Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38396949

RESUMEN

Fatty acids and their derivatives play a variety of roles in living organisms. Fatty acids not only store energy but also comprise membrane lipids and act as signaling molecules. There are three main proteins involved in the fatty acid ß-oxidation pathway in plant peroxisomes, including acyl-CoA oxidase (ACX), multifunctional protein (MFP), and 3-ketolipoyl-CoA thiolase (KAT). However, genome-scale analysis of KAT and MFP has not been systemically investigated in tomatoes. Here, we conducted a bioinformatics analysis of KAT and MFP genes in tomatoes. Their physicochemical properties, protein secondary structure, subcellular localization, gene structure, phylogeny, and collinearity were also analyzed. In addition, a conserved motif analysis, an evolutionary pressure selection analysis, a cis-acting element analysis, tissue expression profiling, and a qRT-PCR analysis were conducted within tomato KAT and MFP family members. There are five KAT and four MFP family members in tomatoes, which are randomly distributed on four chromosomes. By analyzing the conserved motifs of tomato KAT and MFP family members, we found that both KAT and MFP members are highly conserved. In addition, the results of the evolutionary pressure selection analysis indicate that the KAT and MFP family members have evolved mainly from purifying selection, which makes them more structurally stable. The results of the cis-acting element analysis show that SlKAT and SlMFP with respect may respond to light, hormones, and adversity stresses. The tissue expression analysis showed that KAT and MFP family members have important roles in regulating the development of floral organs as well as fruit ripening. The qRT-PCR analysis revealed that the expressions of SlKAT and SlMFP genes can be regulated by ABA, MeJA, darkness, NaCl, PEG, UV, cold, heat, and H2O2 treatments. These results provide a basis for the involvement of the SlKAT and SlMFP genes in tomato floral organ development and abiotic stress response, which lay a foundation for future functional study of SlKAT and SlMFP in tomatoes.


Asunto(s)
Solanum lycopersicum , Solanum lycopersicum/genética , Oxidorreductasas/metabolismo , Ácidos Grasos/metabolismo , Peróxido de Hidrógeno/metabolismo , Peroxisomas/metabolismo , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Filogenia , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes
2.
EMBO Rep ; 22(4): e50145, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33719157

RESUMEN

Intracellular pH is a potent modulator of neuronal functions. By catalyzing (de)hydration of CO2 , intracellular carbonic anhydrase (CAi ) isoforms CA2 and CA7 contribute to neuronal pH buffering and dynamics. The presence of two highly active isoforms in neurons suggests that they may serve isozyme-specific functions unrelated to CO2 -(de)hydration. Here, we show that CA7, unlike CA2, binds to filamentous actin, and its overexpression induces formation of thick actin bundles and membrane protrusions in fibroblasts. In CA7-overexpressing neurons, CA7 is enriched in dendritic spines, which leads to aberrant spine morphology. We identified amino acids unique to CA7 that are required for direct actin interactions, promoting actin filament bundling and spine targeting. Disruption of CA7 expression in neocortical neurons leads to higher spine density due to increased proportion of small spines. Thus, our work demonstrates highly distinct subcellular expression patterns of CA7 and CA2, and a novel, structural role of CA7.


Asunto(s)
Actinas , Anhidrasas Carbónicas , Citoesqueleto de Actina/metabolismo , Actinas/genética , Actinas/metabolismo , Anhidrasas Carbónicas/genética , Espinas Dendríticas/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo
3.
Curr Genomics ; 24(5): 307-329, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38235352

RESUMEN

Introduction: Aminoacyl tRNA synthetase complex interacting with multifunctional protein 2 (AIMP2) is a significant regulator of cell proliferation and apoptosis. Despite its abnormal expression in various tumor types, the specific functions and effects of AIMP2 on tumor immune cell infiltration, proliferation, and migration remain unclear. Materials and Methods: To assess AIMP2's role in tumor immunity, we conducted a pan-cancer multi-database analysis using the Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Cancer Cell Lines Encyclopedia (CCLE) datasets, examining expression levels, prognosis, tumor progression, and immune microenvironment. Additionally, we investigated AIMP2's impact on breast cancer (BRCA) proliferation and migration using cell counting kit 8 (CCK-8) assay, transwell assays, and western blot analysis. Results: Our findings revealed that AIMP2 was overexpressed in 24 tumor tissue types compared to normal tissue and was associated with four tumor stages. Survival analysis indicated that AIMP2 expression was strongly correlated with overall survival (OS) in certain cancer patients, with high AIMP2 expression linked to poorer prognosis in five cancer types. Conclusion: Finally, siRNA-mediated AIMP2 knockdown inhibited BRCA cell proliferation and migration in vitro. In conclusion, our pan-cancer analysis suggests that AIMP2 may play a crucial role in tumor immunity and could serve as a potential prognostic marker, particularly in BRCA.

4.
Cell Mol Life Sci ; 79(2): 128, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35133502

RESUMEN

The evolutionary necessity of aminoacyl-tRNA synthetases being associated into complex is unknown. Human lysyl-tRNA synthetase (LysRS) is one component of the multi-tRNA synthetase complex (MSC), which is not only critical for protein translation but also involved in multiple cellular pathways such as immune response, cell migration, etc. Here, combined with crystallography, CRISPR/Cas9-based genome editing, biochemistry, and cell biology analyses, we show that the structures of LysRSs from metazoan are more dynamic than those from single-celled organisms. Without the presence of MSC scaffold proteins, such as aminoacyl-tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2), human LysRS is free from the MSC. The interaction with AIMP2 stabilizes the closed conformation of LysRS, thereby protects the essential aminoacylation activity under stressed conditions. Deleting AIMP2 from the human embryonic kidney 293 cells leads to retardation in cell growth in nutrient deficient mediums. Together, these results suggest that the evolutionary emergence of the MSC in metazoan might be to protect the aminoacyl-tRNA synthetase components from being modified or recruited for use in other cellular pathways.


Asunto(s)
Lisina-ARNt Ligasa/metabolismo , Proteínas Nucleares/metabolismo , Aminoacilación , Células HEK293 , Humanos , Unión Proteica , Biosíntesis de Proteínas
5.
Int J Mol Sci ; 24(24)2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38139430

RESUMEN

Type 10 17ß-hydroxysteroid dehydrogenase (17ß-HSD10) is the HSD17B10 gene product playing an appreciable role in cognitive functions. It is the main hub of exercise-upregulated mitochondrial proteins and is involved in a variety of metabolic pathways including neurosteroid metabolism to regulate allopregnanolone homeostasis. Deacetylation of 17ß-HSD10 by sirtuins helps regulate its catalytic activities. 17ß-HSD10 may also play a critical role in the control of mitochondrial structure, morphology and dynamics by acting as a member of the Parkin/PINK1 pathway, and by binding to cyclophilin D to open mitochondrial permeability pore. 17ß-HSD10 also serves as a component of RNase P necessary for mitochondrial tRNA maturation. This dehydrogenase can bind with the Aß peptide thereby enhancing neurotoxicity to brain cells. Even in the absence of Aß, its quantitative and qualitative variations can result in neurodegeneration. Since elevated levels of 17ß-HSD10 were found in brain cells of Alzheimer's disease (AD) patients and mouse AD models, it is considered to be a key factor in AD pathogenesis. Since data underlying Aß-binding-alcohol dehydrogenase (ABAD) were not secured from reported experiments, ABAD appears to be a fabricated alternative term for the HSD17B10 gene product. Results of this study would encourage researchers to solve the question why elevated levels of 17ß-HSD10 are present in brains of AD patients and mouse AD models. Searching specific inhibitors of 17ß-HSD10 may find candidates to reduce senile neurodegeneration and open new approaches for the treatment of AD.


Asunto(s)
17-Hidroxiesteroide Deshidrogenasas , Enfermedad de Alzheimer , Animales , Humanos , Ratones , 17-Hidroxiesteroide Deshidrogenasas/genética , 17-Hidroxiesteroide Deshidrogenasas/metabolismo , Alcohol Deshidrogenasa/metabolismo , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo
6.
Cell Microbiol ; 23(5): e13311, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33486886

RESUMEN

The spread of infection is directly determined by the ability of a pathogen to invade and infect host tissues. The process involves adherence due to host-pathogen interactions and traversal into deeper tissues. Mycobacterium tuberculosis (Mtb) primarily infects the lung but is unique in its ability to infect almost any other organ of the human host including immune privileged sites such as the central nervous system (CNS). The extreme invasiveness of this bacterium is not fully understood. In the current study, we report that cell surface Mtb glyceraldehyde-3-phosphate dehydrogenase (GAPDH) functions as a virulence factor by multiple mechanisms. Firstly, it serves as a dual receptor for both plasminogen (Plg) and plasmin (Plm). CRISPRi-mediated silencing of this essential enzyme confirmed its role in the recruitment of Plg/Plm. Our studies further demonstrate that soluble GAPDH can re-associate on Mtb bacilli to promote plasmin(ogen) recruitment. The direct association of plasmin(ogen) via cell surface GAPDH or by the re-association of soluble GAPDH enhanced bacterial adherence to and traversal across lung epithelial cells. Furthermore, the association of GAPDH with host extracellular matrix (ECM) proteins coupled with its ability to recruit plasmin(ogen) may endow cells with the ability of directed proteolytic activity vital for tissue invasion.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Fibrinolisina/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/patogenicidad , Plasminógeno/metabolismo , Factores de Virulencia/metabolismo , Células A549 , Adhesinas Bacterianas/genética , Adhesión Bacteriana , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Humanos , Unión Proteica , Virulencia , Factores de Virulencia/genética
7.
J Biol Chem ; 295(8): 2186-2202, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-31771979

RESUMEN

Tyrosyl-tRNA synthetase ligates tyrosine to its cognate tRNA in the cytoplasm, but it can also be secreted through a noncanonical pathway. We found that extracellular tyrosyl-tRNA synthetase (YRS) exhibited proinflammatory activities. In addition to acting as a monocyte/macrophage chemoattractant, YRS initiated signaling through Toll-like receptor 2 (TLR2) resulting in NF-κB activation and release of tumor necrosis factor α (TNFα) and multiple chemokines, including MIP-1α/ß, CXCL8 (IL8), and CXCL1 (KC) from THP1 monocyte and peripheral blood mononuclear cell-derived macrophages. Furthermore, YRS up-regulated matrix metalloproteinase (MMP) activity in a TNFα-dependent manner in M0 macrophages. Because MMPs process a variety of intracellular proteins that also exhibit extracellular moonlighting functions, we profiled 10 MMPs for YRS cleavage and identified 55 cleavage sites by amino-terminal oriented mass spectrometry of substrates (ATOMS) positional proteomics and Edman degradation. Stable proteoforms resulted from cleavages near the start of the YRS C-terminal EMAPII domain. All of the MMPs tested cleaved at ADS386↓387LYV and VSG405↓406LVQ, generating 43- and 45-kDa fragments. The highest catalytic efficiency for YRS was demonstrated by MMP7, which is highly expressed by monocytes and macrophages, and by neutrophil-specific MMP8. MMP-cleaved YRS enhanced TLR2 signaling, increased TNFα secretion from macrophages, and amplified monocyte/macrophage chemotaxis compared with unprocessed YRS. The cleavage of YRS by MMP8, but not MMP7, was inhibited by tyrosine, a substrate of the YRS aminoacylation reaction. Overall, the proinflammatory activity of YRS is enhanced by MMP cleavage, which we suggest forms a feed-forward mechanism to promote inflammation.


Asunto(s)
Espacio Extracelular/enzimología , Mediadores de Inflamación/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Tirosina-ARNt Ligasa/metabolismo , Quimiocinas/metabolismo , Quimiotaxis , Estabilidad de Enzimas , Humanos , Macrófagos/metabolismo , Modelos Biológicos , Monocitos/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Especificidad por Sustrato , Células THP-1 , Receptor Toll-Like 2/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Tirosina/metabolismo
8.
Chembiochem ; 22(2): 374-391, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-32875694

RESUMEN

Spontaneous mutations in the EEF1A2 gene cause epilepsy and severe neurological disabilities in children. The crystal structure of eEF1A2 protein purified from rabbit skeletal muscle reveals a post-translationally modified dimer that provides information about the sites of interaction with numerous binding partners, including itself, and maps these mutations onto the dimer and tetramer interfaces. The spatial locations of the side chain carboxylates of Glu301 and Glu374, to which phosphatidylethanolamine is uniquely attached via an amide bond, define the anchoring points of eEF1A2 to cellular membranes and interorganellar membrane contact sites. Additional bioinformatic and molecular modeling results provide novel structural insight into the demonstrated binding of eEF1A2 to SH3 domains, the common MAPK docking groove, filamentous actin, and phosphatidylinositol-4 kinase IIIß. In this new light, the role of eEF1A2 as an ancient, multifaceted, and articulated G protein at the crossroads of autophagy, oncogenesis and viral replication appears very distant from the "canonical" one of delivering aminoacyl-tRNAs to the ribosome that has dominated the scene and much of the thinking for many decades.


Asunto(s)
Factor 1 de Elongación Peptídica/química , Humanos , Modelos Moleculares , Conformación Proteica
9.
Molecules ; 26(20)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34684876

RESUMEN

The transcription factor ZNF224 is a Kruppel-like zinc finger protein that consists of 707 amino acids and contains 19 tandemly repeated C2H2 zinc finger domains that mediate DNA binding and protein-protein interactions. ZNF224 was originally identified as a transcriptional repressor of genes involved in energy metabolism, and it was demonstrated that ZNF224-mediated transcriptional repression needs the interaction of its KRAB repressor domain with the co-repressor KAP1 and its zinc finger domains 1-3 with the arginine methyltransferase PRMT5. Furthermore, the protein ZNF255 was identified as an alternative isoform of ZNF224 that possesses different domain compositions mediating distinctive functional interactions. Subsequent studies showed that ZNF224 is a multifunctional protein able to exert different transcriptional activities depending on the cell context and the variety of its molecular partners. Indeed, it has been shown that ZNF224 can act as a repressor, an activator and a cofactor for other DNA-binding transcription factors in different human cancers. Here, we provide a brief overview of the current knowledge on the multifaceted interactions of ZNF224 and the resulting different roles of this protein in various cellular contexts.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Represoras/metabolismo , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Dedos de Zinc , Animales , Humanos , Neoplasias/genética , Dominios y Motivos de Interacción de Proteínas
10.
J Biol Chem ; 294(10): 3735-3743, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30602565

RESUMEN

Human serum albumin is an endogenous ligand transport protein whose long circulatory half-life is facilitated by engagement with the human cellular recycling neonatal Fc receptor (hFcRn). The single free thiol located at Cys-34 in domain I of albumin has been exploited for monoconjugation of drugs. In this work, we increased the drug-to-albumin ratio potential by engineering recombinant human albumin (rHSA) variants with varying hFcRn affinity to contain three free, conjugation-competent cysteines. Structural analysis was used to identify positions for cysteine introduction to maximize rHSA stability and formation of the conjugated product without affecting hFcRn binding. The thiol rHSA variants exhibited up to 95% monomeric stability over 24 months and retained hFcRn engagement compared with a WT unconjugated control demonstrated by Biolayer Interferometry. The additional cysteines were further introduced into a panel of rHSA variants engineered with different affinities for hFcRn. After conjugation with three Alexa Fluor 680 (AF680) fluorophores, hFcRn binding was similar to that of the original triple-thiol nonconjugated rHSA variants (0.88 and 0.25 µm for WT albumin with or without 3xAF680 respectively, and 0.04 and 0.02 µm for a high hFcRn-binding variant with or without 3xAF680, respectively). We also observed a 1.3-fold increase in the blood circulatory half-life of a high hFcRn-binding triple-thiol variant conjugated with AF680 (t½ = 22.4 h) compared with its WT counterpart (t½ = 17.3 h) in mice. Potential high drug-to-albumin ratios combined with high hFcRn engagement are attractive features of this new class of albumins that offer a paradigm shift for albumin-based drug delivery.


Asunto(s)
Circulación Sanguínea/efectos de los fármacos , Antígenos de Histocompatibilidad Clase I/metabolismo , Unión Proteica , Receptores Fc/metabolismo , Proteínas Recombinantes/metabolismo , Albúmina Sérica Humana/metabolismo , Compuestos de Sulfhidrilo , Animales , Humanos , Ratones , Modelos Moleculares , Conformación Proteica , Ingeniería de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/farmacología , Albúmina Sérica Humana/genética , Albúmina Sérica Humana/farmacocinética , Albúmina Sérica Humana/farmacología
11.
J Biol Chem ; 294(35): 12866-12879, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-31324718

RESUMEN

Tryptophanyl-tRNA synthetase (WRS) is a cytosolic aminoacyl-tRNA synthetase essential for protein synthesis. WRS is also one of a growing number of intracellular proteins that are attributed distinct noncanonical "moonlighting" functions in the extracellular milieu. Moonlighting aminoacyl-tRNA synthetases regulate processes such as inflammation, but how these multifunctional enzymes are themselves regulated remains unclear. Here, we demonstrate that WRS is secreted from human macrophages, fibroblasts, and endothelial cells in response to the proinflammatory cytokine interferon γ (IFNγ). WRS signaled primarily through Toll-like receptor 2 (TLR2) in macrophages, leading to phosphorylation of the p65 subunit of NF-κB with associated loss of NF-κB inhibitor α (IκB-α) protein. This signaling initiated secretion of tumor necrosis factor α (TNFα) and CXCL8 (IL8) from macrophages. We also demonstrated that WRS is a potent monocyte chemoattractant. Of note, WRS increased matrix metalloproteinase (MMP) activity in the conditioned medium of macrophages in a TNFα-dependent manner. Using purified recombinant proteins and LC-MS/MS to identify proteolytic cleavage sites, we demonstrated that multiple MMPs, but primarily macrophage MMP7 and neutrophil MMP8, cleave secreted WRS at several sites. Loss of the WHEP domain following cleavage at Met48 generated a WRS proteoform that also results from alternative splicing, designated Δ1-47 WRS. The MMP-cleaved WRS lacked TLR signaling and proinflammatory activities. Thus, our results suggest that moonlighting WRS promotes IFNγ proinflammatory activities, and these responses can be dampened by MMPs.


Asunto(s)
Inflamación/metabolismo , Interferón gamma/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Triptófano-ARNt Ligasa/metabolismo , Células Cultivadas , Células Endoteliales/metabolismo , Fibroblastos/metabolismo , Humanos , Macrófagos/metabolismo
12.
J Biol Chem ; 294(13): 4775-4783, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30733335

RESUMEN

Multi-aminoacyl-tRNA synthetase complex (MSC) is the second largest machinery for protein synthesis in human cells and also regulates multiple nontranslational functions through its components. Previous studies have shown that the MSC can respond to external signals by releasing its components to function outside it. The internal assembly is fundamental to MSC regulation. Here, using crystal structural analyses (at 1.88 Å resolution) along with molecular modeling, gel-filtration chromatography, and co-immunoprecipitation, we report that human lysyl-tRNA synthetase (LysRS) forms a tighter assembly with the scaffold protein aminoacyl-tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2) than previously observed. We found that two AIMP2 N-terminal peptides form an antiparallel scaffold and hold two LysRS dimers through four binding motifs and additional interactions. Of note, the four catalytic subunits of LysRS in the tightly assembled complex were all accessible for tRNA recognition. We further noted that two recently reported human disease-associated mutations conflict with this tighter assembly, cause LysRS release from the MSC, and inactivate the enzyme. These findings reveal a previously unknown dimension of MSC subcomplex assembly and suggest that the retractility of this complex may be critical for its physiological functions.


Asunto(s)
Aminoacil-ARNt Sintetasas/química , Complejos Multiproteicos/química , Proteínas Nucleares/química , Multimerización de Proteína , Secuencias de Aminoácidos , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Cristalografía por Rayos X , Células HEK293 , Humanos , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estructura Cuaternaria de Proteína
13.
Adv Exp Med Biol ; 1299: 105-115, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33417211

RESUMEN

The integrity of the cerebellum is exquisitely dependent on peroxisomal ß-oxidation metabolism. Patients with peroxisomal ß-oxidation defects commonly develop malformation, leukodystrophy, and/or atrophy of the cerebellum depending on the gene defect and on the severity of the mutation. By analyzing mouse models lacking the central peroxisomal ß-oxidation enzyme, multifunctional protein-2 (MFP2), either globally or in selected cell types, insights into the pathomechanisms could be obtained. All mouse models developed ataxia, but the onset was earlier in global and neural-selective (Nestin) Mfp2-/- knockout mice as compared to Purkinje cell (PC)-selective Mfp2 knockouts.At the histological level, this was associated with developmental anomalies in global and Nestin-Mfp2-/- mice, including aberrant wiring of PCs by parallel and climbing fibers and altered electrical properties of PCs. In all mouse models, dystrophy of PC axons with swellings initiating in the deep cerebellar nuclei and evolving to the proximal axon, preceded death of PCs. These degenerative features are in part mediated by deficient peroxisomal ß-oxidation within PCs but are accelerated when MFP2 is also absent from other neural cell types. The metabolic causes of the diverse cerebellar pathologies remain unknown.In conclusion, peroxisomal ß-oxidation is required both for the development and for the maintenance of the cerebellum. This is mediated by PC autonomous and nonautonomous mechanisms.


Asunto(s)
Cerebelo/metabolismo , Cerebelo/patología , Peroxisomas/metabolismo , Animales , Axones/metabolismo , Axones/patología , Humanos , Oxidación-Reducción , Células de Purkinje/metabolismo , Células de Purkinje/patología
14.
Molecules ; 25(9)2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32397098

RESUMEN

Talisin is a storage protein from Talisia esculenta seeds that presents lectin-like and peptidase inhibitor properties. These characteristics suggest that talisin plays a role in the plant defense process, making it a multifunctional protein. This work aimed to investigate the effects of chronic intake of talisin on fifth instar larvae of Spodoptera frugiperda, considered the main insect pest of maize and the cause of substantial economic losses in several other crops. The chronic intake of talisin presented antinutritional effects on the larvae, reducing their weight and prolonging the total development time of the insects. In addition, talisin-fed larvae also showed a significant reduction in the activity of trypsin-like enzymes. Midgut histology analysis of talisin-fed larvae showed alterations in the intestinal epithelium and rupture of the peritrophic membrane, possibly causing an increase of aminopeptidase activity in the midgut lumen. Talisin also proved to be resistant to degradation by the digestive enzymes of S. frugiperda. The transcription profile of trypsin, chymotrypsin and aminopeptidase genes was also analyzed through qPCR technique. Talisin intake resulted in differential expression of at least two genes from each of these classes of enzymes. Molecular docking studies indicated a higher affinity of talisin for the less expressed enzymes.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Proteínas de Insectos/biosíntesis , Mucosa Intestinal/enzimología , Péptido Hidrolasas/biosíntesis , Receptores de Superficie Celular , Spodoptera/crecimiento & desarrollo , Animales , Proteínas de Insectos/genética , Larva/genética , Larva/crecimiento & desarrollo , Péptido Hidrolasas/genética , Spodoptera/genética
15.
J Biol Chem ; 293(16): 6201-6211, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29500195

RESUMEN

Filoviruses (family Filoviridae) include five ebolaviruses and Marburg virus. These pathogens cause a rapidly progressing and severe viral disease with high mortality rates (generally 30-90%). Outbreaks of filovirus disease are sporadic and, until recently, were limited to less than 500 cases. However, the 2013-2016 epidemic in western Africa, caused by Ebola virus (EBOV), illustrated the potential of filovirus outbreaks to escalate to a much larger scale (over 28,000 suspected cases). mAbs against the envelope glycoprotein represent a promising therapeutic platform for managing filovirus infections. However, mAbs that exhibit neutralization or protective properties against multiple filoviruses are rare. Here we examined a panel of engineered bi- and trispecific antibodies, in which variable domains of mAbs that target epitopes from multiple filoviruses were combined, for their capacity to neutralize viral infection across filovirus species. We found that bispecific combinations targeting EBOV and Sudan virus (another ebolavirus), provide potent cross-neutralization and protection in mice. Furthermore, trispecific combinations, targeting EBOV, Sudan virus, and Marburg virus, exhibited strong neutralization potential against all three viruses. These results provide important insights into multispecific antibody engineering against filoviruses and will inform future immunotherapeutic discoveries.


Asunto(s)
Anticuerpos Biespecíficos/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Ebolavirus/inmunología , Glicoproteínas/inmunología , Marburgvirus/inmunología , Ingeniería de Proteínas , Proteínas Virales/inmunología , Animales , Anticuerpos Biespecíficos/genética , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Neutralizantes/genética , Epítopos/inmunología , Femenino , Fiebre Hemorrágica Ebola/inmunología , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor de Interferón alfa y beta/genética
16.
J Biol Chem ; 293(49): 18890-18902, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30291144

RESUMEN

Doublecortin (DCX) is a protein needed for cortical development, and DCX mutations cause cortical malformations in humans. The microtubule-binding activity of DCX is well-described and is important for its function, such as supporting neuronal migration and dendrite growth during development. Previous work showed that microtubule binding is not sufficient for DCX-mediated promotion of dendrite growth and that domains in DCX's C terminus are also required. The more C-terminal regions of DCX bind several other proteins, including the adhesion receptor neurofascin and clathrin adaptors. We recently identified a role for DCX in endocytosis of neurofascin. The disease-associated DCX-G253D mutant protein is known to be deficient in binding neurofascin, and we now asked if disruption of neurofascin endocytosis underlies the DCX-G253D-associated pathology. We first demonstrated that DCX functions in endocytosis as a complex with both the clathrin adaptor AP-2 and neurofascin: disrupting either clathrin adaptor binding (DCX-ALPA) or neurofascin binding (DCX-G253D) decreased neurofascin endocytosis in primary neurons. We then investigated a known function for DCX, namely, increasing dendrite growth in cultured neurons. Surprisingly, we found that the DCX-ALPA and DCX-G253D mutants yield distinct dendrite phenotypes. Unlike DCX-ALPA, DCX-G253D caused a dominant-negative dendrite growth phenotype. The endocytosis defect of DCX-G253D thus was separable from its detrimental effects on dendrite growth. We recently identified Dcx-R59H as a dominant allele and can now classify Dcx-G253D as a second Dcx allele that acts dominantly to cause pathology, but does so via a different mechanism.


Asunto(s)
Dendritas/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Neuronas/citología , Neuropéptidos/genética , Complejo 2 de Proteína Adaptadora/metabolismo , Animales , Sitios de Unión , Células COS , Moléculas de Adhesión Celular/metabolismo , Chlorocebus aethiops , Dendritas/genética , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Endocitosis/genética , Células HEK293 , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación , Factores de Crecimiento Nervioso/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo , Ratas
17.
J Biol Chem ; 293(17): 6593-6602, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29530979

RESUMEN

Members of the Drosophila behavior human splicing (DBHS) protein family are nuclear proteins implicated in many layers of nuclear functions, including RNA biogenesis as well as DNA repair. Definitive of the DBHS protein family, the conserved DBHS domain provides a dimerization platform that is critical for the structural integrity and function of these proteins. The three human DBHS proteins, splicing factor proline- and glutamine-rich (SFPQ), paraspeckle component 1 (PSPC1), and non-POU domain-containing octamer-binding protein (NONO), form either homo- or heterodimers; however, the relative affinity and mechanistic details of preferential heterodimerization are yet to be deciphered. Here we report the crystal structure of a SFPQ/PSPC1 heterodimer to 2.3-Å resolution and analyzed the subtle structural differences between the SFPQ/PSPC1 heterodimer and the previously characterized SFPQ homodimer. Analytical ultracentrifugation to estimate the dimerization equilibrium of the SFPQ-containing dimers revealed that the SFPQ-containing dimers dissociate at low micromolar concentrations and that the heterodimers have higher affinities than the homodimer. Moreover, we observed that the apparent dissociation constant for the SFPQ/PSPC1 heterodimer was over 6-fold lower than that of the SFPQ/NONO heterodimer. We propose that these differences in dimerization affinity may represent a potential mechanism by which PSPC1 at a lower relative cellular abundance can outcompete NONO to heterodimerize with SFPQ.


Asunto(s)
Proteínas Nucleares/química , Factor de Empalme Asociado a PTB/química , Multimerización de Proteína , Proteínas de Unión al ARN/química , Cristalografía por Rayos X , Humanos , Proteínas Nucleares/metabolismo , Factor de Empalme Asociado a PTB/metabolismo , Estructura Cuaternaria de Proteína , Proteínas de Unión al ARN/metabolismo
18.
J Biol Chem ; 293(41): 15827-15839, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30166339

RESUMEN

In all herpesviruses, the space between the capsid shell and the lipid envelope is occupied by the unique tegument layer composed of proteins that, in addition to structural roles, play many other roles in the viral replication. UL37 is a highly conserved tegument protein that has activities ranging from virion morphogenesis to directional capsid trafficking to manipulation of the host innate immune response and binds multiple partners. The N-terminal half of UL37 (UL37N) has a compact bean-shaped α-helical structure that contains a surface region essential for neuroinvasion. However, no biochemical or structural information is currently available for the C-terminal half of UL37 (UL37C) that mediates most of its interactions with multiple binding partners. Here, we show that the C-terminal half of UL37 from pseudorabies virus UL37C is a conformationally flexible monomer composed of an elongated folded core and an unstructured C-terminal tail. This elongated structure, along with that of its binding partner UL36, explains the nature of filamentous tegument structures bridging the capsid and the envelope. We propose that the dynamic nature of UL37 underlies its ability to perform diverse roles during viral replication.


Asunto(s)
Proteínas Estructurales Virales/química , Herpesvirus Suido 1/química , Modelos Moleculares , Conformación Proteica en Hélice alfa , Dominios Proteicos , Dispersión del Ángulo Pequeño , Temperatura de Transición , Difracción de Rayos X
19.
J Biol Chem ; 293(43): 16635-16646, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30171072

RESUMEN

DNA-binding proteins from starved cells (Dps, EC: 1.16.3.1) have a variety of different biochemical activities such as DNA-binding, iron sequestration, and H2O2 detoxification. Most bacteria commonly feature one or two Dps enzymes, whereas the cyanobacterium Nostoc punctiforme displays an unusually high number of five Dps proteins (NpDps1-5). Our previous studies have indicated physiological differences, as well as cell-specific expression, among these five proteins. Three of the five NpDps proteins, NpDps1, -2, and -3, were classified as canonical Dps proteins. To further investigate their properties and possible importance for physiological function, here we characterized and compared them in vitro Nondenaturing PAGE, gel filtration, and dynamic light-scattering experiments disclosed that the three NpDps proteins exist as multimeric protein species in the bacterial cell. We also demonstrate Dps-mediated iron oxidation catalysis in the presence of H2O2 However, no iron oxidation with O2 as the electron acceptor was detected under our experimental conditions. In modeled structures of NpDps1, -2, and -3, protein channels were identified that could serve as the entrance for ferrous iron into the dodecameric structures. Furthermore, we could demonstrate pH-dependent DNA-binding properties for NpDps2 and -3. This study adds critical insights into the functions and stabilities of the three canonical Dps proteins from N. punctiforme and suggests that each of the Dps proteins within this bacterium has a specific biochemical property and function.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Hierro/metabolismo , Nostoc/metabolismo , Multimerización de Proteína , Proteínas Bacterianas/química , Cristalografía por Rayos X , Proteínas de Unión al ADN/química , Hierro/química , Oxidación-Reducción , Conformación Proteica
20.
J Biol Chem ; 293(12): 4555-4563, 2018 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-29374059

RESUMEN

Intrinsically disordered proteins (IDPs) play important roles in many biological systems. Given the vast conformational space that IDPs can explore, the thermodynamics of the interactions with their partners is closely linked to their biological functions. Intrinsically disordered regions of Phe-Gly nucleoporins (FG Nups) that contain multiple phenylalanine-glycine repeats are of particular interest, as their interactions with transport factors (TFs) underlie the paradoxically rapid yet also highly selective transport of macromolecules mediated by the nuclear pore complex. Here, we used NMR and isothermal titration calorimetry to thermodynamically characterize these multivalent interactions. These analyses revealed that a combination of low per-FG motif affinity and the enthalpy-entropy balance prevents high-avidity interaction between FG Nups and TFs, whereas the large number of FG motifs promotes frequent FG-TF contacts, resulting in enhanced selectivity. Our thermodynamic model underlines the importance of functional disorder of FG Nups. It helps explain the rapid and selective translocation of TFs through the nuclear pore complex and further expands our understanding of the mechanisms of "fuzzy" interactions involving IDPs.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Termodinámica , Transporte Activo de Núcleo Celular , Cristalografía por Rayos X , Glicina/química , Proteínas Intrínsecamente Desordenadas/química , Proteínas de Complejo Poro Nuclear/química , Fenilalanina/química , Unión Proteica , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda