Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Cell ; 81(11): 2403-2416.e5, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33852892

RESUMEN

The activation of cap-dependent translation in eukaryotes requires multisite, hierarchical phosphorylation of 4E-BP by the 1 MDa kinase mammalian target of rapamycin complex 1 (mTORC1). To resolve the mechanism of this hierarchical phosphorylation at the atomic level, we monitored by NMR spectroscopy the interaction of intrinsically disordered 4E binding protein isoform 1 (4E-BP1) with the mTORC1 subunit regulatory-associated protein of mTOR (Raptor). The N-terminal RAIP motif and the C-terminal TOR signaling (TOS) motif of 4E-BP1 bind separate sites in Raptor, resulting in avidity-based tethering of 4E-BP1. This tethering orients the flexible central region of 4E-BP1 toward the mTORC1 kinase site for phosphorylation. The structural constraints imposed by the two tethering interactions, combined with phosphorylation-induced conformational switching of 4E-BP1, explain the hierarchy of 4E-BP1 phosphorylation by mTORC1. Furthermore, we demonstrate that mTORC1 recognizes both free and eIF4E-bound 4E-BP1, allowing rapid phosphorylation of the entire 4E-BP1 pool and efficient activation of translation. Finally, our findings provide a mechanistic explanation for the differential rapamycin sensitivity of the 4E-BP1 phosphorylation sites.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas de Ciclo Celular/química , Factor 4E Eucariótico de Iniciación/química , Diana Mecanicista del Complejo 1 de la Rapamicina/química , Proteína Reguladora Asociada a mTOR/química , Serina-Treonina Quinasas TOR/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Chaetomium/química , Chaetomium/genética , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Cinética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Modelos Moleculares , Fosforilación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína Reguladora Asociada a mTOR/genética , Proteína Reguladora Asociada a mTOR/metabolismo , Transducción de Señal , Homología Estructural de Proteína , Especificidad por Sustrato , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
2.
Bioorg Med Chem ; 88-89: 117336, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37209638

RESUMEN

As oncogene c-MYC is abnormally expressed during TNBC pathogenesis, stabilizing its promoter G-quadruplex (G4), which may thus inhibit c-MYC expression and promote DNA damage, may be a potential anti-TNBC strategy. However, large quantities of potential G4-forming sites exist in the human genome, which represents a potential drug selectivity problem. In order to achieve better recognition for c-MYC G4, we herein presented a new approach of designing small-molecule ligands by linking tandem aromatic rings with the c-MYC G4 selective binding motifs. Thus, a series of non-fused, conformation-tunable imidazole-biphenyl analogs were designed and synthesized. Among them, the optimal ligand appeared more effective on stabilizing c-MYC G4 than other types of G4s possibly through an adaptive, multi-site binding mode involved of end-stacking, groove-binding and loop-interacting. Then, the optimal ligand exerted good inhibitory activity on c-MYC expression and induced remarkable DNA damage, leading to the occurrence of G2/M phase arrest, apoptosis and autophagy. Furthermore, the optimal ligand exhibited potent antitumor effects in a TNBC xenograft tumor model. To sum up, this work offers new insights for the development of selective c-MYC G4 ligands against TNBC.


Asunto(s)
Antineoplásicos , G-Cuádruplex , Neoplasias de la Mama Triple Negativas , Humanos , Antineoplásicos/química , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Ligandos , Proteínas Proto-Oncogénicas c-myc/genética , Imidazoles/farmacología
3.
Front Mol Neurosci ; 10: 58, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28360833

RESUMEN

Neuronal nitric oxide synthase is widely regarded as an important contributor to a number of disorders of excitable tissues. Recently the adaptor protein NOS1AP has emerged as a contributor to several nNOS-linked conditions. As a consequence, the unexpectedly complex mechanisms of interaction between nNOS and its effector NOS1AP have become a particularly interesting topic from the point of view of both basic research and the potential for therapeutic applications. Here we demonstrate that the concerted action of two previously described motif regions contributing to the interaction of nNOS with NOS1AP, the ExF region and the PDZ ligand motif, efficiently excludes an alternate ligand from the nNOS-PDZ ligand-binding pocket. Moreover, we identify an additional element with a denaturable structure that contributes to interaction of NOS1AP with nNOS. Denaturation does not affect the functions of the individual motifs and results in a relatively mild drop, ∼3-fold, of overall binding affinity of the C-terminal region of NOS1AP for nNOS. However, denaturation selectively prevents the concerted action of the two motifs that normally results in efficient occlusion of the PDZ ligand-binding pocket, and results in 30-fold reduction of competition between NOS1AP and an alternate PDZ ligand.

4.
J Chromatogr A ; 1326: 125-9, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24406143

RESUMEN

Affinity chromatography and membrane adsorption are highly promising methods for the downstream processing of cell culture-derived influenza virus. For the optimization of this separation process, it is desirable to quantify the kinetics of virus adsorption. For this reason, the adsorption kinetics of the influenza A virus (Puerto Rico/8/34 (H1N1)) on a surface with the immobilized ligand Euronymus europaeus lectin (EEL) was investigated. The adsorption kinetics was experimentally monitored in a microfluidic flow cell by surface plasmon resonance (SPR) spectroscopy. The boundary layer theory was applied to analyze the convective and diffusive mass transport of the virus particles in the SPR flow cell. A multi-site kinetic adsorption model was found to describe the experimentally recorded adsorption curves adequately. According to the proposed model, under the applied experimental conditions, the number of sites (galactose residuals) binding one single virus particle to the EEL surface is in the range of 300 to 460, which is in average about 4% of the total number of sites available on the virus surface. The avidity of individual virus particles to the EEL surface was estimated to be in the order of magnitude of 10(6)M(-1)s(-1).


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/química , Lectinas de Plantas/química , Adsorción , Euonymus , Hemaglutininas/química , Cinética , Modelos Teóricos , Neuraminidasa/química , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda