Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Biol Chem ; 300(9): 107675, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39128719

RESUMEN

The assembly of two monomeric constructs spanning segments 1-199 (MPro1-199) and 10-306 (MPro10-306) of SARS-CoV-2 main protease (MPro) was examined to assess the existence of a transient heterodimer intermediate in the N-terminal autoprocessing pathway of MPro model precursor. Together, they form a heterodimer population accompanied by a 13-fold increase in catalytic activity. Addition of inhibitor GC373 to the proteins increases the activity further by ∼7-fold with a 1:1 complex and higher order assemblies approaching 1:2 and 2:2 molecules of MPro1-199 and MPro10-306 detectable by analytical ultracentrifugation and native mass estimation by light scattering. Assemblies larger than a heterodimer (1:1) are discussed in terms of alternate pathways of domain III association, either through switching the location of helix 201 to 214 onto a second helical domain of MPro10-306 and vice versa or direct interdomain III contacts like that of the native dimer, based on known structures and AlphaFold 3 prediction, respectively. At a constant concentration of MPro1-199 with molar excess of GC373, the rate of substrate hydrolysis displays first order dependency on the MPro10-306 concentration and vice versa. An equimolar composition of the two proteins with excess GC373 exhibits half-maximal activity at ∼6 µM MPro1-199. Catalytic activity arises primarily from MPro1-199 and is dependent on the interface interactions involving the N-finger residues 1 to 9 of MPro1-199 and E290 of MPro10-306. Importantly, our results confirm that a single N-finger region with its associated intersubunit contacts is sufficient to form a heterodimeric MPro intermediate with enhanced catalytic activity.


Asunto(s)
Proteasas 3C de Coronavirus , Multimerización de Proteína , SARS-CoV-2 , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/química , SARS-CoV-2/enzimología , SARS-CoV-2/metabolismo , SARS-CoV-2/química , Humanos , Dominios Proteicos , COVID-19/virología , Modelos Moleculares
2.
Cell Mol Life Sci ; 78(23): 7557-7568, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34657173

RESUMEN

Opioid receptors (ORs) have been observed as homo- and heterodimers, but it is unclear if the dimers are stable under physiological conditions, and whether monomers or dimers comprise the predominant fraction in a cell. Here, we use three live-cell imaging approaches to assess dimerization of ORs at expression levels that are 10-100 × smaller than in classical biochemical assays. At membrane densities around 25/µm2, a split-GFP assay reveals that κOR dimerizes, while µOR and δOR stay monomeric. At receptor densities < 5/µm2, single-molecule imaging showed no κOR dimers, supporting the concept that dimer formation depends on receptor membrane density. To directly observe the transition from monomers to dimers, we used a single-molecule assay to assess membrane protein interactions at densities up to 100 × higher than conventional single-molecule imaging. We observe that κOR is monomeric at densities < 10/µm2 and forms dimers at densities that are considered physiological. In contrast, µOR and δOR stay monomeric even at the highest densities covered by our approach. The observation of long-lasting co-localization of red and green κOR spots suggests that it is a specific effect based on OR dimerization and not an artefact of coincidental encounters.


Asunto(s)
Membrana Celular/metabolismo , Receptores Opioides delta/química , Receptores Opioides delta/metabolismo , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo , Imagen Individual de Molécula/métodos , Análisis de la Célula Individual/métodos , Animales , Ratones , Conformación Proteica , Multimerización de Proteína , Ratas
3.
Int J Mol Sci ; 23(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35008752

RESUMEN

Antimicrobial peptides (AMPs) are considered prospective antibiotics. Some AMPs fight bacteria via cooperative formation of pores in their plasma membranes. Most AMPs at their working concentrations can induce lysis of eukaryotic cells as well. Gramicidin A (gA) is a peptide, the transmembrane dimers of which form cation-selective channels in membranes. It is highly toxic for mammalians as being majorly hydrophobic gA incorporates and induces leakage of both bacterial and eukaryotic cell membranes. Both pore-forming AMPs and gA deform the membrane. Here we suggest a possible way to reduce the working concentrations of AMPs at the expense of application of highly-selective amplifiers of AMP activity in target membranes. The amplifiers should alter the deformation fields in the membrane in a way favoring the membrane-permeabilizing states. We developed the statistical model that allows describing the effect of membrane-deforming inclusions on the equilibrium between AMP monomers and cooperative membrane-permeabilizing structures. On the example of gA monomer-dimer equilibrium, the model predicts that amphipathic peptides and short transmembrane peptides playing the role of the membrane-deforming inclusions, even in low concentration can substantially increase the lifetime and average number of gA channels.


Asunto(s)
Péptidos Antimicrobianos/farmacología , Membrana Celular/metabolismo , Algoritmos , Membrana Celular/efectos de los fármacos , Dimerización
4.
Molecules ; 23(4)2018 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-29642558

RESUMEN

Nanoscale confinement is known to impact properties of molecules and we observed changes in the reactivity of an iron coordination complex, pentacyano(pyrazine)ferrate(II). The confinement of two coordination complexes in a sodium AOT/isooctane reverse micellar (RM) water droplet was found to dramatically increase the hydrolysis rate of [Fe(CN)5pyz]3- and change the monomer-dimer equilibria between [Fe(CN)5pyz]3- and [Fe2(CN)10pyz]6-. Combined UV-Vis and ¹H-NMR spectra of these complexes in RMs were analyzed and the position of the monomer-dimer equilibrium and the relative reaction times were determined at three different RM sizes. The data show that the hydrolysis rates (loss of pyrazine) are dramatically enhanced in RMs over bulk water and increase as the size of the RM decreases. Likewise, the monomer-dimer equilibrium changes to favor the formation of dimer as the RM size decreases. We conclude that the effects of the [Fe(CN)5pyz]3- stability is related to its solvation within the RM.


Asunto(s)
Complejos de Coordinación/química , Cianuros/química , Hierro/química , Nanopartículas/química , Pirazinas/química , Agua/química , Dispersión Dinámica de Luz , Hidrólisis , Cinética , Micelas , Estructura Molecular , Octanos/química , Tamaño de la Partícula , Propiedades de Superficie
5.
J Biol Chem ; 290(32): 19403-22, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26055715

RESUMEN

All coronaviruses, including the recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV) from the ß-CoV subgroup, require the proteolytic activity of the nsp5 protease (also known as 3C-like protease, 3CL(pro)) during virus replication, making it a high value target for the development of anti-coronavirus therapeutics. Kinetic studies indicate that in contrast to 3CL(pro) from other ß-CoV 2c members, including HKU4 and HKU5, MERS-CoV 3CL(pro) is less efficient at processing a peptide substrate due to MERS-CoV 3CL(pro) being a weakly associated dimer. Conversely, HKU4, HKU5, and SARS-CoV 3CL(pro) enzymes are tightly associated dimers. Analytical ultracentrifugation studies support that MERS-CoV 3CL(pro) is a weakly associated dimer (Kd ∼52 µm) with a slow off-rate. Peptidomimetic inhibitors of MERS-CoV 3CL(pro) were synthesized and utilized in analytical ultracentrifugation experiments and demonstrate that MERS-CoV 3CL(pro) undergoes significant ligand-induced dimerization. Kinetic studies also revealed that designed reversible inhibitors act as activators at a low compound concentration as a result of induced dimerization. Primary sequence comparisons and x-ray structural analyses of two MERS-CoV 3CLpro and inhibitor complexes, determined to 1.6 Å, reveal remarkable structural similarity of the dimer interface with 3CL(pro) from HKU4-CoV and HKU5-CoV. Despite this structural similarity, substantial differences in the dimerization ability suggest that long range interactions by the nonconserved amino acids distant from the dimer interface may control MERS-CoV 3CL(pro) dimerization. Activation of MERS-CoV 3CL(pro) through ligand-induced dimerization appears to be unique within the genogroup 2c and may potentially increase the complexity in the development of MERS-CoV 3CL(pro) inhibitors as antiviral agents.


Asunto(s)
Antivirales/química , Cisteína Endopeptidasas/química , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Peptidomiméticos/química , Multimerización de Proteína/efectos de los fármacos , Proteínas Virales/química , Secuencia de Aminoácidos , Antivirales/síntesis química , Antivirales/farmacología , Proteasas 3C de Coronavirus , Cristalografía por Rayos X , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Ligandos , Coronavirus del Síndrome Respiratorio de Oriente Medio/enzimología , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Peptidomiméticos/síntesis química , Peptidomiméticos/farmacología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Especificidad por Sustrato , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/genética , Proteínas Virales/metabolismo
6.
Int J Biol Macromol ; 279(Pt 1): 134945, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39182877

RESUMEN

The Growth factor receptor-bound protein 2 (Grb2) participates in early signaling complexes and regulates tyrosine kinase-mediated signal transduction through a monomer-dimer equilibrium. Grb2 dimeric state inhibits signal transduction whereas the monomer promotes signaling downstream. Since Grb2 dimer KD is ∼0.8 µM, studies focused on the monomer are still challenging and require mutations or interaction with phosphotyrosine peptides. However, these mutants were never characterized considering their effects on protein structure and dynamics in solution. Here, we present the biophysical characterization of Grb2Y160F, the first Grb2 mutant to induce protein monomerization without disrupting its native behavior in solution due to net charge modifications or interaction with peptides. We also identified that Grb2Y160F exists in a monomer-dimer equilibrium. Grb2Y160F ability to dimerize implies that different dimerization interfaces might regulate signaling pathways in distinct ways and raises an important question about the role of the Y160 residue in other dimerization interfaces.

7.
J Leukoc Biol ; 115(3): 565-572, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38128116

RESUMEN

The chemokine Cxcl1 plays a crucial role in recruiting neutrophils in response to infection. The early events in chemokine-mediated neutrophil extravasation involve a sequence of highly orchestrated steps including rolling, adhesion, arrest, and diapedesis. Cxcl1 function is determined by its properties of reversible monomer-dimer equilibrium and binding to Cxcr2 and glycosaminoglycans. Here, we characterized how these properties orchestrate extravasation using intravital microscopy of the cremaster. Compared to WT Cxcl1, which exists as both a monomer and a dimer, the trapped dimer caused faster rolling, less adhesion, and less extravasation. Whole-mount immunofluorescence of the cremaster and arrest assays confirmed these data. Moreover, the Cxcl1 dimer showed impaired LFA-1-mediated neutrophil arrest that could be attributed to impaired Cxcr2-mediated ERK signaling. We conclude that Cxcl1 monomer-dimer equilibrium and potent Cxcr2 activity of the monomer together coordinate the early events in neutrophil recruitment.


Asunto(s)
Glicosaminoglicanos , Neutrófilos , Quimiocina CXCL1/metabolismo , Neutrófilos/metabolismo , Movimiento Celular , Glicosaminoglicanos/metabolismo , Quimiocinas/metabolismo , Infiltración Neutrófila , Receptores de Interleucina-8B/metabolismo
8.
J Mol Biol ; 436(13): 168616, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38762033

RESUMEN

N-terminal autoprocessing from its polyprotein precursor enables creating the mature-like stable dimer interface of SARS-CoV-2 main protease (MPro), concomitant with the active site oxyanion loop equilibrium transitioning to the active conformation (E*) and onset of catalytic activity. Through mutagenesis of critical interface residues and evaluating noncovalent inhibitor (ensitrelvir, ESV) facilitated dimerization through its binding to MPro, we demonstrate that residues extending from Ser1 through Glu14 are critical for dimerization. Combined mutations G11A, E290A and R298A (MPro™) restrict dimerization even upon binding of ESV to monomeric MPro™ with an inhibitor dissociation constant of 7.4 ± 1.6 µM. Contrasting the covalent inhibitor NMV or GC373 binding to monomeric MPro, ESV binding enabled capturing the transition of the oxyanion loop conformations in the absence of a reactive warhead and independent of dimerization. Characterization of complexes by room-temperature X-ray crystallography reveals ESV bound to the E* state of monomeric MPro as well as an intermediate approaching the inactive state (E). It appears that the E* to E equilibrium shift occurs initially from G138-F140 residues, leading to the unwinding of the loop and formation of the 310-helix. Finally, we describe a transient dimer structure of the MPro precursor held together through interactions of residues A5-G11 with distinct states of the active sites, E and E*, likely representing an intermediate in the autoprocessing pathway.


Asunto(s)
Dominio Catalítico , Proteasas 3C de Coronavirus , Inhibidores de Proteasa de Coronavirus , Indazoles , Multimerización de Proteína , SARS-CoV-2 , Triazinas , Triazoles , Humanos , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/química , Indazoles/química , Indazoles/farmacología , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , SARS-CoV-2/enzimología , SARS-CoV-2/metabolismo , Triazinas/química , Triazinas/farmacología , Triazoles/química , Triazoles/farmacología , Inhibidores de Proteasa de Coronavirus/química , Inhibidores de Proteasa de Coronavirus/farmacología
9.
J Mol Biol ; 434(24): 167876, 2022 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-36334779

RESUMEN

We recently demonstrated that inhibitor binding reorganizes the oxyanion loop of a monomeric catalytic domain of SARS CoV-2 main protease (MPro) from an unwound (E) to a wound (active, E*) conformation, independent of dimerization. Here we assess the effect of the flanking N-terminal residues, to imitate the MPro precursor prior to its autoprocessing, on conformational equilibria rendering stability and inhibitor binding. Thermal denaturation (Tm) of C145A mutant, unlike H41A, increases by 6.8 °C, relative to wild-type mature dimer. An inactivating H41A mutation to maintain a miniprecursor containing TSAVL[Q or E] of the flanking nsp4 sequence in an intact form [(-6)MProH41A and (-6*)MProH41A, respectively], and its corresponding mature MProH41A were systematically examined. While the H41A mutation exerts negligible effect on Tm and dimer dissociation constant (Kdimer) of MProH41A, relative to the wild type MPro, both miniprecursors show a 4-5 °C decrease in Tm and > 85-fold increase in Kdimer as compared to MProH41A. The Kd for the binding of the covalent inhibitor GC373 to (-6*)MProH41A increases ∼12-fold, relative to MProH41A, concomitant with its dimerization. While the inhibitor-free dimer exhibits a state in transit from E to E* with a conformational asymmetry of the protomers' oxyanion loops and helical domains, inhibitor binding restores the asymmetry to mature-like oxyanion loop conformations (E*) but not of the helical domains. Disorder of the terminal residues 1-2 and 302-306 observed in both structures suggest that N-terminal autoprocessing is tightly coupled to the E-E* equilibrium and stable dimer formation.


Asunto(s)
Proteasas 3C de Coronavirus , Inhibidores de Proteasa de Coronavirus , SARS-CoV-2 , Humanos , Dominio Catalítico , Cristalografía por Rayos X , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/enzimología , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/genética , Estabilidad Proteica , Mutación , Inhibidores de Proteasa de Coronavirus/química
10.
Chem Biol Drug Des ; 87(3): 425-33, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26493301

RESUMEN

Alzheimer's disease is a neurodegenerative disorder associated with amyloid-ß (Aß) fibrillation. N-Methylated amyloid-ß peptides are potent inhibitors of amyloid-ß fibrillation. We investigated the inhibitory effect of N-Methylated Aß30-40 peptides on Aß1-40 fibrillation. N-Methylated Aß30-40 peptides affected the fibrillation, and this effect was dependent on the concentration of N-Methylated peptide and the number and position of N-Methylated groups. N-Methylated Aß30-40 peptides were co-aggregated with Aß1-40 . Spectroscopic technique was adopted to investigate an origin of the observed dependence. Suppression of thioflavin T (ThT) fluorescence count was correlated with the dissociation constant Kd of monomer-dimer equilibrium of each N-Methylated Aß30-40 peptide. Monomeric N-Methylated peptides decreased ThT fluorescence count during Aß1-40 fibrillation. Secondary structure content was not largely different between Aß1-40 fibrils and co-aggregates. These results suggested that N-Methylated Aß30-40 peptides disrupted the regular ß-sheet structure of Aß1-40 fibrils and affected the ThT fluorescence count. The monomer-dimer equilibrium of N-Methylated peptides was (partly) responsible for the observed dependence of their inhibitory effect on the concentration of N-Methylated peptide and the number and position of N-Methylated groups. Our study provides a hint to design new N-Methylated inhibitor peptides of fibrillation.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Fragmentos de Péptidos/metabolismo , Cromatografía en Gel , Dicroismo Circular , Metilación , Proteína Amiloide A Sérica , Espectrofotometría Ultravioleta
11.
Protein Sci ; 24(1): 81-92, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25327289

RESUMEN

Chemokine CXCL8 and its receptor CXCR1 are key mediators in combating infection and have also been implicated in the pathophysiology of various diseases including chronic obstructive pulmonary disease (COPD) and cancer. CXCL8 exists as monomers and dimers but monomer alone binds CXCR1 with high affinity. CXCL8 function involves binding two distinct CXCR1 sites - the N-terminal domain (Site-I) and the extracellular/transmembrane domain (Site-II). Therefore, higher monomer affinity could be due to stronger binding at Site-I or Site-II or both. We have now characterized the binding of a human CXCR1 N-terminal domain peptide (hCXCR1Ndp) to WT CXCL8 under conditions where it exists as both monomers and dimers. We show that the WT monomer binds the CXCR1 N-domain with much higher affinity and that binding is coupled to dimer dissociation. We also characterized the binding of two CXCL8 monomer variants and a trapped dimer to two different hCXCR1Ndp constructs, and observe that the monomer binds with ∼10- to 100-fold higher affinity than the dimer. Our studies also show that the binding constants of monomer and dimer to the receptor peptides, and the dimer dissociation constant, can vary significantly as a function of pH and buffer, and so the ability to observe WT monomer peaks is critically dependent on NMR experimental conditions. We conclude that the monomer is the high affinity CXCR1 agonist, that Site-I interactions play a dominant role in determining monomer vs. dimer affinity, and that the dimer plays an indirect role in regulating monomer function.


Asunto(s)
Interleucina-8/química , Receptores de Interleucina-8A/química , Secuencia de Aminoácidos , Sitios de Unión , Humanos , Interleucina-8/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Receptores de Interleucina-8A/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda