Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Hum Mol Genet ; 33(1): 91-101, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37815936

RESUMEN

Mutations affecting the mitochondrial intermembrane space protein CHCHD10 cause human disease, but it is not known why different amino acid substitutions cause markedly different clinical phenotypes, including amyotrophic lateral sclerosis-frontotemporal dementia, spinal muscular atrophy Jokela-type, isolated autosomal dominant mitochondrial myopathy and cardiomyopathy. CHCHD10 mutations have been associated with deletions of mitochondrial DNA (mtDNA deletions), raising the possibility that these explain the clinical variability. Here, we sequenced mtDNA obtained from hearts, skeletal muscle, livers and spinal cords of WT and Chchd10 G58R or S59L knockin mice to characterise the mtDNA deletion signatures of the two mutant lines. We found that the deletion levels were higher in G58R and S59L mice than in WT mice in some tissues depending on the Chchd10 genotype, and the deletion burden increased with age. Furthermore, we observed that the spinal cord was less prone to the development of mtDNA deletions than the other tissues examined. Finally, in addition to accelerating the rate of naturally occurring deletions, Chchd10 mutations also led to the accumulation of a novel set of deletions characterised by shorter direct repeats flanking the deletion breakpoints. Our results indicate that Chchd10 mutations in mice induce tissue-specific deletions which may also contribute to the clinical phenotype associated with these mutations in humans.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Ratones , Animales , Mutación , Mitocondrias/metabolismo , Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/genética , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
2.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34681740

RESUMEN

Mitochondrial DNA deletions affect energy metabolism at tissue-specific and cell-specific threshold levels, but the pathophysiological mechanisms determining cell fate remain poorly understood. Chronic progressive external ophthalmoplegia (CPEO) is caused by mtDNA deletions and characterized by a mosaic distribution of muscle fibers with defective cytochrome oxidase (COX) activity, interspersed among fibers with retained functional respiratory chain. We used diagnostic histochemistry to distinguish COX-negative from COX-positive fibers in nine muscle biopsies from CPEO patients and performed laser capture microdissection (LCM) coupled to genome-wide gene expression analysis. To gain molecular insight into the pathogenesis, we applied network and pathway analysis to highlight molecular differences of the COX-positive and COX-negative fiber transcriptome. We then integrated our results with proteomics data that we previously obtained comparing COX-positive and COX-negative fiber sections from three other patients. By virtue of the combination of LCM and a multi-omics approach, we here provide a comprehensive resource to tackle the pathogenic changes leading to progressive respiratory chain deficiency and disease in mitochondrial deletion syndromes. Our data show that COX-negative fibers upregulate transcripts involved in translational elongation and protein synthesis. Furthermore, based on functional annotation analysis, we find that mitochondrial transcripts are the most enriched among those with significantly different expression between COX-positive and COX-negative fibers, indicating that our unbiased large-scale approach resolves the core of the pathogenic changes. Further enrichments include transcripts encoding LIM domain proteins, ubiquitin ligases, proteins involved in RNA turnover, and, interestingly, cell cycle arrest and cell death. These pathways may thus have a functional association to the molecular pathogenesis of the disease. Overall, the transcriptome and proteome show a low degree of correlation in CPEO patients, suggesting a relevant contribution of post-transcriptional mechanisms in shaping this disease phenotype.


Asunto(s)
ADN Mitocondrial/genética , Mitocondrias Musculares/genética , Fibras Musculares Esqueléticas/patología , Oftalmoplejía Externa Progresiva Crónica/genética , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Captura por Microdisección con Láser , Masculino , Mitocondrias Musculares/patología , NADPH Deshidrogenasa/genética , NADPH Deshidrogenasa/metabolismo , Oftalmoplejía Externa Progresiva Crónica/patología , Proteómica/métodos , Succinato Deshidrogenasa/metabolismo
3.
Am J Hum Genet ; 101(4): 525-538, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28942965

RESUMEN

Complement component 1 Q subcomponent-binding protein (C1QBP; also known as p32) is a multi-compartmental protein whose precise function remains unknown. It is an evolutionary conserved multifunctional protein localized primarily in the mitochondrial matrix and has roles in inflammation and infection processes, mitochondrial ribosome biogenesis, and regulation of apoptosis and nuclear transcription. It has an N-terminal mitochondrial targeting peptide that is proteolytically processed after import into the mitochondrial matrix, where it forms a homotrimeric complex organized in a doughnut-shaped structure. Although C1QBP has been reported to exert pleiotropic effects on many cellular processes, we report here four individuals from unrelated families where biallelic mutations in C1QBP cause a defect in mitochondrial energy metabolism. Infants presented with cardiomyopathy accompanied by multisystemic involvement (liver, kidney, and brain), and children and adults presented with myopathy and progressive external ophthalmoplegia. Multiple mitochondrial respiratory-chain defects, associated with the accumulation of multiple deletions of mitochondrial DNA in the later-onset myopathic cases, were identified in all affected individuals. Steady-state C1QBP levels were decreased in all individuals' samples, leading to combined respiratory-chain enzyme deficiency of complexes I, III, and IV. C1qbp-/- mouse embryonic fibroblasts (MEFs) resembled the human disease phenotype by showing multiple defects in oxidative phosphorylation (OXPHOS). Complementation with wild-type, but not mutagenized, C1qbp restored OXPHOS protein levels and mitochondrial enzyme activities in C1qbp-/- MEFs. C1QBP deficiency represents an important mitochondrial disorder associated with a clinical spectrum ranging from infantile lactic acidosis to childhood (cardio)myopathy and late-onset progressive external ophthalmoplegia.


Asunto(s)
Cardiomiopatías/genética , Proteínas Portadoras/genética , Transporte de Electrón/fisiología , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación , Adulto , Edad de Inicio , Anciano , Alelos , Secuencia de Aminoácidos , Animales , Cardiomiopatías/complicaciones , Cardiomiopatías/patología , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Células Cultivadas , Preescolar , Estudios de Cohortes , ADN Mitocondrial , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Recién Nacido , Masculino , Ratones , Persona de Mediana Edad , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , Linaje , Conformación Proteica , Homología de Secuencia , Índice de Severidad de la Enfermedad , Adulto Joven
4.
Clin Genet ; 97(2): 276-286, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31600844

RESUMEN

Autosomal dominant progressive external ophthalmoplegia (adPEO) is a late-onset, Mendelian mitochondrial disorder characterised by paresis of the extraocular muscles, ptosis, and skeletal-muscle restricted multiple mitochondrial DNA (mtDNA) deletions. Although dominantly inherited, pathogenic variants in POLG, TWNK and RRM2B are among the most common genetic defects of adPEO, identification of novel candidate genes and the underlying pathomechanisms remains challenging. We report the clinical, genetic and molecular investigations of a patient who presented in the seventh decade of life with PEO. Oxidative histochemistry revealed cytochrome c oxidase-deficient fibres and occasional ragged red fibres showing subsarcolemmal mitochondrial accumulation in skeletal muscle, while molecular studies identified the presence of multiple mtDNA deletions. Negative candidate screening of known nuclear genes associated with PEO prompted diagnostic exome sequencing, leading to the prioritisation of a novel heterozygous c.547G>C variant in GMPR (NM_006877.3) encoding guanosine monophosphate reductase, a cytosolic enzyme required for maintaining the cellular balance of adenine and guanine nucleotides. We show that the novel c.547G>C variant causes aberrant splicing, decreased GMPR protein levels in patient skeletal muscle, proliferating and quiescent cells, and is associated with subtle changes in nucleotide homeostasis protein levels and evidence of disturbed mtDNA maintenance in skeletal muscle. Despite confirmation of GMPR deficiency, demonstrating marked defects of mtDNA replication or nucleotide homeostasis in patient cells proved challenging. Our study proposes that GMPR is the 19th locus for PEO and highlights the complexities of uncovering disease mechanisms in late-onset PEO phenotypes.


Asunto(s)
ADN Mitocondrial/genética , GMP-Reductasa/genética , Enfermedades de Inicio Tardío/genética , Músculo Esquelético/enzimología , Oftalmoplejía/genética , Adenina/metabolismo , Anciano , Células Cultivadas , Deficiencia de Citocromo-c Oxidasa/metabolismo , Replicación del ADN , ADN Mitocondrial/metabolismo , Femenino , Fibroblastos/enzimología , GMP-Reductasa/deficiencia , GMP-Reductasa/metabolismo , Guanina/metabolismo , Células HEK293 , Células HeLa , Heterocigoto , Humanos , Enfermedades de Inicio Tardío/metabolismo , Enfermedades de Inicio Tardío/patología , Músculo Esquelético/patología , Oftalmoplejía/enzimología , Oftalmoplejía/fisiopatología , Fosforilación Oxidativa , Empalme del ARN , Eliminación de Secuencia , Secuenciación del Exoma
5.
Genet Med ; 21(6): 1407-1416, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30393377

RESUMEN

PURPOSE: Accurate detection of mitochondrial DNA (mtDNA) alterations is essential for the diagnosis of mitochondrial diseases. The development of high-throughput sequencing technologies has enhanced the detection sensitivity of mtDNA pathogenic variants, but the detection of mtDNA rearrangements, especially multiple deletions, is still poorly processed. Here, we present eKLIPse, a sensitive and specific tool allowing the detection and quantification of large mtDNA rearrangements from single and paired-end sequencing data. METHODS: The methodology was first validated using a set of simulated data to assess the detection sensitivity and specificity, and second with a series of sequencing data from mitochondrial disease patients carrying either single or multiple deletions, related to pathogenic variants in nuclear genes involved in mtDNA maintenance. RESULTS: eKLIPse provides the precise breakpoint positions and the cumulated percentage of mtDNA rearrangements at a given gene location with a detection sensitivity lower than 0.5% mutant. eKLIPse software is available either as a script to be integrated in a bioinformatics pipeline, or as user-friendly graphical interface to visualize the results through a Circos representation ( https://github.com/dooguypapua/eKLIPse ). CONCLUSION: Thus, eKLIPse represents a useful resource to study the causes and consequences of mtDNA rearrangements, for further genotype/phenotype correlations in mitochondrial disorders.


Asunto(s)
ADN Mitocondrial/genética , Análisis de Secuencia de ADN/métodos , Eliminación de Secuencia/genética , Secuencia de Bases/genética , Estudios de Asociación Genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Mitocondrias/genética , Enfermedades Mitocondriales/diagnóstico , Programas Informáticos
6.
Metab Brain Dis ; 34(4): 1023-1027, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31152339

RESUMEN

OPA1 variants most frequently manifest phenotypically with pure autosomal dominant optic atrophy (ADOA) or with ADOA plus. The most frequent abnormalities in ADOA plus in addition to the optic nerve affection include hypoacusis, migraine, myopathy, and neuropathy. Hypertelorism and atrophy of the acoustic nerve have not been reported. The patient is a 48yo Caucasian female with slowly progressive, visual impairment since childhood, bilateral hypoacusis since age 10y, and classical migraine since age 20y. The family history was positive for diabetes (father, mother) and visual impairment (daughter). Clinical examination revealed hypertelorism, visual impairment, hypoacusis, tinnitus, weakness for elbow flexion and finger straddling, and generally reduced tendon reflexes. MRI of the cerebrum was non-informative but hypoplasia of the acoustic nerve bilaterally was described. Visually-evoked potentials revealed markedly prolonged P100-latencies bilaterally. Acoustically-evoked potentials were distorted with poor reproducibility and prolonged latencies. Muscle biopsy revealed reduced activities of complexes I, II, and IV. Genetic work-up revealed the novel variant c.1463G>C in the OPA1 gene. This case provides novel information regarding the genotype of ADOA plus. The novel OPA1 variant c.1463G>C not only manifests with visual impairment, hypoacusis, migraine, and myopathy, but also with hypertelorisms and acoustic nerve atrophy.


Asunto(s)
Potenciales Evocados Auditivos/fisiología , GTP Fosfohidrolasas/genética , Mutación , Atrofia Óptica Autosómica Dominante/genética , Análisis Mutacional de ADN , Femenino , Genotipo , Humanos , Persona de Mediana Edad , Linaje , Fenotipo
7.
Hum Mutat ; 39(4): 461-470, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29282788

RESUMEN

Mitochondrial DNA (mtDNA) maintenance defects are a group of diseases caused by deficiency of proteins involved in mtDNA synthesis, mitochondrial nucleotide supply, or mitochondrial dynamics. One of the mtDNA maintenance proteins is MPV17, which is a mitochondrial inner membrane protein involved in importing deoxynucleotides into the mitochondria. In 2006, pathogenic variants in MPV17 were first reported to cause infantile-onset hepatocerebral mtDNA depletion syndrome and Navajo neurohepatopathy. To date, 75 individuals with MPV17-related mtDNA maintenance defect have been reported with 39 different MPV17 pathogenic variants. In this report, we present an additional 25 affected individuals with nine novel MPV17 pathogenic variants. We summarize the clinical features of all 100 affected individuals and review the total 48 MPV17 pathogenic variants. The vast majority of affected individuals presented with an early-onset encephalohepatopathic disease characterized by hepatic and neurological manifestations, failure to thrive, lactic acidemia, and mtDNA depletion detected mainly in liver tissue. Rarely, MPV17 deficiency can cause a late-onset neuromyopathic disease characterized by myopathy and peripheral neuropathy with no or minimal liver involvement. Approximately half of the MPV17 pathogenic variants are missense. A genotype with biallelic missense variants, in particular homozygous p.R50Q, p.P98L, and p.R41Q, can carry a relatively better prognosis.


Asunto(s)
ADN Mitocondrial/genética , Trastornos Heredodegenerativos del Sistema Nervioso , Hepatopatías , Proteínas de la Membrana/genética , Enfermedades Mitocondriales , Proteínas Mitocondriales/genética , Enfermedades del Sistema Nervioso Periférico , Trastornos Heredodegenerativos del Sistema Nervioso/diagnóstico , Trastornos Heredodegenerativos del Sistema Nervioso/genética , Trastornos Heredodegenerativos del Sistema Nervioso/metabolismo , Humanos , Hígado/metabolismo , Hepatopatías/diagnóstico , Hepatopatías/genética , Hepatopatías/metabolismo , Mitocondrias/genética , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Mutación , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/metabolismo
8.
Biochim Biophys Acta Mol Basis Dis ; 1863(6): 1539-1555, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28215579

RESUMEN

The maintenance of mitochondrial DNA (mtDNA) depends on a number of nuclear gene-encoded proteins including a battery of enzymes forming the replisome needed to synthesize mtDNA. These enzymes need to be in balanced quantities to function properly that is in part achieved by exchanging intramitochondrial contents through mitochondrial fusion. In addition, mtDNA synthesis requires a balanced supply of nucleotides that is achieved by nucleotide recycling inside the mitochondria and import from the cytosol. Mitochondrial DNA maintenance defects (MDMDs) are a group of diseases caused by pathogenic variants in the nuclear genes involved in mtDNA maintenance resulting in impaired mtDNA synthesis leading to quantitative (mtDNA depletion) and qualitative (multiple mtDNA deletions) defects in mtDNA. Defective mtDNA leads to organ dysfunction due to insufficient mtDNA-encoded protein synthesis, resulting in an inadequate energy production to meet the needs of affected organs. MDMDs are inherited as autosomal recessive or dominant traits, and are associated with a broad phenotypic spectrum ranging from mild adult-onset ophthalmoplegia to severe infantile fatal hepatic failure. To date, pathogenic variants in 20 nuclear genes known to be crucial for mtDNA maintenance have been linked to MDMDs, including genes encoding enzymes of mtDNA replication machinery (POLG, POLG2, TWNK, TFAM, RNASEH1, MGME1, and DNA2), genes encoding proteins that function in maintaining a balanced mitochondrial nucleotide pool (TK2, DGUOK, SUCLG1, SUCLA2, ABAT, RRM2B, TYMP, SLC25A4, AGK, and MPV17), and genes encoding proteins involved in mitochondrial fusion (OPA1, MFN2, and FBXL4).


Asunto(s)
Daño del ADN , ADN Mitocondrial , Enfermedades Mitocondriales , Proteínas Mitocondriales , Animales , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Humanos , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
9.
Muscle Nerve ; 55(6): 919-922, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-27438479

RESUMEN

INTRODUCTION: Acyl-coenzyme A dehydrogenase 9 (ACAD9) has a role in mitochondrial complex I (CI) assembly. Only a few patients who carry ACAD9 mutations have been reported. They mainly present with severe hypertrophic cardiomyopathy, although a minority have only mild isolated myopathy. Although the secondary factors influencing disease severity have not been elucidated, conservation of CI assembly and residual enzymatic activity have been suggested as explanations for the mild phenotypes associated with ACAD9 mutations. METHODS: We report a novel homozygous ACAD9 mutation (c.1240C>T; p.Arg414Cys) in a 34-year-old woman who presented with non-progressive myopathy. RESULTS: We show that this ACAD9 mutation led to a severe defect in CI assembly in the patient's muscle. Furthermore, the impact of CI deficiency is confirmed by accumulation of mitochondrial DNA deletions. CONCLUSION: Our data suggest that a major defect of CI assembly is not responsible for a severe phenotype. Muscle Nerve 55: 919-922, 2017.


Asunto(s)
Acil-CoA Deshidrogenasas/metabolismo , Acil-CoA Deshidrogenasas/genética , Adulto , Consanguinidad , Análisis Mutacional de ADN , ADN Mitocondrial/genética , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Femenino , Humanos , Enfermedades Musculares/genética , Enfermedades Musculares/patología , Mutación/genética
10.
Acta Neuropathol ; 132(2): 277-288, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26993140

RESUMEN

Accumulation of mitochondrial DNA (mtDNA) deletions has been proposed to be responsible for the presence of respiratory-deficient neurons in several CNS diseases. Deletions are thought to originate from double-strand breaks due to attack of reactive oxygen species (ROS) of putative inflammatory origin. In epileptogenesis, emerging evidence points to chronic inflammation as an important feature. Here we aimed to analyze the potential association of inflammation and mtDNA deletions in the hippocampal tissue of patients with mesial temporal lobe epilepsy (mTLE) and hippocampal sclerosis (HS). Hippocampal and parahippocampal tissue samples from 74 patients with drug-refractory mTLE served for mtDNA analysis by multiplex PCR as well as long-range PCR, single-molecule PCR and ultra-deep sequencing of mtDNA in selected samples. Patients were sub-classified according to neuropathological findings. Semi-quantitative assessment of neuronal cell loss was performed in the hippocampal regions CA1-CA4. Inflammatory infiltrates were quantified by cell counts in the CA1, CA3 and CA4 regions from well preserved hippocampal samples (n = 33). Samples with HS showed a significantly increased frequency of a 7436-bp mtDNA deletion (p < 0.0001) and a higher proportion of somatic G>T transversions compared to mTLE patients with different histopathology. Interestingly, the number of T-lymphocytes in the hippocampal CA1, CA3 and CA4 regions was, similar to the 7436-bp mtDNA deletion, significantly increased in samples with HS compared to other subgroups. Our findings show a coincidence of HS, increased somatic G>T transversions, the presence of a specific mtDNA deletion, and increased inflammatory infiltrates. These results support the hypothesis that chronic inflammation leads to mitochondrial dysfunction by ROS-mediated mtDNA mutagenesis which promotes epileptogenesis and neuronal cell loss in patients with mTLE and HS.


Asunto(s)
ADN Mitocondrial/genética , Epilepsia del Lóbulo Temporal/metabolismo , Hipocampo/patología , Inflamación/patología , Neuronas/patología , Esclerosis/patología , Adulto , Epilepsia del Lóbulo Temporal/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad
11.
Int J Mol Sci ; 16(8): 18054-76, 2015 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-26251896

RESUMEN

Replication and maintenance of mtDNA entirely relies on a set of proteins encoded by the nuclear genome, which include members of the core replicative machinery, proteins involved in the homeostasis of mitochondrial dNTPs pools or deputed to the control of mitochondrial dynamics and morphology. Mutations in their coding genes have been observed in familial and sporadic forms of pediatric and adult-onset clinical phenotypes featuring mtDNA instability. The list of defects involved in these disorders has recently expanded, including mutations in the exo-/endo-nuclease flap-processing proteins MGME1 and DNA2, supporting the notion that an enzymatic DNA repair system actively takes place in mitochondria. The results obtained in the last few years acknowledge the contribution of next-generation sequencing methods in the identification of new disease loci in small groups of patients and even single probands. Although heterogeneous, these genes can be conveniently classified according to the pathway to which they belong. The definition of the molecular and biochemical features of these pathways might be helpful for fundamental knowledge of these disorders, to accelerate genetic diagnosis of patients and the development of rational therapies. In this review, we discuss the molecular findings disclosed in adult patients with muscle pathology hallmarked by mtDNA instability.


Asunto(s)
ADN Mitocondrial/genética , Mitocondrias Musculares/genética , Mitocondrias Musculares/patología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Mutación , Adulto , Inestabilidad Genómica , Humanos , Músculos/metabolismo , Músculos/patología
12.
Brain ; 136(Pt 8): 2369-78, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23884809

RESUMEN

Acquired alterations in mitochondrial DNA are believed to play a pathogenic role in Parkinson's disease. In particular, accumulation of mitochondrial DNA deletions has been observed in substantia nigra pars compacta dopaminergic neurons from patients with Parkinson's disease and aged individuals. Also, mutations in mitochondrial DNA polymerase gamma result in multiple mitochondrial DNA deletions that can be associated with levodopa-responsive parkinsonism and severe substantia nigra pars compacta dopaminergic neurodegeneration. However, whether mitochondrial DNA deletions play a causative role in the demise of dopaminergic neurons remains unknown. Here we assessed the potential pathogenic effects of mitochondrial DNA deletions on the dopaminergic nigrostriatal system by using mutant mice possessing a proofreading-deficient form of mitochondrial DNA polymerase gamma (POLGD257A), which results in a time-dependent accumulation of mitochondrial DNA deletions in several tissues, including the brain. In these animals, we assessed the occurrence of mitochondrial DNA deletions within individual substantia nigra pars compacta dopaminergic neurons, by laser capture microdissection and quantitative real-time polymerase chain reaction, and determined the potential deleterious effects of such mitochondrial DNA alterations on mitochondrial function and dopaminergic neuronal integrity, by cytochrome c oxidase histochemistry and quantitative morphology. Nigral dopaminergic neurons from POLGD257A mice accumulate mitochondrial DNA deletions to a similar extent (∼40-60%) as patients with Parkinson's disease and aged individuals. Despite such high levels of mitochondrial DNA deletions, the majority of substantia nigra pars compacta dopaminergic neurons from these animals did not exhibit mitochondrial dysfunction or degeneration. Only a few individual substantia nigra pars compacta neurons appeared as cytochrome c oxidase-negative, which exhibited higher levels of mitochondrial DNA deletions than cytochrome c oxidase-positive cells (60.38±3.92% versus 45.18±2.83%). Survival of dopaminergic neurons in POLGD257A mice was associated with increased mitochondrial DNA copy number, enhanced mitochondrial cristae network, improved mitochondrial respiration, decreased exacerbation of mitochondria-derived reactive oxygen species, greater striatal dopamine levels and resistance to parkinsonian mitochondrial neurotoxins. These results indicate that primary accumulation of mitochondrial DNA deletions within substantia nigra pars compacta dopaminergic neurons, at an extent similar to that observed in patients with Parkinson's disease, do not kill dopaminergic neurons but trigger neuroprotective compensatory mechanisms at a mitochondrial level that may account for the high pathogenic threshold of mitochondrial DNA deletions in these cells.


Asunto(s)
Cuerpo Estriado/metabolismo , ADN Mitocondrial/genética , Neuronas Dopaminérgicas/metabolismo , Enfermedad de Parkinson/genética , Sustancia Negra/metabolismo , Animales , Muerte Celular/genética , Cuerpo Estriado/patología , ADN Polimerasa gamma , ADN Mitocondrial/metabolismo , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Neuronas Dopaminérgicas/patología , Ratones , Ratones Transgénicos , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Sustancia Negra/patología
13.
Front Biosci (Landmark Ed) ; 29(8): 297, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39206924

RESUMEN

Making a correct genetically based diagnosis in patients with diseases associated with mitochondrial dysfunction can be challenging both genetically and clinically, as can further management of such patients on the basis of molecular-genetic data assessing the state of their mitochondria. In this opinion article, we propose a novel approach (which may result in a clinical protocol) to the use of a precise molecular-genetic tool in order to monitor the state of mitochondria (which reflects their function) during treatment of certain conditions, by means of not only signs and symptoms but also the molecular-genetic basis of the current condition. This is an example of application of personalized genomic medicine at the intersection of a person's mitochondrial genome information and clinical care. Advantages of the proposed approach are its relatively low cost (compared to various types of sequencing), an ability to use samples with a low input amount of genetic material, and rapidness. When this approach receives positive outside reviews and gets an approval of experts in the field (in terms of the standards), it may then be picked up by other developers and introduced into clinical practice.


Asunto(s)
Mitocondrias , Enfermedades Mitocondriales , Humanos , ADN Mitocondrial/genética , Genoma Mitocondrial/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/fisiopatología , Enfermedades Mitocondriales/terapia , Medicina de Precisión/métodos
14.
Exp Gerontol ; 178: 112203, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37172915

RESUMEN

Mitochondrial DNA (mtDNA) is as a double-stranded molecule existing in hundreds to thousands copies in cells depending on cell metabolism and exposure to endogenous and/or environmental stressors. The coordination of mtDNA replication and transcription regulates the pace of mitochondrial biogenesis to guarantee the minimum number of organelles per cell. mtDNA inheritance follows a maternal lineage, although bi-parental inheritance has been reported in some species and in the case of mitochondrial diseases in humans. mtDNA mutations (e.g., point mutations, deletions, copy number variations) have been identified in the setting of several human diseases. For instance, sporadic and inherited rare disorders involving the nervous system as well higher risk of developing cancer and neurodegenerative conditions, including Parkinson's and Alzheimer's disease, have been associated with polymorphic mtDNA variants. An accrual of mtDNA mutations has also been identified in several tissues and organs, including heart and muscle, of old experimental animals and humans, which may contribute to the development of aging phenotypes. The role played by mtDNA homeostasis and mtDNA quality control pathways in human health is actively investigated for the possibility of developing targeted therapeutics for a wide range of conditions.


Asunto(s)
Variaciones en el Número de Copia de ADN , Neoplasias , Animales , Humanos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Mutación , Envejecimiento/genética , Neoplasias/genética
15.
Eur J Endocrinol ; 189(5): 485-494, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37815532

RESUMEN

OBJECTIVE: Single Large Scale Mitochondrial DNA Deletions (SLSMDs), Pearson Syndrome (PS) and Kearns-Sayre Syndrome (KSS), are systemic diseases with multiple endocrine abnormalities. The adrenocortical function has not been systematically investigated with a few anecdotal reports of overt adrenal insufficiency (AI). The study aimed to assess the adrenocortical function in a large cohort of SLSMDs. DESIGN AND METHODS: A retrospective monocentric longitudinal study involved a cohort of 18 SLSMDs patients. Adrenocortical function was evaluated by baseline adrenocorticotrophic hormone (ACTH) and cortisol measurements and by high- (HDT) and low-dose (LDT) ACTH stimulation tests and compared with 92 healthy controls (HC). RESULTS: Baseline adrenocortical function was impaired in 39% of patients and by the end of the study, 66% of PS and 25% of KSS showed an insufficient increase after ACTH stimulation, with cortisol deficiency due to primary AI in most PS and subclinical AI in KSS. Symptomatic AI was recorded in 44% of patients. Peak cortisol levels after ACTH stimulation tests were significantly lower in patients than in HC (P < .0001), with a more reduced response to LDT vs HDT (P < .05). CONCLUSIONS: Our study highlights that cortisol deficiency due to primary AI represents a relevant part of the clinical spectrum in SLSMDs, with more severe impairment in PS than in KSS. Basal and after-stimulus assessment of adrenocortical axis should be early and regularly investigated to identify any degree of adrenocortical dysfunction. The study allowed the elaboration of a diagnostic process designed for the diagnosis, treatment, and follow-up of adrenocortical abnormalities in SLSMDs.


Asunto(s)
Insuficiencia Suprarrenal , Hidrocortisona , Humanos , Estudios Retrospectivos , Estudios de Cohortes , Estudios Longitudinales , Hormona Adrenocorticotrópica , Insuficiencia Suprarrenal/diagnóstico , Insuficiencia Suprarrenal/genética , ADN Mitocondrial/genética
16.
Mitochondrion ; 65: 176-183, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35787470

RESUMEN

The mitochondrial genome (mtDNA) is an important source of disease-causing genetic variability, but existing sequencing methods limit understanding, precluding phased measurement of mutations and clear detection of large sporadic deletions. We adapted a method for amplification-free sequence enrichment using Cas9 cleavage to obtain full length nanopore reads of mtDNA. We then utilized the long reads to phase mutations in a patient with an mtDNA-linked syndrome and demonstrated that this method can map age-induced mtDNA deletions. We believe this method will offer deeper insight into our understanding of mtDNA variation.


Asunto(s)
Genoma Mitocondrial , Secuencia de Bases , Sistemas CRISPR-Cas , ADN Mitocondrial/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Mitocondrias/genética , Análisis de Secuencia de ADN/métodos
17.
Cells ; 11(6)2022 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-35326425

RESUMEN

Endonuclease G (ENDOG) is a nuclear-encoded mitochondrial-localized nuclease. Although its precise biological function remains unclear, its proximity to mitochondrial DNA (mtDNA) makes it an excellent candidate to participate in mtDNA replication, metabolism and maintenance. Indeed, several roles for ENDOG have been hypothesized, including maturation of RNA primers during mtDNA replication, splicing of polycistronic transcripts and mtDNA repair. To date, ENDOG has been deemed as a determinant of cardiac hypertrophy, but no pathogenic variants or genetically defined patients linked to this gene have been described. Here, we report biallelic ENDOG variants identified by NGS in a patient with progressive external ophthalmoplegia, mitochondrial myopathy and multiple mtDNA deletions in muscle. The absence of the ENDOG protein in the patient's muscle and fibroblasts indicates that the identified variants are pathogenic. The presence of multiple mtDNA deletions supports the role of ENDOG in mtDNA maintenance; moreover, the patient's clinical presentation is very similar to mitochondrial diseases caused by mutations in other genes involved in mtDNA homeostasis. Although the patient's fibroblasts did not present multiple mtDNA deletions or delay in the replication process, interestingly, we detected an accumulation of low-level heteroplasmy mtDNA point mutations compared with age-matched controls. This may indicate a possible role of ENDOG in mtDNA replication or repair. Our report provides evidence of the association of ENDOG variants with mitochondrial myopathy.


Asunto(s)
Endodesoxirribonucleasas , Miopatías Mitocondriales , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Endonucleasas , Humanos , Mitocondrias/metabolismo , Miopatías Mitocondriales/genética
18.
J Cachexia Sarcopenia Muscle ; 13(4): 2132-2145, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35765148

RESUMEN

BACKGROUND: Mitochondrial dysfunction caused by mitochondrial (mtDNA) deletions have been associated with skeletal muscle atrophy and myofibre loss. However, whether such defects occurring in myofibres cause sarcopenia is unclear. Also, the contribution of mtDNA alterations in muscle stem cells (MuSCs) to sarcopenia remains to be investigated. METHODS: We expressed a dominant-negative variant of the mitochondrial helicase, which induces mtDNA alterations, specifically in differentiated myofibres (K320Eskm mice) and MuSCs (K320Emsc mice), respectively, and investigated their impact on muscle structure and function by immunohistochemistry, analysis of mtDNA and respiratory chain content, muscle transcriptome and functional tests. RESULTS: K320Eskm mice at 24 months of age had higher levels of mtDNA deletions compared with controls in soleus (SOL, 0.07673% vs. 0.00015%, P = 0.0167), extensor digitorum longus (EDL, 0.0649 vs. 0.000925, P = 0.0015) and gastrocnemius (GAS, 0.09353 vs. 0.000425, P = 0.0004). K320Eskm mice revealed a progressive increase in the proportion of cytochrome c oxidase deficient (COX- ) fibres in skeletal muscle cross sections, reaching a maximum of 3.03%, 4.36%, 13.58%, and 17.08% in EDL, SOL, tibialis anterior (TA) and GAS, respectively. However, mice did not show accelerated loss of muscle mass, muscle strength or physical performance. Histological analyses revealed ragged red fibres but also stimulated regeneration, indicating activation of MuSCs. RNAseq demonstrated enhanced expression of genes associated with protein synthesis, but also degradation, as well as muscle fibre differentiation and cell proliferation. In contrast, 7 days after destruction by cardiotoxin, regenerating TA of K320Emsc mice showed 30% of COX- fibres. Notably, regenerated muscle showed dystrophic changes, increased fibrosis (2.5% vs. 1.6%, P = 0.0003), increased abundance of fat cells (2.76% vs. 0.23%, P = 0.0144) and reduced muscle mass (regenerated TA: 40.0 mg vs. 60.2 mg, P = 0.0171). In contrast to muscles from K320Eskm mice, freshly isolated MuSCs from aged K320Emsc mice were completely devoid of mtDNA alterations. However, after passaging, mtDNA copy number as well as respiratory chain subunits and p62 levels gradually decreased. CONCLUSIONS: Taken together, accumulation of large-scale mtDNA alterations in myofibres alone is not sufficient to cause sarcopenia. Expression of K320E-Twinkle is tolerated in quiescent MuSCs, but progressively leads to mtDNA and respiratory chain depletion upon activation, in vivo and in vitro, possibly caused by an increased mitochondrial removal. Altogether, our results suggest that the accumulation of mtDNA alterations in myofibres activates regeneration during aging, which leads to sarcopenia if such alterations have expanded in MuSCs as well.


Asunto(s)
Sarcopenia , Animales , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Ratones , Mitocondrias/metabolismo , Músculo Esquelético/patología , Regeneración , Sarcopenia/patología
19.
J Mol Neurosci ; 71(11): 2219-2228, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33469851

RESUMEN

Polymerase γ catalytic subunit (POLG), a nuclear gene, encodes the enzyme responsible for mitochondrial DNA (mtDNA) replication. POLG mutations are a major cause of inherited mitochondrial diseases. They present with varied phenotypes, age of onset, and severity. Reports on POLG mutations from India are limited. Hence, this study aimed to describe the clinico-pathological and molecular observations of POLG mutations. A total of 446 patients with clinical diagnosis of mitochondrial disorders were sequenced for all exons and intron-exon boundaries of POLG. Of these, 19 (4.26%) patients (M:F: 10:9) had POLG mutations. The age of onset ranged from 5 to 55 years with an overlapping phenotypic spectrum. Ptosis, peripheral neuropathy, seizures, and ataxia were the common neurological features observed. The most common clinical phenotype was chronic progressive external ophthalmoplegia (CPEO) and CPEO plus (n = 14). Muscle biopsy showed characteristic features of mitochondrial myopathy in fourteen patients (14/19) and respiratory chain enzyme deficiency in eleven patients (11/19). Multiple mtDNA deletions were seen in 47.36% (9/19) patients. Eight pathogenic POLG variations including two novel variations (p.G132R and p.V1106A) were identified. The common pathogenic mutation identified was p.L304R, being present in eight patients (42.1%) predominantly in the younger age group followed by p.W748S in four patients (21%). To the best of our knowledge, this is the first extensive study from India, highlights the clinico-pathological and molecular spectrum of POLG mutations.


Asunto(s)
ADN Polimerasa gamma/genética , Enfermedades Mitocondriales/genética , Mutación , Fenotipo , Adolescente , Adulto , Ataxia/genética , Ataxia/patología , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedades Mitocondriales/patología , Músculo Esquelético/metabolismo , Enfermedades del Sistema Nervioso Periférico/genética , Enfermedades del Sistema Nervioso Periférico/patología , Convulsiones/genética , Convulsiones/patología
20.
Pharmaceutics ; 13(1)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445442

RESUMEN

The application of metallic nanoparticles (materials with size at least in one dimension ranging from 1 to 100 nm) as a new therapeutic tool will improve the diagnosis and treatment of diseases. The mitochondria could be a therapeutic target to treat pathologies whose origin lies in mitochondrial dysfunctions or whose progression is dependent on mitochondrial function. We aimed to study the subcellular distribution of 2-4 nm iron nanoparticles and its effect on mitochondrial DNA (mtDNA), mitochondrial function, and autophagy in colorectal cell lines (HT-29). Results showed that when cells were exposed to ultra-small iron nanoparticles, their subcellular fate was mainly mitochondria, affecting its respiratory and glycolytic parameters, inducing the migration of the cellular state towards quiescence, and promoting and triggering the autophagic process. These effects support the potential use of nanoparticles as therapeutic agents using mitochondria as a target for cancer and other treatments for mitochondria-dependent pathologies.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda