Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 813
Filtrar
1.
BMC Plant Biol ; 24(1): 56, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38238679

RESUMEN

Salvia verticillata L. is a well-known herb rich in rosmarinic acid (RA) and with therapeutic values. To better understand the possible roles of phytohormones in the production of phenolic acids in S. verticillata, in this work, we investigated some physiological and biochemical responses of the species to methyl jasmonate (MJ) and multi-walled carbon nanotubes (MWCNTs) as two effective elicitors. The leaves were sprayed with aqueous solutions containing 100 mg L-1 MWCNTs and 100 µM MJ and then harvested during interval times of exposure up to 96 h. The level of abscisic acid, as the first effective phytohormone, was altered in the leaves in response to MJ and MWCNTs elicitation (2.26- and 3.06-fold more than the control, respectively), followed by significant increases (P ˂ 0.05) detected in jasmonic acid and salicylic acid contents up to 8 h after exposure. Obtained data revealed that simultaneously with changes in phytohormone profiles, significant (P ˂ 0.05) rises were observed in the content of H2O2 (8.85- and 9.74-folds of control), and the amount of lipid peroxidation (10.18- and 17.01-folds of control) during the initial times after exposure to MJ and MWCNTs, respectively. Later, the content of phenolic acids increased in the elicited leaves due to changes in the transcription levels of key enzymes involved in their biosynthesis pathways, so 2.71- and 11.52-fold enhances observed in the RA content of the leaves after exposure to MJ and MWCNTs, respectively. It is reasonable to conclude that putative linkages between changes in some phytohormone pools lead to the accumulation of phenolic acids in the leaves of S. verticillata under elicitation. Overall, the current findings help us improve our understanding of the signal transduction pathways of the applied stimuli that led to enhanced secondary metabolite production in medicinal plants.


Asunto(s)
Acetatos , Nanotubos de Carbono , Salvia , Reguladores del Crecimiento de las Plantas/farmacología , Peróxido de Hidrógeno/farmacología , Ciclopentanos/farmacología , Ciclopentanos/metabolismo , Oxilipinas/farmacología , Oxilipinas/metabolismo
2.
Small ; : e2403615, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096113

RESUMEN

The synthesis of stable polynitrogen compounds with high-energy density has long been a major challenge. The cyclo-pentazolate anion (cyclo-N5 -) is successfully converted into aromatic and structurally symmetric bipentazole (N10) via electrochemical synthesis using highly conductive multi-walled carbon nanotubes (MWCNTs) as the substrate and sodium pentazolate hydrate ([Na(H2O)(N5)]·2H2O) as the raw material. Attenuated total refraction Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and density functional theory calculations confirmed the structure and homogeneous distribution of N10 in the sidewalls of the MWCNTs (named MWCNT-N10-n m). The MWCNT-N10-2.0 m is further used as a catalyst for electrochemical oxygen reduction to synthesize hydrogen peroxide from oxygen with a two-electron selectivity of up to 95%.

3.
Toxicol Appl Pharmacol ; 483: 116820, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38218205

RESUMEN

Carbon nanotubes (CNTs) are emerging pollutants of occupational and environmental health concern. While toxicological mechanisms of CNTs are emerging, there is paucity of information on their modulatory effects on susceptibility to infections. Here, we investigated cellular and molecular events underlying the effect of multi-walled CNT (MWCNT) exposure on susceptibility to Streptococcus pneumoniae infection in our 28-day sub-chronic exposure mouse model. Data indicated reduced phagocytic function in alveolar macrophages (AMs) from MWCNT-exposed lungs evidenced by lower pathogen uptake in 1-h infection assay. At 24-h post-infection, intracellular pathogen count in exposed AMs showed 2.5 times higher net increase (2-fold in vehicle- versus 5-fold in MWCNT-treated), indicating a greater rate of intracellular multiplication and/or survival due to MWCNT exposure. AMs from MWCNT-exposed lungs exhibited downregulation of pathogen-uptake receptors CD163, Phosphatidyl-serine receptor (Ptdsr), and Macrophage scavenger receptors class A type 1 (Msr1) and type 2 (MSr2). In whole lung, MWCNT exposure shifted the macrophage polarization state towards the immunosuppressive phenotype M2b and increased the CD11c+ dendritic cell population required to activate the adaptive immune response. Notably, the MWCNT pre-exposure dysregulated T-cell immunity, evidenced by diminished CD4 and Th17 response, and exacerbated Th1 and Treg responses (skewed Th17/Treg ratio), thereby favoring the pneumococcal infection. Overall, these findings indicated that MWCNT exposure compromises both innate and adaptive immunity leading to diminished host lung defense against pneumonia infection. To our knowledge, this is the first report on an immunomodulatory role of CNT pre-exposure on pneumococcal infection susceptibility due to dysregulation of both innate and adaptive immunity targets.


Asunto(s)
Nanopartículas , Nanotubos de Carbono , Neumonía Neumocócica , Ratones , Animales , Nanotubos de Carbono/toxicidad , Ratones Endogámicos C57BL , Pulmón , Inmunidad , Nanopartículas/toxicidad
4.
Chemistry ; 30(2): e202302934, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37842799

RESUMEN

It is highly challenging to activate the basal plane and minimize the π-π stacking of MoS2 sheets, thus enhancing its catalytic performance. Here, we display an approach for making well-dispersed MoS2 . By using the N-doped multi-walled carbon nanotubes (NMWCNTs) as an isolation unit, the aggregation of MoS2 sheets was effectively reduced, favoring the dispersion of Pt nanoparticles (noted as Pt/NMWCNTs-isolated-MoS2 ). Excellent bifunctional catalytic performance for methanol oxidation and oxygen reduction reaction (MOR/ORR) were demonstrated by the produced Pt/NMWCNTs-isolated-MoS2 . In comparison to Pt nanoparticles supported on MoS2 (Pt/MoS2 ), the MOR activity (2314.14 mA mgpt -1 ) and stability (317.69 mA mgpt -1 after 2 h of operation) on Pt/NMWCNTs-isolatedMoS2 were 24 and 232 times higher, respectively. As for ORR, Pt/NMWCNTs-isolated-MoS2 holds large half-wave potential (0.88 V) and high stability (92.71 % after 22 h of operation). This work presents a tactic for activating the basal planes and reducing the π-π stacking of 2D materials to satisfy their applications in electrocatalysis. In addition, the proposed sheet-isolation method can be used for fabricating other 2D materials to promote the dispersion of nanoparticles, which assist its application in other fields of energy as well as the environment.

5.
Anal Biochem ; 688: 115477, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38296105

RESUMEN

Propyl gallate (PG), a prevalent synthetic phenolic antioxidant found in food products, has generated considerable apprehension owing to its potential adverse impacts on human health. Therefore, as a result of the current inquiry, an innovative electrochemical sensor with improved sensitivity and selectivity for PG detection has been created. Under optimal conditions, the manufactured sensor exhibits the capability to identify PG within a broad range from 0.01 µM to 5 µM and from 5 µM to 1000 µM with a limit of detection (LOD) of 6 nM, demonstrating exceptional levels of reproducibility, repeatability, stability, and selectivity. The sensor demonstrated successful detection of PG in edible oils and mayonnaise, with good recoveries ranging from 98.44 % to 101.37 %.


Asunto(s)
Impresión Molecular , Galato de Propilo , Humanos , Técnicas Electroquímicas , Reproducibilidad de los Resultados , Antioxidantes , Límite de Detección , Electrodos
6.
Nanotechnology ; 35(16)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38215490

RESUMEN

In this paper, a preparation method of superhydrophobic composites of oxidized multi-walled carbon nanotubes modified by stearic acid (SA) is proposed. Hydroxylated multi-walled carbon nanotubes (HMWCNTs) were obtained by oxidizing multi-walled carbon nanotubes with potassium dichromate to give them hydroxyl groups on the surface. Subsequently, the carboxyl group in the SA molecule was esterified with the hydroxyl group on the HMWCNTs. SA molecules were grafted onto the surface of multi-walled carbon nanotubes. SA modified oxidized multi-walled carbon nanotubes (SMWCNT) superhydrophobic composites were obtained. The results show that the water contact angle (WCA) of superhydrophobic composites can reach up to 174°. At the same time, the modified nanocomposites have good anti-icing and corrosion resistance. After low temperature delayed freezing test, the freezing extension time of the nanocomposite film is 30 times that of the smooth surface. Under strong acid and alkali conditions, the superhydrophobic nanocomposites still maintain good superhydrophobicity. The nanocomposites may have potential applications in the preparation of large-scale superhydrophobic coatings.

7.
Anal Bioanal Chem ; 416(13): 3149-3160, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38563959

RESUMEN

Bats are the second largest mammalian order and are an endangered species group with a strong need for contamination monitoring. To facilitate non-invasive monitoring of the ecological burden in bat populations, a multiresidue method for the simultaneous quantification of 119 analytes including pesticides, persistent organic pollutants (POPs), active pharmaceutical ingredients (APIs), polycyclic aromatic hydrocarbons (PAHs), UV blockers, plasticizers, and other emerging pollutants in bat guano with gas chromatography tandem mass spectrometry (GC-MS/MS) was developed. Sample preparation and clean-up were performed with a modified QuEChERS approach based on DIN EN 15662. The method uses 1.00 g bat guano as sample with acetonitrile and water for liquid-liquid extraction. Phase separation is assisted by citrate-buffered salting out agent. For clean-up of the extract, primary secondary amine (PSA) was combined with graphitized carbon black (GCB). The lower limits of quantification (LLOQ) ranged between 2.5 and 250 µg kg-1. Linearity was shown in a concentration range from the respective LLOQs to 1250 µg kg-1. The median of the mean recovery was 102.4%. Precision was tested at three concentrations. Method and injection precision were adequate with a relative standard deviation (RSD) below 20%. Furthermore, the comparative analysis with LC-MS/MS demonstrated the reliability of the results and provided a valuable extension of the analytical scope. As proof of concept, three guano samples from a German nursery roost of Myotis myotis were analysed. The results show a time-dependent change in contaminant concentration, highlighting the strong need for non-invasive contamination monitoring of whole bat populations.


Asunto(s)
Quirópteros , Cromatografía de Gases y Espectrometría de Masas , Límite de Detección , Espectrometría de Masas en Tándem , Animales , Espectrometría de Masas en Tándem/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Hidrocarburos Policíclicos Aromáticos/análisis , Reproducibilidad de los Resultados , Extracción Líquido-Líquido/métodos , Monitoreo del Ambiente/métodos
8.
Environ Res ; 241: 117619, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37952855

RESUMEN

Multi-walled carbon nanotube (MWCNT) exposure was observed to cause damages on the viability of ocular cells, however, the underlying mechanisms remain not well understood. Epigenetic alterations that regulate gene expression have been identified as a major responsiveness to environmental challenge. Thus, the aim of this study was to screen methylation-regulated genes involved in MWCNT exposure. The Illumina Human Methylation 850 K array was employed to determine the genome-wide DNA methylation profile of human retinal pigment epithelial cell line (ARPE-19) exposed to 50% inhibition concentration of MWCNTs (100 µg/ml) for 24 h or without (n = 3 for each group). Then, the transcriptome data obtained by high-throughput RNA sequencing previously were integrated with DNA methylome to identify the overlapped genes. As a result, the integrative bioinformatics analysis identified that compared with controls, FA complementation group C (FANCC) was hypermethylated and downregulated in MWCNT-exposed ARPE-19 cells. Quantitative real-time polymerase chain reaction analysis confirmed the mRNA expression level of FANCC was significantly decreased following MWCNT treatment and the addition of DNA methylation inhibitor 5-Aza-deoxycytidine (10 µM) reversed this decrease. Pyrosequencing analysis further validated the hypermethylation status at the 5'-untranslated promoter region of FANCC (cg14583550) in MWCNT-exposed ARPE-19 cells. Protein-protein interaction network and function analyses predicted that FANCC may contribute to MWCNT-induced cytotoxicity by interacting with heat shock protein 90 beta family member 1 and then upregulating cytokine interleukin-6 and apoptosis biomarker caspase 3. In conclusion, the present study links the epigenetic modification of FANCC with the pathogenesis of MWCNT-induced retinal toxicity.


Asunto(s)
Metilación de ADN , Nanotubos de Carbono , Humanos , Nanotubos de Carbono/toxicidad , Células Epiteliales , Epigénesis Genética , Línea Celular , Proteína del Grupo de Complementación C de la Anemia de Fanconi/metabolismo
9.
Environ Res ; 249: 118466, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38354882

RESUMEN

Global outbreaks and the spread of viral diseases in the recent years have led to a rapid increase in the usage of antiviral drugs (ATVs), the residues and metabolites of which are discharged into the natural environment, posing a serious threat to human health. There is an urgent need to develop sensitive and rapid detection tools for multiple ATVs. In this study, we developed a highly sensitive electrochemical sensor comprising a glassy carbon electrode (GCE) modified with graphitized hydroxylated multi-walled carbon nanotubes (G-MWCNT-OH) and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6, IL) for the detection of six ATVs including famciclovir (FCV), remdesivir (REM), favipiravir (FAV), hydroxychloroquine sulfate (HCQ), cepharanthine (CEP) and molnupiravir (MOL). The morphology and structure of the G-MWCNT-OH/IL nanocomposites were characterized comprehensively, and the electroactive surface area and electron conductivity of G-MWCNT-OH/IL/GCE were determined using cyclic voltammetry and electrochemical impedance spectroscopy. The thermodynamic stability and non-covalent interactions between the G-MWCNT-OH and IL were evaluated through quantum chemical simulation calculations, and the mechanism of ATV detection using the G-MWCNT-OH/IL/GCE was thoroughly examined. The detection conditions were optimized to improve the sensitivity and stability of electrochemical sensors. Under the optimal experimental conditions, the G-MWCNT-OH/IL/GCE exhibited excellent electrocatalytic performance and detected the ATVs over a wide concentration range (0.01-120 µM). The limit of detections (LODs) were 42.3 nM, 55.4 nM, 21.9 nM, 15.6 nM, 10.6 nM, and 3.2 nM for FCV, REM, FAV, HCQ, CEP, and MOL, respectively. G-MWCNT-OH/IL/GCE was also highly stable and selective to the ATVs in the presence of multiple interfering analytes. This sensor exhibited great potential for enabling the quantitative detection of multiple ATVs in actual water environment.


Asunto(s)
Antivirales , Técnicas Electroquímicas , Líquidos Iónicos , Nanotubos de Carbono , Antivirales/análisis , Antivirales/química , Nanotubos de Carbono/química , Líquidos Iónicos/química , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Límite de Detección , Electrodos , Grafito/química
10.
Part Fibre Toxicol ; 21(1): 1, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225661

RESUMEN

BACKGROUND: As the demand and application of engineered nanomaterials have increased, their potential toxicity to the central nervous system has drawn increasing attention. Tunneling nanotubes (TNTs) are novel cell-cell communication that plays a crucial role in pathology and physiology. However, the relationship between TNTs and nanomaterials neurotoxicity remains unclear. Here, three types of commonly used engineered nanomaterials, namely cobalt nanoparticles (CoNPs), titanium dioxide nanoparticles (TiO2NPs), and multi-walled carbon nanotubes (MWCNTs), were selected to address this limitation. RESULTS: After the complete characterization of the nanomaterials, the induction of TNTs formation with all of the nanomaterials was observed using high-content screening system and confocal microscopy in both primary astrocytes and U251 cells. It was further revealed that TNT formation protected against nanomaterial-induced neurotoxicity due to cell apoptosis and disrupted ATP production. We then determined the mechanism underlying the protective role of TNTs. Since oxidative stress is a common mechanism in nanotoxicity, we first observed a significant increase in total and mitochondrial reactive oxygen species (namely ROS, mtROS), causing mitochondrial damage. Moreover, pretreatment of U251 cells with either the ROS scavenger N-acetylcysteine or the mtROS scavenger mitoquinone attenuated nanomaterial-induced neurotoxicity and TNTs generation, suggesting a central role of ROS in nanomaterials-induced TNTs formation. Furthermore, a vigorous downstream pathway of ROS, the PI3K/AKT/mTOR pathway, was found to be actively involved in nanomaterials-promoted TNTs development, which was abolished by LY294002, Perifosine and Rapamycin, inhibitors of PI3K, AKT, and mTOR, respectively. Finally, western blot analysis demonstrated that ROS and mtROS scavengers suppressed the PI3K/AKT/mTOR pathway, which abrogated TNTs formation. CONCLUSION: Despite their biophysical properties, various types of nanomaterials promote TNTs formation and mitochondrial transfer, preventing cell apoptosis and disrupting ATP production induced by nanomaterials. ROS/mtROS and the activation of the downstream PI3K/AKT/mTOR pathway are common mechanisms to regulate TNTs formation and mitochondrial transfer. Our study reveals that engineered nanomaterials share the same molecular mechanism of TNTs formation and intercellular mitochondrial transfer, and the proposed adverse outcome pathway contributes to a better understanding of the intercellular protection mechanism against nanomaterials-induced neurotoxicity.


Asunto(s)
Estructuras de la Membrana Celular , Nanotubos de Carbono , Nanotubos , Proteínas Proto-Oncogénicas c-akt , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Nanotubos de Carbono/toxicidad , Serina-Treonina Quinasas TOR/metabolismo , Neuroglía/metabolismo , Adenosina Trifosfato , Apoptosis
11.
Environ Toxicol ; 39(9): 4431-4446, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38856197

RESUMEN

Multi-walled carbon nanotubes (MWCNTs) and halloysite nanotubes (HNTs) are widely used tubular-structured nanomaterials (NMs), but their cardiovascular effects are not clear. This study compared the effects of MWCNTs and HNTs on lipid profiles in mouse plasma and gene expression profiles in aortas and hearts. Mice were intravenously injected with 50 µg NMs, once a day, for 5 days. Then, the plasma was collected for lipidomics analysis, and aortas and hearts were collected for RNA-sequencing analysis. While MWCNTs or HNTs did not induce obvious pathological changes in aortas or hearts, the lipid profiles in mouse plasma were altered. Further analysis revealed that MWCNTs more effectively upregulated sphingolipids and sterol lipids, whereas HNTs more effectively upregulated glycerophospholipids and fatty acyls. Consistently, RNA-sequencing data indicated that MWCNTs and HNTs altered signaling pathways related with lipid synthesis and metabolism, as well as those related with endoplasmic reticulum, lysosomes and autophagy, more significantly in aortas than in hearts. We further verified the changes of proteins involved in autophagic lipolysis, that MWCNTs were more effectively to suppress the autophagic biomarker LC3, whereas HNTs were more effectively to affect lipid metabolism proteins. These results may provide novel understanding about the influences of MWCNTs and HNTs on lipid profiles and lipid signaling pathways in cardiovascular systems. Importantly, previous studies considered HNTs as biocompatible materials, but the results from this study suggested that both MWCNTs and HNTs were capable to affect lipid profiles and autophagic lipolysis pathways in cardiovascular systems, although their exact influences were different.


Asunto(s)
Aorta , Autofagia , Miocardio , Nanotubos de Carbono , Animales , Nanotubos de Carbono/toxicidad , Autofagia/efectos de los fármacos , Ratones , Masculino , Aorta/efectos de los fármacos , Aorta/metabolismo , Miocardio/metabolismo , Arcilla/química , Nanotubos/química , Nanotubos/toxicidad , Metabolismo de los Lípidos/efectos de los fármacos , Lípidos/sangre , Ratones Endogámicos C57BL , Corazón/efectos de los fármacos
12.
Mikrochim Acta ; 191(10): 626, 2024 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-39325066

RESUMEN

With the advancement of nanotechnology, various types of nanomaterials have been integrated into electrochemical immunoelectrodes to enhance their performance. Among these, MXene stands out as a promising candidate due to its high electron transfer capacity and abundant surface chemical groups. However, the improvement in electrode performance is often hindered by the self-restacking and agglomeration of MXene. To address this issue, multi-walled carbon nanotubes (MWCNTs) were selected to form composites with MXene. Subsequently, a label-free immunosensor, BSA/Ab/AuNPs/MXene-MWCNTs-Nafion/ITO, was fabricated for specific detection of carcinoembryonic antigen (CEA), a widely used tumor marker. The results demonstrated that the incorporation of MWCNTs can effectively prevent the self-stacking of MXene. Moreover, the composites enhanced the loading of gold nanoparticles (AuNPs) to connect the antibodies, thereby improving electronic transmission signals and sensitivity. The sensor exhibited excellent analytical performance towards CEA with a wide linear range (0.050 to 200 ng mL-1) and a low limit of detection of 0.015 ng mL-1 (S/N = 3). The possibility of it being applied in clinical trials was verified by using ELISA and differential pulse voltammetry (DPV) assays to detect CEA in serum samples. The recoveries ranged from 95.34 to 102.09% with relative standard deviations (RSDs) below 5.00%. Furthermore, the sensor displayed satisfactory selectivity, repeatability, and stability. We hope the findings highlight promising prospects for advanced immunosensor development and alternative strategies in cancer diagnosis.


Asunto(s)
Técnicas Biosensibles , Antígeno Carcinoembrionario , Técnicas Electroquímicas , Oro , Límite de Detección , Nanopartículas del Metal , Nanotubos de Carbono , Antígeno Carcinoembrionario/sangre , Antígeno Carcinoembrionario/inmunología , Nanotubos de Carbono/química , Oro/química , Nanopartículas del Metal/química , Técnicas Electroquímicas/métodos , Humanos , Técnicas Biosensibles/métodos , Inmunoensayo/métodos , Anticuerpos Inmovilizados/inmunología
13.
Mikrochim Acta ; 191(5): 236, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570402

RESUMEN

Three different types of Zr-based MOFs derived from benzene dicarboxylic acid (BDC) and naphthalene dicarboxylic acid as organic linkers (ZrBDC, 2,6-ZrNDC, and 1,4-ZrNDC) were synthesized. They were characterized using X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform IR spectroscopy (FT-IR), and Transmission electron microscopy (TEM). Their hydrophilic/hydrophobic nature was investigated via contact angle measurements; ZrBDC MOF was hydrophilic and the other two (ZrNDC) MOFs were hydrophobic. The three MOFs were combined with MWCNTs as electrode modifiers for the determination of a hydrophobic analyte, flibanserin (FLB), as a proof-of-concept analyte. Under the optimized experimental conditions, a significant enhancement in the oxidation peak current of FLB was observed when utilizing 2,6-ZrNDC and 1,4-ZrNDC, being the highest when using 1,4-ZrNDC. Furthermore, a thorough investigation of the complex oxidation pathway of FLB was performed by carrying out simultaneous spectroelectrochemical measurements. Based on the obtained results, it was verified that the piperazine moiety of FLB is the primary site for electrochemical oxidation. The fabricated sensor based on 1,4-ZrNDC/MW/CPE showed an oxidation peak of FLB at 0.8 V vs Ag/AgCl. Moreover, it showed excellent linearity for the determination of FLB in the range 0.05 to 0.80 µmol L-1 with a correlation coefficient (r) = 0.9973 and limit of detection of 3.0 nmol L-1. The applicability of the developed approach was demonstrated by determination of FLB in pharmaceutical tablets and human urine samples with acceptable repeatability (% RSD values were below 1.9% and 2.1%, respectively) and reasonable recovery values (ranged between 97 and 103% for pharmaceutical tablets and between 96 and 102% for human urine samples). The outcomes of the suggested methodology can be utilized for the determination of other hydrophobic compounds of pharmaceutical or biological interest with the aim of achieving low detection limits of these compounds in various matrices.

14.
Mikrochim Acta ; 191(2): 96, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225436

RESUMEN

The combination of multi-walled carbon nanotubes (MWCNT) and carbon black (CB) is presented to produce a high-performance electrically conductive recycled additive manufacturing filament. The filament and subsequent additively manufactured electrodes were characterised by TGA, XPS, Raman, and SEM and showed excellent low-temperature flexibility. The MWCNT/CB filament exhibited an improved electrochemical performance compared to an identical in-house produced bespoke filament using only CB. A heterogeneous electrochemical rate constant, [Formula: see text] of 1.71 (± 0.19) × 10-3 cm s-1 was obtained, showing an almost six times improvement over the commonly used commercial conductive CB/PLA. The filament was successfully tested for the simultaneous determination of acetaminophen and phenylephrine, producing linear ranges of 5-60 and 5-200 µM, sensitivities of 0.05 µA µM-1 and 0.14 µA µM-1, and limits of detection of 0.04 µM and 0.38 µM, respectively. A print-at-home device is presented where a removable lid comprised of rPLA can be placed onto a drinking vessel and the working, counter, and reference components made from our bespoke MWCNT/CB filament. The print-at-home device was successfully used to determine both compounds within real pharmaceutical products, with recoveries between 87 and 120% over a range of three real samples. This work paves the way for fabricating new highly conductive filaments using a combination of carbon materials with different morphologies and physicochemical properties and their application to produce additively manufactured electrodes with greatly improved electrochemical performance.


Asunto(s)
Acetaminofén , Nanotubos de Carbono , Acetaminofén/análisis , Nanotubos de Carbono/química , Hollín , Fenilefrina , Técnicas Electroquímicas
15.
Mikrochim Acta ; 191(9): 558, 2024 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177820

RESUMEN

An innovative supramolecular architecture is reported for bienzymatic glucose biosensing based on the use of a nanohybrid made of multi-walled carbon nanotubes (MWCNTs) non-covalently functionalized with a Schiff base modified with two phenylboronic acid residues (SB-dBA) as platform for the site-specific immobilization of the glycoproteins glucose oxidase (GOx) and horseradish peroxidase (HRP). The analytical signal was obtained from amperometric experiments at - 0.050 V in the presence of 5.0 × 10-4 M hydroquinone as redox mediator. The concentration of GOx and HRP and the interaction time between the enzymes and the nanohybrid MWCNT-SB-dBA deposited at glassy carbon electrodes (GCEs) were optimized through a central composite design (CCD)/response surface methodology (RSM). The optimal concentrations of GOx and HRP were 3.0 mg mL-1 and 1.50 mg mL-1, respectively, while the optimum interaction time was 3.0 min. The bienzymatic biosensor presented a sensitivity of (24 ± 2) × 102 µA dL mg-1 ((44 ± 4) × 102 µA M-1), a linear range between 0.06 mg dL-1 and 21.6 mg dL-1 (3.1 µM-1.2 mM) (R2 = 0.9991), and detection and quantification limits of 0.02 mg dL-1 (1.0 µM) and 0.06 mg dL-1 (3.1 µM), respectively. The reproducibility for five sensors prepared with the same MWCNT-SB-dBA nanohybrid was 6.3%, while the reproducibility for sensors prepared with five different nanohybrids and five electrodes each was 7.9%. The GCE/MWCNT-SB-dBA/GOx-HRP was successfully used for the quantification of glucose in artificial human urine and commercial human serum samples.


Asunto(s)
Técnicas Biosensibles , Ácidos Borónicos , Enzimas Inmovilizadas , Glucosa Oxidasa , Peroxidasa de Rábano Silvestre , Nanotubos de Carbono , Bases de Schiff , Nanotubos de Carbono/química , Bases de Schiff/química , Técnicas Biosensibles/métodos , Ácidos Borónicos/química , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Humanos , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Glucosa/análisis , Electrodos , Límite de Detección , Técnicas Electroquímicas/métodos , Glucemia/análisis
16.
Toxicol Ind Health ; 40(4): 167-175, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38285958

RESUMEN

Phthalic acid esters (PAEs) and carbon nanotubes (CNTs) are common environmental pollutants and may degrade differently with different resulting biotoxicity, when present together. This study investigated the toxicological effects of singular or combined exposure to dibutyl phthalate (DBP) and multi-walled carbon nanotubes (MWCNTs) in KM mice. Results indicated that combined exposure led to slower weight gain and an increased leukocyte count in the blood, as well as liver tissue lesions and downregulation of organ coefficients. Additionally, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were elevated in the liver, and glucose, pyruvate, triglyceride (TG), and total cholesterol (T-CHO) were significantly reduced, suggesting compromised liver function. Furthermore, mRNA levels of genes related to hepatic glucose and lipid metabolism were significantly altered. These findings suggest that combined exposure to DBP and MWCNTs can have severe impacts on liver function in mice, highlighting the importance of considering interactions between multiple contaminants in environmental risk assessments.


Asunto(s)
Contaminantes Ambientales , Nanotubos de Carbono , Ácidos Ftálicos , Animales , Ratones , Dibutil Ftalato/toxicidad , Glucosa/metabolismo , Hígado , Ácidos Ftálicos/toxicidad
17.
Molecules ; 29(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39274991

RESUMEN

This study presents a comprehensive evaluation of catalytic ozonation as an effective strategy for indigo dye bleaching, particularly examining the performance of four carbon-based catalysts, activated carbon (AC), multi-walled carbon nanotubes (MWCNT), graphitic carbon nitride (g-C3N4), and thermally etched nanosheets (C3N4-TE). The study investigates the efficiency of catalytic ozonation in degrading Potassium indigotrisulfonate (ITS) dye within the constraints of short contact times, aiming to simulate real-world industrial wastewater treatment conditions. The results reveal that all catalysts demonstrated remarkable decolorization efficiency, with over 99% of indigo dye removed within just 120 s of mixing time. Besides, the study delves into the mechanisms underlying catalytic ozonation reactions, elucidating the intricate interactions between the catalysts, ozone, and indigo dye molecules with the processes being influenced by factors such as PZC, pKa, and pH. Furthermore, experiments were conducted to analyze the adsorption characteristics of indigo dye on the surfaces of the materials and its impact on the catalytic ozonation process. MWCNT demonstrated the highest adsorption efficiency, effectively removing 43.4% of the indigo dye color over 60 s. Although the efficiency achieved with C3N4-TE was 21.4%, which is approximately half of that achieved with MWCNT and less than half of that with AC, it is noteworthy given the significantly lower surface area of C3N4-TE.

18.
Molecules ; 29(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38893417

RESUMEN

A nanocomposite of multi-walled carbon nanotubes (MWCNTs) decorated with molybdenum dioxide (MoO2) nanoparticles is fabricated through the reduction of phosphomolybdic acid hydrate on functionalized MWCNTs in a hydrogen-argon (10%) atmosphere in a tube furnace. The MoO2/MWCNTs composite is proposed as an anodic modification material for microbial fuel cells (MFCs). MWCNTs have outstanding physical and chemical peculiarities, with functionalized MWCNTs having substantially large electroactive areas. In addition, combined with the exceptional properties of MoO2 nanoparticles, the synergistic advantages of functionalized MWCNTs and MoO2 nanoparticles give a MoO2/MWCNTs anode a large electroactive area, excellent electronic conductivity, enhanced extracellular electron transfer capacity, and improved nutrient transfer capability. Finally, the power harvesting of an MFC with the MoO2/MWCNTs anode is improved, with the MFC showing long-term repeatability of voltage and current density outputs. This exploratory research advances the fundamental application of anodic modification to MFCs, simultaneously providing valuable guidance for the use of carbon-based transition metal oxide nanomaterials in high-performance MFCs.

19.
Molecules ; 29(18)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39339358

RESUMEN

Developing materials for efficient energy storage and effective electromagnetic interference (EMI) shielding is crucial in modern technology. This study explores the synthesis and characterization of carbonaceous shape-stabilized octadecane/MWCNT (multi-walled carbon nanotube) composites, utilizing activated carbon, expanded graphite or ceramic carbon foam, as shape stabilizers for phase change materials (PCMs) to enhance thermal energy storage and EMI shielding, for energy-efficient and advanced applications. The integration of octadecane, a phase change material (PCM) with carbonaceous stabilizers ensures the material's stability during phase transitions, while MWCNTs contribute to improved thermal storage properties and EMI shielding capabilities. The research aims to develop novel composites with dual functionality for thermal storage and EMI shielding, emphasizing the role of carbon matrices and their MWCNT composites. SEM and CT microtomography analyses reveal variations in MWCNT incorporation across the matrices, influenced by surface properties and porosity. Leaching tests, infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC) confirm the composite's stability and high latent heat storage. The presence of nanotubes enhances the thermal properties of octadecane and ΔH values almost reached their theoretical values. EMI shielding effectiveness measurements indicate that the composites show improved electric properties in the presence of MWCNTs.

20.
J Sci Food Agric ; 104(6): 3256-3264, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38087413

RESUMEN

BACKGROUND: Biogenic amines (BAs) in high concentrations are toxic and may cause a series of health symptoms. A sensitive measurement of BA levels is essential for human health. Capillary electrophoresis (CE) has emerged for the separation of eight BAs due to simple sample preparation and highly efficient separation. However, an important drawback for CE is low sensitivity. Magnetic solid-phase extraction (MSPE) has become a technique of interest owing to its brief operation and low solvent consumption. Hence, MSPE as a pretreatment has great potential to improve CE sensitivity for the analysis of BAs in complex food. RESULTS: Results showed that the Pt-Co-MWCNTs-COOH possessed strong magnetism, good reusability, and high adsorptive ability toward eight biogenic amines based on the hydrogen bonding between the -COOH of Pt-Co-MWCNTs-COOH and -NH2 groups of BAs. Using it as an adsorbent, a magnetic solid-phase extraction coupled with capillary electrophoresis (MSPE-CE) method was developed to effectively extract and sensitively analyze eight BAs. Under optimal conditions, the MSPE-CE method has wide linearities (10.0-1000.0 µg L-1 ) and low limits of detection (1.0-6.1 µg L-1 ). The accuracy of the developed method yielded recovery values from 82.07% to 102.58%. Meanwhile, the BAs contents in two samples were analyzed using the MSPE-CE method, with the results consistent with those detected by a high-performance liquid chromatography method. CONCLUSION: Given those advantages, the established MSPE-CE method promises the practical guidance of monitoring a variety of BAs and provides a foundation for the detection of other food hazards. © 2023 Society of Chemical Industry.


Asunto(s)
Aminas Biogénicas , Electroforesis Capilar , Humanos , Electroforesis Capilar/métodos , Cromatografía Líquida de Alta Presión/métodos , Aminas Biogénicas/análisis , Extracción en Fase Sólida/métodos , Fenómenos Magnéticos , Límite de Detección
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda