppb are the result of a non-mutagenic mode of action (MOA). In contrast, U.S. EPA has recently concluded that Cr(VI) acts through a mutagenic MOA based, in part, on scoring numerous in vivo genotoxicity studies as having low confidence; and therefore derived a cancer slope factor (CSF) of 0.5 (mg/kg-day)-1, equivalent to ∼0.07 ppb. Herein, we demonstrate how physiologically based pharmacokinetic (PBPK) models and intestinal segment-specific tumor incidence data can form a robust dataset supporting derivation of alternative CSF values that equate to Cr(VI) concentrations ranging from below background to concentrations similar to those derived using threshold approaches-depending on benchmark response level and risk tolerance. Additionally, we highlight weaknesses in the rationale EPA used to discount critical in vivo genotoxicity studies. While the data support a non-genotoxic MOA, these alternative toxicity criteria require only PBPK models, robust tumor data, and fair interpretation of published in vivo genotoxicity data for Cr(VI).


Asunto(s)
Neoplasias Intestinales , Neoplasias de la Boca , Ratones , Animales , Cromo/toxicidad , Neoplasias Intestinales/patología , Mutagénesis , Mutágenos/toxicidad
6.
Mar Drugs ; 21(5)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37233502

RESUMEN

Natural Products (NP) are essential for the discovery of novel drugs and products for numerous biotechnological applications. The NP discovery process is expensive and time-consuming, having as major hurdles dereplication (early identification of known compounds) and structure elucidation, particularly the determination of the absolute configuration of metabolites with stereogenic centers. This review comprehensively focuses on recent technological and instrumental advances, highlighting the development of methods that alleviate these obstacles, paving the way for accelerating NP discovery towards biotechnological applications. Herein, we emphasize the most innovative high-throughput tools and methods for advancing bioactivity screening, NP chemical analysis, dereplication, metabolite profiling, metabolomics, genome sequencing and/or genomics approaches, databases, bioinformatics, chemoinformatics, and three-dimensional NP structure elucidation.


Asunto(s)
Productos Biológicos , Productos Biológicos/química , Bases de Datos Factuales , Metabolómica/métodos , Biología Computacional , Genómica
7.
Crit Rev Toxicol ; 52(7): 546-617, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36519295

RESUMEN

This review investigated which patterns of thyroid- and brain-related effects are seen in rats upon gestational/lactational exposure to 14 substances causing thyroid hormone imbalance by four different modes-of-action (inhibition of thyroid peroxidase, sodium-iodide symporter and deiodinase activities, enhancement of thyroid hormone clearance) or to dietary iodine deficiency. Brain-related parameters included motor activity, cognitive function, acoustic startle response, hearing function, periventricular heterotopia, electrophysiology and brain gene expression. Specific modes-of-action were not related to specific patterns of brain-related effects. Based upon the rat data reviewed, maternal serum thyroid hormone levels do not show a causal relationship with statistically significant neurodevelopmental effects. Offspring serum thyroxine together with offspring serum triiodothyronine and thyroid stimulating hormone appear relevant to predict the likelihood for neurodevelopmental effects. Based upon the collated database, thresholds of ≥60%/≥50% offspring serum thyroxine reduction and ≥20% and statistically significant offspring serum triiodothyronine reduction indicate an increased likelihood for statistically significant neurodevelopmental effects; accuracies: 83% and 67% when excluding electrophysiology (and gene expression). Measurements of brain thyroid hormone levels are likely relevant, too. The extent of substance-mediated thyroid hormone imbalance appears more important than substance mode-of-action to predict neurodevelopmental impairment in rats. Pertinent research needs were identified, e.g. to determine whether the phenomenological offspring thyroid hormone thresholds are relevant for regulatory toxicity testing. The insight from this review shall be used to suggest a tiered testing strategy to determine whether gestational/lactational substance exposure may elicit thyroid hormone imbalance and potentially also neurodevelopmental effects.


Asunto(s)
Enfermedades del Sistema Endocrino , Glándula Tiroides , Embarazo , Femenino , Ratas , Animales , Triyodotironina/metabolismo , Triyodotironina/farmacología , Tiroxina/metabolismo , Tiroxina/farmacología , Lactancia , Reflejo de Sobresalto , Hormonas Tiroideas
8.
Regul Toxicol Pharmacol ; 131: 105160, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35311659

RESUMEN

Rodent cancer bioassays have been long-required studies for regulatory assessment of human cancer hazard and risk. These studies use hundreds of animals, are resource intensive, and certain aspects of these studies have limited human relevance. The past 10 years have seen an exponential growth of new technologies with the potential to effectively evaluate human cancer hazard and risk while reducing, refining, or replacing animal use. To streamline and facilitate uptake of new technologies, a workgroup comprised of scientists from government, academia, non-governmental organizations, and industry stakeholders developed a framework for waiver rationales of rodent cancer bioassays for consideration in agrochemical safety assessment. The workgroup used an iterative approach, incorporating regulatory agency feedback, and identifying critical information to be considered in a risk assessment-based weight of evidence determination of the need for rodent cancer bioassays. The reporting framework described herein was developed to support a chronic toxicity and carcinogenicity study waiver rationale, which includes information on use pattern(s), exposure scenario(s), pesticidal mode-of-action, physicochemical properties, metabolism, toxicokinetics, toxicological data including mechanistic data, and chemical read-across from similar registered pesticides. The framework could also be applied to endpoints other than chronic toxicity and carcinogenicity, and for chemicals other than agrochemicals.


Asunto(s)
Neoplasias , Plaguicidas , Agroquímicos/toxicidad , Animales , Bioensayo , Pruebas de Carcinogenicidad , Plaguicidas/toxicidad , Medición de Riesgo , Roedores
9.
Crit Rev Toxicol ; 51(4): 328-358, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-34074207

RESUMEN

The current understanding of thyroid-related adverse outcome pathways (AOPs) with adverse neurodevelopmental outcomes in mammals has been reviewed. This served to establish if standard rodent toxicity test methods and in vitro assays allow identifying thyroid-related modes-of-action potentially leading to adverse neurodevelopmental outcomes, and the human relevance of effects - in line with the European Commission's Endocrine Disruptor Criteria. The underlying hypothesis is that an understanding of the key events of relevant AOPs provides insight into differences in incidence, magnitude, or species sensitivity of adverse outcomes. The rodent studies include measurements of serum thyroid hormones, thyroid gland pathology and neurodevelopmental assessments, but do not directly inform on specific modes-of-action. Opportunities to address additional non-routine parameters reflecting critical events of AOPs in toxicological assessments are presented. These parameters appear relevant to support the identification of specific thyroid-related modes-of-action, provided that prevailing technical limitations are overcome. Current understanding of quantitative key event relationships is often weak, but would be needed to determine if the triggering of a molecular initiating event will ultimately result in an adverse outcome. Also, significant species differences in all processes related to thyroid hormone signalling are evident, but the biological implications thereof (including human relevance) are often unknown. In conclusion, careful consideration of the measurement (e.g. timing, method) and interpretation of additional non-routine parameters is warranted. These findings will be used in a subsequent paper to propose a testing strategy to identify if a substance may elicit maternal thyroid hormone imbalance and potentially also neurodevelopmental effects in the progeny.


Asunto(s)
Pruebas de Toxicidad/métodos , Rutas de Resultados Adversos , Animales , Disruptores Endocrinos , Humanos , Sistema Nervioso/efectos de los fármacos , Sistema Nervioso/crecimiento & desarrollo , Síndromes de Neurotoxicidad , Medición de Riesgo , Glándula Tiroides , Hormonas Tiroideas
10.
Crit Rev Toxicol ; 51(8): 653-694, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-35239444

RESUMEN

The Toxicology Forum convened an international state-of-the-science workshop Assessing Chemical Carcinogenicity: Hazard Identification, Classification, and Risk Assessment in December 2020. Challenges related to assessing chemical carcinogenicity were organized under the topics of (1) problem formulation; (2) modes-of-action; (3) dose-response assessment; and (4) the use of new approach methodologies (NAMs). Key topics included the mechanisms of genotoxic and non-genotoxic carcinogenicity and how these in conjunction with consideration of exposure conditions might inform dose-response assessments and an overall risk assessment; approaches to evaluate the human relevance of modes-of-action observed in rodent studies; and the characterization of uncertainties. While the scientific limitations of the traditional rodent chronic bioassay were widely acknowledged, knowledge gaps that need to be overcome to facilitate the further development and uptake of NAMs were also identified. Since one single NAM is unlikely to replace the bioassay, activities to combine NAMs into integrated approaches for testing and assessment, or preferably into defined approaches for testing and assessment that include data interpretation procedures, were identified as urgent research needs. In addition, adverse outcome pathway networks can provide a framework for organizing the available evidence/data for assessing chemical carcinogenicity. Since a formally accepted decision tree to guide use of the best and most current science to advance carcinogenicity risk assessment is currently unavailable, a Decision Matrix for carcinogenicity assessment could be useful. The workshop organizers developed and presented a decision matrix to be considered within a carcinogenicity hazard and risk assessment that is offered in tabular form.


Asunto(s)
Carcinogénesis , Carcinógenos , Bioensayo , Pruebas de Carcinogenicidad/métodos , Carcinógenos/toxicidad , Humanos , Medición de Riesgo/métodos
11.
Regul Toxicol Pharmacol ; 122: 104884, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33596450

RESUMEN

Metribuzin is a herbicide that inhibits photosynthesis and has been used for over 40 years. Its main target organ is the liver and to some extent the kidney in rats, dogs, and rabbits. Metribuzin shows a specific thyroxine (T4) profile in rat studies with T4 increases at low doses and T4 decreases at higher doses. Only the T4 decreases occur together with histopathological changes in the thyroid and weight changes of liver and thyroid. A set of experiments was conducted to investigate metribuzin's endocrine disruptor potential according to European guidance and regulations. The results indicate that a liver enzyme modulation, i.e. of the uridine 5'-diphospho-glucuronosyltransferase (UDPGT, UGT), is most likely responsible for both increased and decreased plasma thyroxine level and for thyroid histopathological observations. Animals with high T4 levels show low UGT activity, while animals with low T4 levels show high UGT activity. A causal relationship was inferred, since other potentially human-relevant mode of action (MOA) pathways were excluded in dedicated studies, i.e. inhibition of deiodinases (DIO), inhibition of thyroid peroxidase (TPO) or of the sodium importer system (NIS). This liver metabolism-associated MOA is considered not relevant for human hazard assessment, due to species differences in thyroid homeostasis between humans and rats and, more importantly, based on experimental data showing that metribuzin affects UGT activity in rat but not in human hepatocytes. Further, we discuss whether or not increased T4 levels in the rat, in the absence of histopathological changes, should be considered as adverse and therefore used as an appropriate hazard model for humans. Based on a weight of evidence approach, metribuzin should not be classified as an endocrine disruptor with regard to the thyroid modality.


Asunto(s)
Glucuronosiltransferasa/efectos de los fármacos , Herbicidas/farmacología , Glándula Tiroides/efectos de los fármacos , Tiroxina/efectos de los fármacos , Triazinas/farmacología , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Femenino , Masculino , Ratas , Tiroxina/biosíntesis , Tiroxina/sangre
12.
Regul Toxicol Pharmacol ; 124: 104972, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34119600

RESUMEN

The derivation of Chemical Specific Adjustment Factors (CSAFs) (IPCS, 2005; U.S. EPA, 2014) depends on the choice of appropriate dose metric. EPA and IPCS guidance was applied to derive a CSAF for developmental toxicity for procymidone (PCM). Although kinetic data were not available in humans at any dose, sufficient toxicokinetic data are available in a surrogate species, primates, and from chimeric mice with both rat and human liver cells to offer insights. Alternative approaches were explored in the derivation of the CSAG based on review of the available kinetic data. The most likely dosimetric adjustment is the Cmax based on the character of the critical effect - reduced anogenital distance and increased incidence of hypospadias in male rats, which likely occurs during a small window of time during development of the rat fetus. Cmax is also the default dosimeter from U.S. EPA (1991). However, in this case, the use of Cmax is also likely more conservative than the use of area under the curve (AUC), which otherwise is the default recommendation of the IPCS (2005). Despite human data, estimated tentative CSAF value is 0.48 (range, 0.22 to 0.74). The use of any of these values would be supported by the available data.


Asunto(s)
Compuestos Bicíclicos con Puentes/toxicidad , Desarrollo Fetal/efectos de los fármacos , Fungicidas Industriales/toxicidad , Hipospadias/inducido químicamente , Pruebas de Toxicidad/estadística & datos numéricos , Animales , Área Bajo la Curva , Compuestos Bicíclicos con Puentes/administración & dosificación , Interpretación Estadística de Datos , Femenino , Humanos , Masculino , Toxicocinética
13.
Crit Rev Toxicol ; 50(1): 72-95, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-32133908

RESUMEN

The European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) organized a workshop "Hazard Identification, Classification and Risk Assessment of Carcinogens: Too Much or Too Little?" to explore the scientific limitations of the current binary carcinogenicity classification scheme that classifies substances as either carcinogenic or not. Classification is often based upon the rodent 2-year bioassay, which has scientific limitations and is not necessary to predict whether substances are likely human carcinogens. By contrast, tiered testing strategies founded on new approach methodologies (NAMs) followed by subchronic toxicity testing, as necessary, are useful to determine if a substance is likely carcinogenic, by which mode-of-action effects would occur and, for non-genotoxic carcinogens, the dose levels below which the key events leading to carcinogenicity are not affected. Importantly, the objective is not for NAMs to mimic high-dose effects recorded in vivo, as these are not relevant to human risk assessment. Carcinogenicity testing at the "maximum tolerated dose" does not reflect human exposure conditions, but causes major disturbances of homeostasis, which are very unlikely to occur at relevant human exposure levels. The evaluation of findings should consider biological relevance and not just statistical significance. Using this approach, safe exposures to non-genotoxic substances can be established.


Asunto(s)
Pruebas de Carcinogenicidad/métodos , Carcinógenos/toxicidad , Carcinógenos/clasificación , Ecotoxicología , Humanos , Medición de Riesgo/métodos
14.
Crit Rev Toxicol ; 50(8): 685-706, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-33146058

RESUMEN

Small intestinal (SI) tumors are relatively uncommon outcomes in rodent cancer bioassays, and limited information regarding chemical-induced SI tumorigenesis has been reported in the published literature. Herein, we propose a cytotoxicity-mediated adverse outcome pathway (AOP) for SI tumors by leveraging extensive target species- and site-specific molecular, cellular, and histological mode of action (MOA) research for three reference chemicals, the fungicides captan and folpet and the transition metal hexavalent chromium (Cr(VI)). The gut barrier functions through highly efficient homeostatic regulation of SI epithelial cell sloughing, regenerative proliferation, and repair, which involves the replacement of up to 1011 cells per day. This dynamic turnover in the SI provides a unique local environment for a cytotoxicity mediated AOP/MOA. Upon entering the duodenum, cytotoxicity to the villous epithelium is the molecular initiating event, as indicated by crypt elongation, villous atrophy/blunting, and other morphologic changes. Over time, the regenerative capacity of the gut epithelium to compensate declines as epithelial loss accelerates, especially at higher exposures. The first key event (KE), sustained regenerative crypt proliferation/hyperplasia, requires sufficient durations, likely exceeding 6 or 12 months, due to extensive repair capacity, to create more opportunities for the second KE, spontaneous mutation/transformation, ultimately leading to proximal SI tumors. Per OECD guidance, biological plausibility, essentiality, and empirical support were assessed using modified Bradford Hill considerations. The weight-of-evidence also included a lack of induced mutations in the duodenum after up to 90 days of Cr(VI) or captan exposure. The extensive evidence for this AOP, along with the knowledge that human exposures are orders of magnitude below those associated with KEs in this AOP, supports its use for regulatory applications, including hazard identification and risk assessment.


Asunto(s)
Captano/toxicidad , Cromo/toxicidad , Fungicidas Industriales/toxicidad , Hiperplasia , Neoplasias Intestinales/inducido químicamente , Ftalimidas/toxicidad , Rutas de Resultados Adversos , Animales , Duodeno , Humanos , Ratones , Medición de Riesgo
15.
Regul Toxicol Pharmacol ; 111: 104583, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31935484

RESUMEN

The June 2019 workshop 21st Century Approaches for Evaluating Exposures, Biological Activity, and Risks of Complex Substances, co-organised by the International Council of Chemical Association's Long-Range Research Initiative and the European Commission's Joint Research Centre, is summarised. Focus was the need for improved approaches to evaluate the safety of complex substances. Approximately 10% and 20% of substances registered under the EU chemicals legislation are 'multi-constituent substances' and 'substances of unknown or variable compositions, complex reaction products and biological substances' (UVCBs), respectively, and UVCBs comprise approximately 25% of the U.S. Toxic Substances Control Act Inventory. Workshop participants were asked to consider how the full promise of new approach methodologies (NAMs) could be brought to bear to evaluate complex substances. Sessions focused on using NAMs for screening, biological profiling, and in complex risk evaluations; improving read-across approaches employing new data streams; and methods to evaluate exposure and dosimetry. The workshop concluded with facilitated discussions to explore actionable steps forward. Given the diversity of complex substances, no single 'correct' approach was seen as workable. The path forward should focus on 'learning by doing' by developing and openly sharing NAM-based fit-for-purpose case examples for evaluating biological activity, exposures and risks of complex substances.


Asunto(s)
Medición de Riesgo/historia , Pruebas de Toxicidad/historia , Animales , Historia del Siglo XXI , Humanos
16.
Regul Toxicol Pharmacol ; 96: 178-189, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29738809

RESUMEN

Chronic repeated gavage dosing of high concentrations of ethyl acrylate (EA) causes forestomach tumors in rats and mice. For two decades, there has been general consensus that these tumors are unique to rodents because of: i) lack of carcinogenicity in other organs, ii) specificity to the forestomach (an organ unique to rodents which humans do not possess), iii) lack of carcinogenicity by other routes of exposure, and iv) obvious site of contact toxicity at carcinogenic doses. In 1986, EA was classified as possibly carcinogenic to humans by the International Agency for Research on Cancer (IARC). However, by applying a MOA analyses and human relevance framework assessment, the weight-of-evidence supports a cytotoxic MOA with the following key events: i) bolus delivery of EA to forestomach lumen and subsequent absorption, ii) cytotoxicity likely due to saturation of enzymatic detoxification, iii) chronic regenerative hyperplasia, and iv) spontaneous mutation due to increased cell replication and cell population. Clonal expansion of initiated cells thus results in late onset tumorigenesis. The key events in this 'wound and healing' MOA provide high confidence in the MOA as assessed by evolved Bradford-Hill Criteria. The weight-of-evidence supported by the proposed MOA, combined with a unique tissue that does not exist in humans, indicates that EA is highly unlikely to pose a human cancer hazard.


Asunto(s)
Acrilatos/administración & dosificación , Acrilatos/toxicidad , Neoplasias Gástricas/inducido químicamente , Acrilatos/química , Administración Oral , Animales , Humanos , Estructura Molecular , Ratas
17.
Toxicol Appl Pharmacol ; 330: 48-52, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28687238

RESUMEN

A cancer bioassay on hexavalent chromium Cr(VI) in drinking water reported increased incidences of duodenal tumors in B6C3F1 mice at exposures of 30-180ppm, and oral cavity tumors in F344 rats at 180ppm. A subsequent transgenic rodent (TGR) in vivo mutation assay in Big Blue® TgF344 rats found that exposure to 180ppm Cr(VI) in drinking water for 28days did not increase cII transgene mutant frequency (MF) in the oral cavity (Thompson et al., 2015). Herein, we extend our analysis to the duodenum of these same TgF344 rats. At study termination, duodenum chromium levels were below either the limit of detection or quantification in control rats, but were 24.6±3.8µg/g in Cr(VI)-treated rats. The MF in control (23.2×10-6) and Cr(VI)-treated rats (22.7×10-6) were nearly identical. In contrast, the MF in the duodenum of rats exposed to 1-ethyl-1-nitrosourea for six days (study days 1, 2, 3, 12, 19, 26) increased 24-fold to 557×10-6. These findings indicate that mutagenicity is unlikely an early initiating event in Cr(VI)-induced intestinal carcinogenesis.


Asunto(s)
Cromo/toxicidad , Duodeno/efectos de los fármacos , Mutágenos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Cromo/metabolismo , Neoplasias Duodenales/inducido químicamente , Neoplasias Duodenales/genética , Etilnitrosourea/toxicidad , Masculino , Pruebas de Mutagenicidad , Mutágenos/metabolismo , Ratas , Ratas Endogámicas F344 , Contaminantes Químicos del Agua/metabolismo , Abastecimiento de Agua
18.
Regul Toxicol Pharmacol ; 91 Suppl 1: S3-S13, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28958911

RESUMEN

Prevailing knowledge gaps in linking specific molecular changes to apical outcomes and methodological uncertainties in the generation, storage, processing, and interpretation of 'omics data limit the application of 'omics technologies in regulatory toxicology. Against this background, the European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) convened a workshop Applying 'omics technologies in chemicals risk assessment that is reported herein. Ahead of the workshop, multi-expert teams drafted frameworks on best practices for (i) a Good-Laboratory Practice-like context for collecting, storing and curating 'omics data; (ii) the processing of 'omics data; and (iii) weight-of-evidence approaches for integrating 'omics data. The workshop participants confirmed the relevance of these Frameworks to facilitate the regulatory applicability and use of 'omics data, and the workshop discussions provided input for their further elaboration. Additionally, the key objective (iv) to establish approaches to connect 'omics perturbations to phenotypic alterations was addressed. Generally, it was considered promising to strive to link gene expression changes and pathway perturbations to the phenotype by mapping them to specific adverse outcome pathways. While further work is necessary before gene expression changes can be used to establish safe levels of substance exposure, the ECETOC workshop provided important incentives towards achieving this goal.


Asunto(s)
Congresos como Asunto , Ecotoxicología/métodos , Educación/métodos , Genómica/métodos , Metabolómica/métodos , Informe de Investigación , Animales , Congresos como Asunto/tendencias , Ecotoxicología/tendencias , Educación/tendencias , Europa (Continente) , Genómica/tendencias , Humanos , Metabolómica/tendencias , Proteómica/métodos , Proteómica/tendencias , Informe de Investigación/tendencias , Medición de Riesgo , España
19.
Regul Toxicol Pharmacol ; 71(3): 463-77, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25707856

RESUMEN

An adverse outcome pathway (AOP) describes the causal linkage between initial molecular events and an adverse outcome at individual or population levels. Whilst there has been considerable momentum in AOP development, far less attention has been paid to how AOPs might be practically applied for different regulatory purposes. This paper proposes a scientific confidence framework (SCF) for evaluating and applying a given AOP for different regulatory purposes ranging from prioritizing chemicals for further evaluation, to hazard prediction, and ultimately, risk assessment. The framework is illustrated using three different AOPs for several typical regulatory applications. The AOPs chosen are ones that have been recently developed and/or published, namely those for estrogenic effects, skin sensitisation, and rodent liver tumor promotion. The examples confirm how critical the data-richness of an AOP is for driving its practical application. In terms of performing risk assessment, human dosimetry methods are necessary to inform meaningful comparisons with human exposures; dosimetry is applied to effect levels based on non-testing approaches and in vitro data. Such a comparison is presented in the form of an exposure:activity ratio (EAR) to interpret biological activity in the context of exposure and to provide a basis for product stewardship and regulatory decision making.


Asunto(s)
Carcinógenos/toxicidad , Aprobación de Drogas , Disruptores Endocrinos/toxicidad , Estrógenos/toxicidad , Irritantes/toxicidad , Modelos Biológicos , Pruebas de Toxicidad/métodos , Animales , Pruebas de Carcinogenicidad , Simulación por Computador , Bases de Datos Factuales , Técnicas de Apoyo para la Decisión , Relación Dosis-Respuesta a Droga , Humanos , Neoplasias Hepáticas/inducido químicamente , Relación Estructura-Actividad Cuantitativa , Medición de Riesgo , Pruebas de Irritación de la Piel , Pruebas de Toxicidad/normas
20.
Environ Mol Mutagen ; 65(3-4): 129-136, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38717101

RESUMEN

Chronic exposure to high (20,000 ppm) concentrations of tert-butyl alcohol (TBA) in drinking water, equivalent to ~2100 mg/kg bodyweight per day, is associated with slight increases in the incidence of thyroid follicular cell adenomas and carcinomas in mice, with no other indications of carcinogenicity. In a recent toxicological review of TBA, the U.S. EPA determined that the genotoxic potential of TBA was inconclusive, largely based on non-standard studies such as in vitro comet assays. As such, the potential role of genotoxicity in the mode of action of thyroid tumors and therefore human relevance was considered uncertain. To address the potential role of genotoxicity in TBA-associated thyroid tumor formation, CD-1 mice were exposed up to a maximum tolerated dose of 1500 mg/kg-day via oral gavage for two consecutive days and DNA damage was assessed with the comet assay in the thyroid. Blood TBA levels were analyzed by headspace GC-MS to confirm systemic tissue exposure. At study termination, no significant increases (DNA breakage) or decreases (DNA crosslinks) in %DNA tail were observed in TBA exposed mice. In contrast, oral gavage of the positive control ethyl methanesulfonate significantly increased %DNA tail in the thyroid. These findings are consistent with most genotoxicity studies on TBA and provide mechanistic support for non-linear, threshold toxicity criteria for TBA. While the mode of action for the thyroid tumors remains unclear, linear low dose extrapolation methods for TBA appear more a matter of policy than science.


Asunto(s)
Ensayo Cometa , Daño del ADN , Glándula Tiroides , Alcohol terc-Butílico , Animales , Ensayo Cometa/métodos , Ratones , Alcohol terc-Butílico/toxicidad , Daño del ADN/efectos de los fármacos , Glándula Tiroides/efectos de los fármacos , Glándula Tiroides/patología , Neoplasias de la Tiroides/inducido químicamente , Neoplasias de la Tiroides/patología , Mutágenos/toxicidad , Masculino , Femenino
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda