Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Macromol Rapid Commun ; 42(14): e2000749, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34128581

RESUMEN

Building the differential growth through the thickness is a promising and challenging approach to design the morphing structures of hydrogel actuators. Besides retaining the size of the hydrogel actuators under environmental stimuli still remains a big challenge. Herein, a facile and universal approach is developed to address both issues by introducing PEG during the polymerization of N-isopropylacrylamide (NIPAm) via one step method using asymmetric mold. Both composition gradient and pore gradient are obtained in micro level along the thickness direction of the final hydrogel, while thin-thickness gradient in macro level. The thickness gradient and water retention can be controllably adjusted by changing PEG concentration. The introduction of PEG effectively improves both responsive and non-shrunken performance by the interaction with PNIPAm. The resultant anisotropic PNIPAm/PEG hydrogel respond quickly and reach maximum deformation (360°) within 10 s at low temperature (40 °C). The various 3D shape and biomimetic movement can be programmed by simply controlling the PEG concentration and mold shape. This strategy can provide new insights into the design intelligent soft materials with 3D morphing for bioinspired and biomedical applications.


Asunto(s)
Biomimética , Hidrogeles , Anisotropía , Polimerizacion , Agua
2.
Angew Chem Int Ed Engl ; 56(50): 15974-15978, 2017 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-29105231

RESUMEN

Morphing materials have promising applications in various fields, yet how to program the self-shaping process for specific configurations remains a challenge. Herein we show a versatile approach to control the buckling of individual domains and thus the outcome configurations of planar-patterned hydrogels. By photolithography, high-swelling disc gels were positioned in a non-swelling gel sheet; the swelling mismatch resulted in out-of-plain buckling of the disc gels. To locally control the buckling direction, masks with holes were used to guide site-specific swelling of the high-swelling gel under the holes, which built a transient through-thickness gradient and thus directed the buckling during the subsequent unmasked swelling process. Therefore, various configurations of an identical patterned hydrogel can be programmed by the pre-swelling step with different masks to encode the buckling directions of separate domains.

3.
Adv Mater ; 36(8): e2307858, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38063841

RESUMEN

4D printing is an emerging field where 3D printing techniques are used to pattern stimuli-responsive materials to create morphing structures, with time serving as the fourth dimension. However, current materials utilized for 4D printing are typically soft, exhibiting an elastic modulus (E) range of 10-4 to 10 MPa during shape change. This restricts the scalability, actuation stress, and load-bearing capabilities of the resulting structures. To overcome these limitations, multiscale heterogeneous polymer composites are introduced as a novel category of stiff, thermally responsive 4D printed materials. These inks exhibit an E that is four orders of magnitude greater than that of existing 4D printed materials and offer tunable electrical conductivities for simultaneous Joule heating actuation and self-sensing capabilities. Utilizing electrically controllable bilayers as building blocks, a flat geometry that morphs into a 3D self-standing lifting robot is designed and printed, setting new records for weight-normalized load lifted and actuation stress when compared to other 3D printed actuators. Furthermore, this ink palette is employed to create and print planar lattice structures that transform into various self-supporting complex 3D shapes. Finally these inks are integrated into a 4D printed electrically controlled multigait crawling robotic lattice structure that can carry 144 times its own weight.

4.
Adv Mater ; 36(30): e2405505, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38767502

RESUMEN

4D printing is an emerging field where 3D printing techniques are used to pattern stimuli-responsive materials to create morphing structures, with time serving as the fourth dimension. However, current materials utilized for 4D printing are typically soft, exhibiting an elastic modulus (E) range of 10-4 to 10 MPa during shape change. This restricts the scalability, actuation stress, and load-bearing capabilities of the resulting structures. To overcome these limitations, multiscale heterogeneous polymer composites are introduced as a novel category of stiff, thermally responsive 4D printed materials. These inks exhibit an E that is four orders of magnitude greater than that of existing 4D printed materials and offer tunable electrical conductivities for simultaneous Joule heating actuation and self-sensing capabilities. Utilizing electrically controllable bilayers as building blocks, a flat geometry is designed and printed that morphs into a 3D self-standing lifting robot, setting new records for weight-normalized load lifted and actuation stress when compared to other 3D printed actuators. Furthermore, the ink palette is employed to create and print planar lattice structures that transform into various self-supporting complex 3D shapes. These contributions are integrated into a 4D printed electrically controlled multigait crawling robotic lattice structure that can carry 144 times its own weight.

5.
Adv Mater ; 35(15): e2211802, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36680376

RESUMEN

Joints, as a flexing element to connect different parts, are widespread in natural systems. Various joints exist in the body and play crucial roles to execute gestures and gaits. These scenarios have inspired the design of mechanical joints with passive, hard materials, which usually need an external power supply to drive the transformations. The incorporation of soft and active joints provides a modular strategy to devise soft actuators and robots. However, transformations of responsive joints under external stimuli are usually in uni-mode with a pre-determined direction. Here, hydrogel joints capable of folding and twisting transformation in bi-mode are reported, which enable the composite hydrogel to form multiple configurations under constant conditions. These joints have an in-plane gradient structure and comprise stiff, passive gel as the frame and soft, active gel as the actuating unit. Under external stimuli, the response mismatch between different gels leads to out-of-plane folding or twisting deformation with the feature of bistability. These joints can be modularly integrated with other gels to afford complex deformations and multistable configurations. This approach favors selective control of hydrogel's architectures and versatile design of hydrogel devices, as demonstrated by proof-of-concept examples. It shall also merit the development of metamaterials, soft actuators, and robots, etc.

6.
Soft Robot ; 10(4): 724-736, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36730716

RESUMEN

In this study, we present a method to construct meter-scale deformable structures for underwater robotic applications by discretely assembling mechanical metamaterials. We address the challenge of scaling up nature-like deformable structures while remaining structurally efficient by combining rigid and compliant facets to form custom unit cells that assemble into lattices. The unit cells generate controlled local anisotropies that architect the global deformation of the robotic structure. The resulting flexibility allows better unsteady flow control that enables highly efficient propulsion and optimized force profile manipulations. We demonstrate the utility of this approach in two models. The first is a morphing beam snake-like robot that can generate thrust at specific anguilliform swimming parameters. The second is a morphing surface hydrofoil that, when compared with a rigid wing at the same angles of attack (AoAs), can increase the lift coefficient up to 0.6. In addition, in lower AoAs, the L∕D ratio improves by 5 times, whereas in higher angles it improves by 1.25 times. The resulting hydrodynamic performance demonstrates the potential to achieve accessible, scalable, and simple to design and assemble morphing structures for more efficient and effective future ocean exploration and exploitation.

7.
Adv Sci (Weinh) ; 10(12): e2206486, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36683254

RESUMEN

4D printing of metallic shape-morphing systems can be applied in many fields, including aerospace, smart manufacturing, naval equipment, and biomedical engineering. The existing forming materials for metallic 4D printing are still very limited except shape memory alloys. Herein, a 4D printing method to endow non-shape-memory metallic materials with active properties is presented, which could overcome the shape-forming limitation of traditional material processing technologies. The thermal stress spatial control of 316L stainless steel forming parts is achieved by programming the processing parameters during a laser powder bed fusion (LPBF) process. The printed parts can realize the shape changing of selected areas during or after forming process owing to stress release generated. It is demonstrated that complex metallic shape-morphing structures can be manufactured by this method. The principles of printing parameters programmed and thermal stress pre-set are also applicable to other thermoforming materials and additive manufacturing processes, which can expand not only the materials used for 4D printing but also the applications of 4D printing technologies.

8.
Micromachines (Basel) ; 12(1)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467774

RESUMEN

Shape memory polymers (SMPs) are materials capable of changing their structural configuration from a fixed shape to a temporary shape, and vice versa when subjected to a thermal stimulus. The present work has investigated the 3D printing process of a shape memory polymer (SMP)-based polyurethane using a material extrusion technology. Here, SMP pellets were fed into a printing unit, and actuating coupons were manufactured. In contrast to the conventional film-casting manufacturing processes of SMPs, the use of 3D printing allows the production of complex parts for smart electronics and morphing structures. In the present work, the memory performance of the actuating structure was investigated, and their fundamental recovery and mechanical properties were characterized. The preliminary results show that the assembled structures were able to recover their original conformation following a thermal input. The printed parts were also stamped with a QR code on the surface to include an unclonable pattern for addressing counterfeit features. The stamped coupons were subjected to a deformation-recovery shape process, and it was observed that the QR code was recognized after the parts returned to their original shape. The combination of shape memory effect with authentication features allows for a new dimension of counterfeit thwarting. The 3D-printed SMP parts in this work were also combined with shape memory alloys to create a smart actuator to act as a two-way switch to control data collection of a microcontroller.

9.
ACS Appl Mater Interfaces ; 12(15): 17979-17987, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32196302

RESUMEN

Inspired by diverse shape-shifting phenomena in nature, various man-made shape programmable materials have been developed for applications in actuators, deployable devices, and soft robots. However, fabricating mechanically robust shape-morphing structures with on-demand, rapid shape-transformation capability, and high load-bearing capacity is still a great challenge. Herein, we report a mechanically robust and rapid shape-shifting material system enabled by the volatilization of a non-fully-reacted, volatile component in a partially cured cross-linking network obtained from photopolymerization. Volume shrinkage induced by the loss of the volatile component is exploited to drive complex shape transformations. After shape transformation, the residual monomers, cross-linkers, and photoinitiators that cannot volatilize still exist in the network, which is ready for a further photopolymerization to significantly stiffen the initial material. Guided by analytic models and finite element analysis, we experimentally demonstrate that a variety of shape transformations can be achieved, including both 2D-to-3D and 3D-to-3D' transformations, such as a buckyball self-folding from a 2D hexagonal lattice sheet and multiple pop-up structures transforming from their initial compact configurations. Moreover, we show that an ultra-low-weight 3D Miura-ori structure transformed from a 2D sheet can hold more than 1600 times its weight after stiffness improvement via postcuring. This work provides a versatile and low-cost method to fabricate rapid and robust shape-morphing structures for potential applications in soft robots, deployable antennas, and optical devices.

10.
R Soc Open Sci ; 6(8): 190888, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31598256

RESUMEN

We investigate stabilizing and eschewing factors on bistability in polar-orthotropic shells in order to enhance morphing structures. The material law causes stress singularities when the circumferential stiffness is smaller than the radial stiffness (ß < 1), requiring a careful choice of the trial functions in our Ritz approach, which employs a higher-order geometrically nonlinear analytical model. Bistability is found to strongly depend on the orthotropic ratio, ß, and the in-plane support conditions. An investigation of their interaction offers a new perspective on the effect of the hoop stiffness on bistability: while usually perceived as promoting, it is shown to be only stabilizing insofar as it prevents radial expansions; however, if in-plane supports are present, it becomes a redundant feature. Closed-form approximations of the bistable threshold are then provided by single-curvature-term approaches. For significantly stiffer values of the radial stiffness, a strong coupling of the orthotropic ratio and the support conditions is revealed: while roller-supported shells are monostable, fixed-pinned ones are most disposed to stable inversions; insight is given by comparing to a simplified beam model. Eventually, we show that cutting a central hole is a suitable method to deal with stress singularities: while fixed-pinned shells are barely affected by a hole, the presence of a hole strongly favours bistable inversions in roller-supported shells.

11.
Proc Math Phys Eng Sci ; 473(2204): 20170364, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28878569

RESUMEN

We have designed and tested experimentally a morphing structure consisting of a neutrally stable thin cylindrical shell driven by a multi-parameter piezoelectric actuation. The shell is obtained by plastically deforming an initially flat copper disc, so as to induce large isotropic and almost uniform inelastic curvatures. Following the plastic deformation, in a perfectly isotropic system, the shell is theoretically neutrally stable, having a continuous set of stable cylindrical shapes corresponding to the rotation of the axis of maximal curvature. Small imperfections render the actual structure bistable, giving preferred orientations. A three-parameter piezoelectric actuation, exerted through micro-fibre-composite actuators, allows us to add a small perturbation to the plastic inelastic curvature and to control the direction of maximal curvature. This actuation law is designed through a geometrical analogy based on a fully nonlinear inextensible uniform-curvature shell model. We report on the fabrication, identification and experimental testing of a prototype and demonstrate the effectiveness of the piezoelectric actuators in controlling its shape. The resulting motion is an apparent rotation of the shell, controlled by the voltages as in a 'gear-less motor', which is, in reality, a precession of the axis of principal curvature.

12.
Proc Math Phys Eng Sci ; 473(2203): 20170230, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28804262

RESUMEN

Multistable shells are thin-walled structures that have more than one stable state of self-stress. We consider isotropic axisymmetrical shallow shells of arbitrary polynomial shapes using a Föppl-von Kármán analytical model. By employing a Rayleigh-Ritz approach, we identify stable shapes from local minima in the strain energy formulation, and we formally characterize the level of influence of the boundary conditions on the critical geometry for achieving bistable inversion-an effect not directly answered in the literature. Systematic insight is afforded by connecting the boundary to ground through sets of extensional and rotational linear springs. For typical cap-like shells, it is shown that bistability is generally enhanced when the extensional spring stiffness increases and when the rotational spring stiffness decreases, i.e. when boundary movements in-plane are resisted but when their rotations are not; however, for certain other shapes and large in-plane stiffness values, bistability can be enhanced by resisting but not entirely preventing edge rotations. Our predictions are furnished as detailed regime maps of the critical geometry, which are accurately correlated against finite-element analysis. Furthermore, the suitabilities of single degree-of-freedom models, for which solutions are achieved in closed form, are evaluated and compared to our more accurate predictions.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda