Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Angew Chem Int Ed Engl ; 63(38): e202409580, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-38969620

RESUMEN

Herein, we propose a regional functionalization molecular design strategy that enables independent control of distinct pivotal parameters through different molecule segments. Three novel multiple resonances thermally activated delayed fluorescence (MR-TADF) emitters A-BN, DA-BN, and A-DBN, have been successfully synthesized by integrating highly rigid and three-dimensional adamantane-containing spirofluorene units into the MR framework. These molecules form two distinctive functional parts: part 1 comprises a boron-nitrogen (BN)-MR framework with adjacent benzene and fluorene units forming a central luminescent core characterized by an exceptionally rigid planar geometry, allowing for narrow FWHM values; part 2 includes peripheral mesitylene, benzene, and adamantyl groups, creating a unique three-dimensional "umbrella-like" conformation to mitigate intermolecular interactions and suppress exciton annihilation. The resulting A-BN, DA-BN, and A-DBN exhibit remarkably narrow FWHM values ranging from 18 to 14 nm and near-unity photoluminescence quantum yields. Particularly, OLEDs based on DA-BN and A-DBN demonstrate outstanding efficiencies of 35.0 % and 34.3 %, with FWHM values as low as 22 nm and 25 nm, respectively, effectively accomplishing the integration of high color purity and high device performance.

2.
Nano Lett ; 22(2): 688-694, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35025516

RESUMEN

On-chip nanoscale optical platforms capable of efficient second harmonic generation (SHG) are highly desired for optical sensing, subwavelength coherent sources, and quantum photonic devices. Here, we develop a remotely excited dual cavity resonance scheme to achieve significantly enhanced SHG in a CdSe nanobelt on Au film hybrid waveguide system. The SHG emission with superior efficiency originates from counter-propagating plasmonic modes interference in a horizontal Fabry-Pérot (FP) cavity enabled by remote excitation of propagating surface plasmons, which is further enhanced through a vertical FP cavity. With this effective cooperation of hybrid plasmon modes and FP cavity modes, 2 orders of magnitude enhancement of the conversion efficiency (3.5 × 10-4 W-1) is achieved compared to the off-resonance case. Our design provides new insight into the development of a multifunctional hybrid plasmonic device toward on-chip nonlinear nanophotonic applications.

3.
Chemistry ; 28(12): e202104214, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-34981587

RESUMEN

Two boron-, sulfur- and nitrogen-doped polycyclic aromatic hydrocarbon multiple resonance thermally activated delayed fluorescence emitters with high photoluminescent quantum efficiency (88 %) and rapid reverse intersystem crossing (kRISC = 1.0×105  s-1 ) are designed and synthesized, enabling efficient narrow-band blue electroluminescence at 473 nm with full width at half maximum of 29 nm and maximum external quantum efficiency of 22.0 %, which provides an avenue to expand the structure library for multiple resonance emitters and an approach to regulate their emission properties.

4.
Nano Lett ; 16(9): 5764-9, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27518827

RESUMEN

We present a theoretical framework, based on plasmonic circuit models, for generating a multiresonant field intensity enhancement spectrum at a single "hot spot" in a plasmonic device. We introduce a circuit model, consisting of an array of coupled LC resonators, that directs current asymmetrically in the array, and we show that this circuit can funnel energy efficiently from each resonance to a single element. We implement the circuit model in a plasmonic nanostructure consisting of a series of metal bars of differing length, with nearest neighbor metal bars strongly coupled electromagnetically through air gaps. The resulting nanostructure resonantly traps different wavelengths of incident light in separate gap regions, yet it funnels the energy of different resonances to a common location, which is consistent with our circuit model. Our work is important for a number of applications of plasmonic nanoantennas in spectroscopy, such as in single-molecule fluorescence spectroscopy or Raman spectroscopy.

5.
Adv Mater ; 35(30): e2301018, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37074074

RESUMEN

Polycyclic heteroaromatics with multi-resonance (MR) characteristics are attractive materials for narrowband emitters in wide-color-gamut organic light-emitting diodes. However, MR emitters with pure-red colors are still rare and usually exhibit problematic spectral broadening when redshifting emission. Here, a narrowband pure-red MR emitter is reported by fusing indolocarbazole segments into a boron/oxygen-embedded skeleton, realizing BT.2020 red electroluminescence for the first time together with a high efficiency and an ultralong lifetime. The rigid indolocarbazole segment possesses a strong electron-donating ability due to its para-positioned nitrogen-π-nitrogen backbone and also enlarges the π-extension of the MR skeleton to suppress structural displacement during radiation, achieving concurrently redshifted and narrowed emission spectrum. An emission maximum at 637 nm with a full width at half-maxima of merely 32 nm (0.097 eV) is recorded in toluene. The corresponding device simultaneously exhibits CIE coordinates of (0.708, 0.292) precisely matching the BT.2020 red point, a high external quantum efficiency of 34.4% with low roll-off and an ultralong LT95 (time to 95% of the initial luminance) of >10 000 h at 1000 cd m-2 . These performance characteristics are superior even to those of state-of-the-art perovskite and quantum-dot-based devices for this specific color, paving the way toward practical applications.

6.
J Colloid Interface Sci ; 642: 462-469, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37023517

RESUMEN

In this work, an integration of terahertz (THz) electrical split-ring metamaterial (eSRM) with microfluidic chip is presented. This eSRM-based microfluidic chip exhibits multiple resonances in the THz spectrum and trapping selectively microparticle size characteristics. The arrangement of eSRM array is dislocation. It generates the fundamental inductive-capacitive (LC) resonant mode, quadrupole, and octupolar plasmon resonant modes and then exhibits high sensitivity to the environmental refraction index. The trapping structures of microparticles are elliptical barricades on eSRM surface. Thus, the electric field energy is strongly confined within the gap of eSRM in transverse electric (TE) mode and then the elliptical trapping structures are anchored on both sides of the split gap to ensure the microparticles can be trapped and located on the gap. To imitate the microparticle sensing ambient environment qualitatively and quantitatively in the THz spectrum, the microparticles are designed different feature sizes with different refraction index from 1.0 to 2.0 in ethanol medium. The results show the proposed eSRM-based microfluidic chip possesses the trapping and sensing abilities in single microparticle and high sensitivity for fungus, microorganism, chemical and environmental applications.

7.
J Phys Condens Matter ; 34(11)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34905743

RESUMEN

Material and structure are the essential elements of all-dielectric metamaterials. Structure design for specific dielectric materials has been studied while the contribution of material and synergistic effect of material and structure have been overlooked in the past years. Herein, we propose a material-structure integrated design (MSID) methodology for all-dielectric metamaterials, increasing the degree of freedom in the metamaterial design, to comprehensively optimize microwave absorption performance and further investigate the contribution of material and structure to absorption. A dielectric metamaterial absorber with an ultra-broadband absorption from 5.3 to 18.0 GHz is realized. Theoretical calculation and numerical simulation demonstrate that the symphony of material and structure excites multiple resonance modes encompassing quarter-wavelength interference cancellation, spoof surface plasmon polariton mode, dielectric resonance mode and grating mode, which is essential to afford the desirable absorption performance. This work highlights the superiority of coupling of material and structure and provides an effective design and optimization strategy for all-dielectric metamaterial absorbers.

8.
ACS Appl Mater Interfaces ; 13(22): 26551-26560, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34034484

RESUMEN

As a newly emerging approach for surface-enhanced Raman spectroscopy (SERS), pressure-induced SERS (PI-SERS) has been attracting increasing interest for its applications in Raman signal enhancement at extreme conditions. However, how to efficiently realize the PI-SERS enhancement and elucidate the corresponding mechanism remain open questions. Herein, we demonstrate the PI-SERS enhancement up to 8.04 GPa using monolayer molybdenum disulfide (ML-MoS2) as a SERS substrate and three organic molecules with similar energy levels but different symmetries as probes. The combined theory and experiment results show that a pressure-induced increase in the Fermi level of the ML-MoS2 substrate and a decrease in the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy gap of probe molecules lead to a transition from the multiple resonance-related SERS enhancement to charge transfer (CT)-dominated PI-SERS selective enhancement, depending on the incident laser energy and the pressure applied. Such PI-SERS selective enhancement has been discussed in the framework of CT-induced strengthening of electron-phonon coupling, as well as a possible match of the structural symmetries between probe molecules and the substrate. This study provides deep insights into our understanding of PI-SERS enhancement, and the revealed mechanism can be extended to other molecules for SERS at extreme conditions.

9.
Nanomaterials (Basel) ; 10(6)2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32485805

RESUMEN

A sickle-shaped metamaterial (SSM) based biochemical sensor with multiple resonances was investigated in the terahertz frequency range. The electromagnetic responses of SSM were found to be four resonances, namely dipolar, quadrupolar, octupolar and hexadecapolar plasmon resonances. They were generated from the interactions between SSM and perpendicularly incident terahertz waves. The sensing performances of SSM-based biochemical sensors were evaluated by changing ambient environments and analyte varieties. The highest values of sensitivity and figure of merit (FOM) for SSM covered with analyte thin-films were 471 GHz/RIU (refraction index unit) and 94 RIU-1, respectively. In order to further investigate the biosensing ability of the proposed SSM device, dielectric hemispheres and microfluidic chips were adopted to imitate dry and hydrous biological specimens, respectively. The results show that the sensing abilities of SSM-based biochemical sensors could be enhanced by increasing either the number of hemispheres or the channel width of the microfluidic chip. The highest sensitivity was 405 GHz/RIU for SSM integrated with microfluidic chips. Finally, three more realistic models were simulated to imitate real sensing situations, and the corresponding highest sensitivity was 502 GHz/RIU. The proposed SSM device paves the way to possible uses in biochemical sensing applications.

10.
ACS Appl Mater Interfaces ; 12(1): 1250-1256, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31826607

RESUMEN

Metasurfaces operating at multiple spectral ranges with integrated diversified functionalities while retaining the flexible design strategy are highly desired within the area of modern flat optics. Here, we propose and demonstrate the use of multiple gap-surface plasmon (GSP) resonances for the realization of dual-band multifunctional metasurfaces by designing GSP meta-atoms that would resonate at two different wavelengths. By tailoring nanobrick dimensions of a simple GSP meta-atom so as to enable both the first-order resonance at 1450 nm and the third-order one at 633 nm, we design phase-gradient GSP metasurfaces for polarization-independent beam steering and polarization-splitting, simultaneously, at telecom (1350-1550 nm) and visible (575-675 nm) wavelengths. The fabricated metasurfaces show good performance with >65% diffraction efficiency at the first-order resonant wavelength of 1450 nm and over 50% efficiency within the telecom range of 1350-1550 nm, while at the third-order resonant wavelength of 633 nm, the diffraction efficiency is 20 and >10% within the visible range of 575-675 nm. Our findings, therefore, demonstrate a flexible and robust approach for the realization of efficient dual-band GSP metasurfaces that can readily be combined with complex integrated designs to implement multiple functionalities highly sought after for diverse applications.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda