Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 438
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(39): e2305078120, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37695879

RESUMEN

Current un-sustainable plastic management is exacerbating plastic pollution, an urgent shift is thus needed to create a recycling society. Such recovering carbon (C) and hydrogen (H) from waste plastic has been considered as one practical route to achieve a circular economy. Here, we performed a simple pyrolysis-catalysis deconstruction of waste plastic via a monolithic multilayer stainless-steel mesh catalyst to produce multiwalled carbon nanotubes (MWCNTs) and H2, which are important carbon material and energy carrier to achieve sustainable development. Results revealed that the C and H recovery efficiencies were as high as 86% and 70%, respectively. The unique oxidation-reduction process and improvement of surface roughness led to efficient exposure of active sites, which increased MWCNTs by suppressing macromolecule hydrocarbons. The C recovery efficiency declined by only 5% after 10 cycles, proving the long-term employment of the catalyst. This catalyst can efficiently convert aromatics to MWCNTs by the vapor-solid-solid mechanism and demonstrate good universality in processing different kinds of waste plastics. The produced MWCNTs showed potential in applications of lithium-ion batteries and telecommunication. Owing to the economic profits and environmental benefits of the developed route, we highlighted its potential as a promising alternative to conventional incineration, simultaneously achieving the waste-to-resource strategy and circular economy.

2.
Chemistry ; : e202401752, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900538

RESUMEN

Choline chloride (ChCl) based binary and ternary deep eutectic solvents (DES) were evaluated for methylene green electropolymerization with oxalic acid (OA) and ethylene glycol (EG) as hydrogen bond donors. Binary DES ChCl:OA in molar ratios 1:1 and 2:1 and ChCl:EG 1:2 and ternary DES (tDES) in different molar ratios and percentages of water were evaluated. The highest polymer growth was in ChCl:OA:EG-tDES with added water, that had a lower viscosity and higher ionic conductivity when associated with HCl as dopant. This enhanced the formation of more cation radicals and, consequently, more polymer formation. The PMG/MWCNT/GCE-tDES sensor was successfully applied to the simultaneous determination of 5-aminosalicylic acid (5-ASA) and acetaminophen (APAP) by differential pulse voltammetry in the concentration range 2 µM - 200 µM, with detection limits of 0.37 µM and 0.49 µM for 5-ASA and APAP, respectively. The sensor demonstrated good repeatability, reproducibility and stability, and was successfully applied in pharmaceutical formulations.

3.
Part Fibre Toxicol ; 21(1): 3, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297314

RESUMEN

BACKGROUND: Malignant mesothelioma is an aggressive cancer that often originates in the pleural and peritoneal mesothelium. Exposure to asbestos is a frequent cause. However, studies in rodents have shown that certain multiwalled carbon nanotubes (MWCNTs) can also induce malignant mesothelioma. The exact mechanisms are still unclear. To gain further insights into molecular pathways leading to carcinogenesis, we analyzed tumors in Wistar rats induced by intraperitoneal application of MWCNTs and amosite asbestos. Using transcriptomic and epigenetic approaches, we compared the tumors by inducer (MWCNTs or amosite asbestos) or by tumor type (sarcomatoid, epithelioid, or biphasic). RESULTS: Genome-wide transcriptome datasets, whether grouped by inducer or tumor type, showed a high number of significant differentially expressed genes (DEGs) relative to control peritoneal tissues. Bioinformatic evaluations using Ingenuity Pathway Analysis (IPA) revealed that while the transcriptome datasets shared commonalities, they also showed differences in DEGs, regulated canonical pathways, and affected molecular functions. In all datasets, among highly- scoring predicted canonical pathways were Phagosome Formation, IL8 Signaling, Integrin Signaling, RAC Signaling, and TREM1 Signaling. Top-scoring activated molecular functions included cell movement, invasion of cells, migration of cells, cell transformation, and metastasis. Notably, we found many genes associated with malignant mesothelioma in humans, which showed similar expression changes in the rat tumor transcriptome datasets. Furthermore, RT-qPCR revealed downregulation of Hrasls, Nr4a1, Fgfr4, and Ret or upregulation of Rnd3 and Gadd45b in all or most of the 36 tumors analyzed. Bisulfite sequencing of Hrasls, Nr4a1, Fgfr4, and Ret revealed heterogeneity in DNA methylation of promoter regions. However, higher methylation percentages were observed in some tumors compared to control tissues. Lastly, global 5mC DNA, m6A RNA and 5mC RNA methylation levels were also higher in tumors than in control tissues. CONCLUSIONS: Our findings may help better understand how exposure to MWCNTs can lead to carcinogenesis. This information is valuable for risk assessment and in the development of safe-by-design strategies.


Asunto(s)
Amianto , Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Nanotubos de Carbono , Humanos , Ratas , Animales , Mesotelioma Maligno/complicaciones , Mesotelioma Maligno/genética , Asbesto Amosita/toxicidad , Nanotubos de Carbono/toxicidad , Mesotelioma/inducido químicamente , Mesotelioma/genética , Transcriptoma , Ratas Wistar , Amianto/toxicidad , Carcinogénesis/inducido químicamente , Carcinogénesis/genética , Metilación de ADN , Epigénesis Genética , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteinas GADD45 , Antígenos de Diferenciación/toxicidad
4.
Inhal Toxicol ; 36(4): 275-281, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38836332

RESUMEN

Multiwalled carbon nanotubes (MWCNTs) have numerous applications in the field of carbon nanomaterials. However, the associated toxicity concerns have increased significantly because of their widespread use. The inhalation of MWCNTs can lead to nanoparticle deposition in the lung tissue, causing inflammation and health risks. In this study, celastrol, a natural plant medicine with potent anti-inflammatory properties, effectively reduced the number of inflammatory cells, including white blood cells, neutrophils, and lymphocytes, and levels of inflammatory cytokines, such as IL-1ß, IL-6, and TNF-α, in mice lungs exposed to MWCNTs. Moreover, celastrol inhibited the activation of the NF-κB-signaling pathway. This study confirmed these findings by demonstrating comparable reductions in inflammation upon exposure to MWCNTs in mice with the deletion of NF-κB (P50-/-). These results indicate the utility of celastrol as a promising pharmacological agent for preventing MWCNT-induced lung tissue inflammation.


Asunto(s)
Nanotubos de Carbono , Triterpenos Pentacíclicos , Neumonía , Transducción de Señal , Triterpenos , Animales , Masculino , Ratones , Antiinflamatorios/farmacología , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/química , Citocinas/metabolismo , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Nanotubos de Carbono/toxicidad , FN-kappa B/metabolismo , Triterpenos Pentacíclicos/farmacología , Neumonía/inducido químicamente , Neumonía/tratamiento farmacológico , Neumonía/prevención & control , Neumonía/metabolismo , Transducción de Señal/efectos de los fármacos , Triterpenos/farmacología
5.
Sensors (Basel) ; 24(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38475121

RESUMEN

In this study, a multiwalled carbon nanotube (MWCNT) dispersion is used as an ink for a single-nozzle inkjet printing system to produce a planar coil that can be used to determine strain wirelessly. The MWCNT dispersion is non-covalently functionalized by dispersing the CNTs in an anionic surfactant, namely sodium dodecyl sulfate (SDS). The fabrication parameters, such as sonication energy and centrifugation time, are optimized to obtain an aqueous suspension suitable for an inkjet printer. Planar coils with different design parameters are printed on a flexible polyethylene terephthalate (PET) polymer substrate. The design parameters include a different number of windings, inner diameter, outer diameter, and deposited layers. The electrical impedance spectroscopy (EIS) analysis is employed to characterize the printed planar coils, and an equivalent electrical circuit model is derived based on the results. Additionally, the radio frequency identification technique is utilized to wirelessly investigate the read-out mechanism of the printed planar MWCNT coils. The complex impedance of the inductively coupled sensor undergoes a shift under strain, allowing for the monitoring of changes in resonance frequency and bandwidth (i.e., amplitude). The proposed wireless strain sensor exhibits a remarkable gauge factor of 22.5, which is nearly 15 times higher than that of the wireless strain sensors based on conventional metallic strain gauges. The high gauge factor of the proposed sensor suggests its high potential in a wide range of applications, such as structural health monitoring, wearable devices, and soft robotics.

6.
Molecules ; 29(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39124940

RESUMEN

A mussel-inspired multiwalled carbon nanotube (MWCNT) nanocomposite (MWCNTs@CCh-PEI) was prepared by the co-deposition of catechol (CCh)/polyethyleneimine (PEI) and modification of MWCNTs for the efficient removal of methyl orange (MO). The effects of MO solution pH, contact time, initial MO concentration, and temperature on the adsorption capacity of MWCNTs@CCh-PEI were investigated. The results indicate that the adsorption capacity of MWCNTs@CCh-PEI was two times higher than that of pristine MWCNTs under the same conditions. The adsorption kinetics followed the pseudo-second-order model, suggesting that the adsorption process was chemisorption. The adsorption isotherm shows that the experimental data were fitted well with the Langmuir isotherm model, with a correlation coefficient of 0.9873, indicating that the adsorption process was monolayer adsorption. The theoretical maximum adsorption capacity was determined to be 400.00 mg·g-1. The adsorption thermodynamic data show that the adsorption process was exothermic and spontaneous. More importantly, the adsorption capacity of MWCNTs@CCh-PEI showed no significant decrease after eight reuse cycles. These results demonstrate that MWCNTs@CCh-PEI is expected to be an economical and efficient adsorbent for MO removal.

7.
Molecules ; 29(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38542835

RESUMEN

A simple and fast stripping voltammetric procedure for trace determination of Ce(III) in environmental water samples has been developed. The procedure of cerium determination in the presence of Alizarin S and acetate buffer was employed as the initial method. The adsorption material, multi-walled carbon nanotubes, was used as a screen-printed electrode modifier ensuring efficient accumulation of the Ce(III)-Alizarin S complex. The calibration graph for Ce(III) for an accumulation time of 60 s was linear in the range from 1 × 10-8 to 7 × 10-7 mol L-1 with the linear correlation coefficient r = 0.997. The detection limit was estimated from three times the standard deviation of low Ce(III) concentration and an accumulation time of 60 s was about 3.5 × 10-9 mol L-1. The proposed method was successfully applied to Ce(III) determination at trace levels in environmental water samples, such as river, lake and rain water with recoveries ranged from 93% to 98%.

8.
Molecules ; 29(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38930850

RESUMEN

Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a crucial tumor suppressor protein with frequent mutations and alterations. Although protein therapeutics are already integral to numerous medical fields, their potential remains nascent. This study aimed to investigate the impact of stable, unphosphorylated recombinant human full-length PTEN and its truncated variants, regarding their tumor suppression activity with multiwalled-carbon nanotubes (MW-CNTs) as vehicles for their delivery in breast cancer cells (T-47D, ZR-75-1, and MCF-7). The cloning, overexpression, and purification of PTEN variants were achieved from E. coli, followed by successful binding to CNTs. Cell incubation with protein-functionalized CNTs revealed that the full-length PTEN-CNTs significantly inhibited cancer cell growth and stimulated apoptosis in ZR-75-1 and MCF-7 cells, while truncated PTEN fragments on CNTs had a lesser effect. The N-terminal fragment, despite possessing the active site, did not have the same effect as the full length PTEN, emphasizing the necessity of interaction with the C2 domain in the C-terminal tail. Our findings highlight the efficacy of full-length PTEN in inhibiting cancer growth and inducing apoptosis through the alteration of the expression levels of key apoptotic markers. In addition, the utilization of carbon nanotubes as a potent PTEN protein delivery system provides valuable insights for future applications in in vivo models and clinical studies.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Proliferación Celular , Nanotubos de Carbono , Fosfohidrolasa PTEN , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Nanotubos de Carbono/química , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Femenino , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células MCF-7 , Antineoplásicos/farmacología , Antineoplásicos/química
9.
J Prosthodont ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138863

RESUMEN

PURPOSE: To assess the effect of nanoglass (NG) particles and multiwalled carbon nanotubes' (MWCNTs) addition on Vickers hardness (VH), degree of conversion (DC), and abrasion resistance of 3D-printed denture base resin. MATERIALS AND METHODS: 3D-printed denture base resin was reinforced using silanized NG and MWCNTs to obtain four groups: Control, 0.25 wt% NG reinforced resin, 0.25 wt% MWCNTs reinforced resin, and a combination group of 0.25 wt% of both fillers. All specimens (N = 176) were tested before and after thermal aging (600 cycles) for VH (n = 22), DC, and abrasion resistance (n = 22). Abrasion resistance specimens were subjected to 60,000 brushing strokes, and then assessed for surface roughness (Ra) and weight loss. Specimens were then scanned with a benchtop scanner before and after abrasion to produce a color map of topographical changes from superimposed images. Data were analyzed using ANOVA tests followed by Tukey post hoc test. Kruskal-Wallis test was used to compare percent change among groups, followed by Dunn post hoc test (α = 0.05). RESULTS: The interaction between nanofiller content and thermal cycling displayed a significant effect on VH and DC. The 0.25% NG expressed the highest VH before aging but revealed the highest percent decrease after aging. Nanofiller content, thermal aging, and brushing displayed a significant interaction impact on the Ra values. CONCLUSIONS: The addition of nanofillers resulted in an overall improvement in resin microhardness and abrasion resistance. The 0.25% MWCNTs group revealed the lowest Ra with the least percent change in VH and DC, while the combination one displayed the least change in weight.

10.
Small ; : e2305333, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857587

RESUMEN

The fabrication of a highly selective and ultrasensitive sulfite nanobiosensor based on a layered architectural fabrication aided by the encapsulation of sulfite oxidase (SOx) in Nafion (Naf) matrix on a multiwalled carbon nanotubes-polypyrrole (MWCNTs-PPy) composite decorated with platinum nanoparticles (PtNPs) is described. The MWCNTs are deposited in the inner layer on a Pt electrode during electropolymerization of pyrrole (Py), followed by decoration with a PtNPs layer and subsequent encapsulation of SOx with Naf in the third layer capped with a fourth thin PtNPs layer. Images obtained by field emission scanning electron microscopy (FESEM) reveal that high-density PtNPs are deposited onto the 3D nanostructured inner MWCNTs-PPy layer and the electrochemical behavior is investigated. A large surface area provided by the incorporation of MWCNTs in the composite and decoration with PtNPs enables increased SOx loading, SOx retention, and substantial improvement in sensing performance. The resulting layered PtNPs/SOx-Naf/PtNPs/MWCNTs-PPy nanobiosensor exhibits a fast response time (within 3 s), a linear calibration range of 20 nmm - 6 m with an excellent sensitivity of 71 µA mm-1  cm-2 and a detection limit of 5.4 nm. The nanobiosensor  was effective in discriminating against common interferants and  was successfully applied to sulfite determination in real samples.

11.
J Biochem Mol Toxicol ; 37(3): e23283, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36541368

RESUMEN

Multiwalled carbon nanotubes (MWCNTs) have been used in biomedical applications due to their ability to enter the cells. Carboxylic functionalization of MWCNT (MWCNT-COOH) is used to mitigate the toxicity of MWCNTs. Our study focuses on comparing the toxicity of MWCNT and MWCNT-COOH on the neuronal cells, LN18. Concentrations of 5, 10, 20, and 40 µg ml-1 were used for the study, and cytotoxicity was determined at 0, 1, 3, 6, 12, 24, and 48 h of incubation. Cell viability was assessed by Trypan Blue, MTT, and Live dead cell assays, and the oxidative stress produced was determined by reactive oxygen species (ROS) and Lipid peroxidation assays. MWCNT-COOH showed higher cell viability than MWCNT for 20 and 40 µg ml-1 at 24 and 48 h. This was also visually observed in the live dead cell imaging. However, at 48 h, the morphology of the cells appeared more stretched for all the concentrations of MWCNT and MWCNT-COOH in comparison to the control. A significant amount of ROS production can also be observed at the same concentration and time. Viability and oxidative stress results together revealed that MWCNT-COOH is less toxic when compared to MWCNT at longer incubation periods and higher concentrations. However, otherwise, the effect of both are comparable. A concentration of 5-10 µg ml-1 is ideal while using MWCNT and MWCNT-COOH as the toxicity is negligible. These findings can further be extended to various functionalizations of MWCNT for wider applications.


Asunto(s)
Citotoxinas , Nanotubos de Carbono , Neuronas , Línea Celular Tumoral , Humanos , Nanotubos de Carbono/toxicidad , Especies Reactivas de Oxígeno/análisis , Citotoxinas/toxicidad , Neuronas/efectos de los fármacos , Estrés Oxidativo , Supervivencia Celular/efectos de los fármacos
12.
Nano Lett ; 22(3): 1217-1224, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35061399

RESUMEN

Fabrication processes of fossil fuel-derived carbon nanomaterials are of high carbon emissions. Deriving carbon materials from low-cost and sustainable biomass is eco-friendly. Cotton, one of the most abundant biomass materials, naturally holds a hierarchically porous structure, making the activated cotton textile (ACT) an ideal scaffold for loading active materials. Here, we report a low-cost approach to massively producing multiwalled carbon nanotubes (MWCNTs) via a combination process of vapor-liquid-solid (VLS) and solid-liquid-solid (SLS) where cotton decomposed into carbon-containing gases and amorphous carbons that then dissolved into Fe nanoparticles, forming Fe/Fe3C-encapsulated MWCNTs. The lithium-sulfur (Li-S) battery constructed by the Fe/Fe3C-MWCNT@ACT/S composite (as the cathode) and the Fe/Fe3C-MWCNT@ACT (as the interlayer) exhibited a superlative cycling stability (over 1000 cycles at 1.0 C), an ultralow capacity decay rate (0.0496% per cycle) and a remarkable specific capacity (1273 mAh g-1 at 0.1 C). The Fe/Fe3C-MWCNTs enhanced electrode stability and suppressed polysulfide dissolution during cycling.

13.
Chemistry ; 28(66): e202201987, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36066488

RESUMEN

The designs of efficient and inexpensive Pt-based catalysts for methanol oxidation reaction (MOR) are essential to boost the commercialization of direct methanol fuel cells. Here, the highly catalytic performance PtFe alloys supported on multiwalled carbon nanotubes (MWCNTs) decorating nitrogen-doped carbon (NC) have been successfully prepared via co-engineering of the surface composition and electronic structure. The Pt1 Fe3 @NC/MWCNTs catalyst with moderate Fe3+ feeding content (0.86 mA/mgPt ) exhibits 2.26-fold enhancement in MOR mass activity compared to pristine Pt/C catalyst (0.38 mA/mgPt ). Furthermore, the CO oxidation initial potential of Pt1 Fe3 @NC/MWCNTs catalyst is lower relative to Pt/C catalyst (0.71 V and 0.80 V). Benefited from the optimal surface compositions, the anti-corrosion ability of MWCNT, strong electron interaction between PtFe alloys and MWCNTs and the N-doped carbon (NC) layer, the Pt1 Fe3 @NC/MWCNTs catalyst presents an improved MOR performance and anti-CO poisoning ability. This study would open up new perspective for designing efficient electrocatalysts for the DMFCs field.

14.
Nanotechnology ; 34(4)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36265436

RESUMEN

The flexible strain sensor is an indispensable part in flexible integrated electronic systems and an important intermediate in external mechanical signal acquisition. The 3D printing technology provides a fast and cheap way to manufacture flexible strain sensors. In this paper, a MWCNTs/flexible resin composite for photocuring 3D printing was prepared using mechanical mixing method. The composite has a low percolation threshold (1.2%ωt). Based on the composite material, a flexible strain sensor with high performance was fabricated using digital light processing technology. The sensor has a GF of 8.98 under strain conditions ranging between 0% and 40% and a high elongation at break (48%). The sensor presents mechanical hysteresis under cyclic loading. With the increase of the strain amplitude, the mechanical hysteresis becomes more obvious. At the same time, the resistance response signal of the sensor shows double peaks during the unloading process, which is caused by the competition of disconnection and reconstruction of conductive network in the composite material. The test results show that the sensor has different response signals to different types of loads. Finally, its practicability is verified by applying it to balloon pressure detection.

15.
Environ Sci Technol ; 56(15): 10668-10680, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35731699

RESUMEN

Derjaguin-Landau-Verwey-Overbeek (DLVO) theory is typically used to quantify surface interactions between engineered nanoparticles (ENPs), soil nanoparticles (SNPs), and/or porous media, which are used to assess environmental risk and fate of ENPs. This study investigates the co-transport behavior of functionalized multiwalled carbon nanotubes (MWCNTs) with positively (goethite nanoparticles, GNPs) and negatively (bentonite nanoparticles, BNPs) charged SNPs in quartz sand (QS). The presence of BNPs increased the transport of MWCNTs, but GNPs inhibited the transport of MWCNTs. In addition, we, for the first time, observed that the transport of negatively (BNPs) and positively (GNPs) charged SNPs was facilitated by the presence of MWCNTs. Traditional mechanisms associated with competitive blocking, heteroaggregation, and classic DLVO calculations cannot explain such phenomena. Direct examination using batch experiments and Fourier transform infrared (FTIR) spectroscopy, asymmetric flow field flow fractionation (AF4) coupled to UV and inductively coupled plasma mass spectrometry (AF4-UV-ICP-MS), and molecular dynamics (MD) simulations demonstrated that MWCNTs-BNPs or MWCNT-GNPs complexes or aggregates can be formed during co-transport. Non-DLVO interactions (e.g., H-bonding and Lewis acid-base interaction) helped to explain observed MWCNT deposition, associations between MWCNTs and both SNPs (positively or negatively), and co-transport. This research sheds novel insight into the transport of MWCNTs and SNPs in porous media and suggests that (i) mutual effects between colloids (e.g., heteroaggregation, co-transport, and competitive blocking) need to be considered in natural soil; and (ii) non-DLVO interactions should be comprehensively considered when evaluating the environmental risk and fate of ENPs.


Asunto(s)
Nanopartículas , Nanotubos de Carbono , Coloides , Nanopartículas/química , Nanotubos de Carbono/química , Porosidad , Suelo
16.
Chirality ; 34(7): 1008-1018, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35506895

RESUMEN

The lipase from Burkholderia cepacia (BCL) was immobilized through physical adsorption on pristine and functionalized multiwalled carbon nanotubes (MWCNTs) with carboxyl or amine groups and used in the stereoselective acylation of (R,S)-1-octen-3-ol (1) and (R,S)-(E)-4-phenyl-3-buten-2-ol (4) with vinyl acetate. All immobilized preparations produced better results than free BCL. For (R,S)-4, 50% conversion and E > 200 were obtained in n-hexane or in solvent-free medium. For (R,S)-1, in solvent-free medium, the conversion was 38% with a slight increase in the E-value (E = 10).


Asunto(s)
Burkholderia cepacia , Nanotubos de Carbono , Alcoholes , Burkholderia cepacia/metabolismo , Enzimas Inmovilizadas/metabolismo , Cinética , Lipasa/metabolismo , Solventes , Estereoisomerismo
17.
J Sep Sci ; 45(13): 2190-2199, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35445523

RESUMEN

A rapid and cost-effective analytical method based on ultrahigh-performance liquid chromatography-tandem mass spectrometry was designed and verified for simultaneously monitoring the novel acaricide pyflubumide and its metabolite (pyflubumide-des(2-methyl-1oxopropyl)) in vegetables and fruits. After the extraction with acetonitrile, the samples were purified by dispersive solid-phase extraction with multi-walled carbon nanotubes. Detection of the two target analytes was achieved within 3.0 min using a positive electrospray ionization mode. The average recovery, intra-day precision, and inter-day precision of the two analytes at three spiked levels (2, 20, and 100 µg/kg) were 75.0-101.0, 0.4-4.4, and 0.6-5.3%, respectively. The limit of quantification of two compounds was 2 µg/kg, which was far below the maximum residue limits of pyflubumide in foods established by Japan and South Korea. Finally, the concentrations of pyflubumide and its metabolite in the samples were 16.6 and 7.8 µg/kg respectively, which verified the practicability and reliability of the method. The method was used to efficiently detect pyflubumide and its metabolite in real samples and was confirmed to be robust and effective for routinely analyzing both pyflubumide and its metabolite in vegetable and fruit samples.


Asunto(s)
Nanotubos de Carbono , Verduras , Cromatografía Líquida de Alta Presión/métodos , Frutas/química , Límite de Detección , Nanotubos de Carbono/química , Reproducibilidad de los Resultados , Extracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem/métodos , Verduras/química
18.
J Appl Toxicol ; 42(3): 409-422, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34569639

RESUMEN

This study was conducted to investigate the influence of outer diameter (OD) and length (L) of multiwalled carbon nanotubes (MWCNTs) on biodistribution and the perturbation of endogenous metabolite profiles. Three different-sized carboxylated MWCNTs (NIEHS-12-2: L 0.5-2 µm, OD 10-20 nm, NIEHS-13-2: L 0.5-2 µm, OD 30-50 nm, and NIEHS-14-2: L 10-30 µm, OD 10-20 nm) in water were administered to female Sprague-Dawley rats as a single intravenous dose of 1 mg/kg MWCNTs. Biodistribution in liver, lung, spleen, and lymph nodes was evaluated in tissue sections at 1 and 7 days' post-dosing using enhanced darkfield microscopy and hyperspectral imaging. Nuclear magnetic resonance (NMR) analysis was used for biochemical profiling and pathway mapping of endogenous metabolites in urine collected at 24-h intervals prior to dosing, at Day 1 and Day 7. At Day 1 and Day 7, all three MWCNTs were observed in liver. NIEHS-12-2 was observed in spleen, whereas NIEHS-13-2 and NIEHS-14-2 were not. All three MWCNTs were observed in lymph nodes and lung at Day 7. The urinary biochemical profile showed the highest positive fold change (FC) at Day 7 for the metabolites acetate, alanine, and lactate, whereas 1-methylnicotinamide, 2-oxoglutarate, and hippurate had some of the lowest FCs for all three MWCNTs. This study demonstrates that the observed tissue location of MWCNTs is size dependent. Overlaps in the perturbation of endogenous metabolite profiles were found regardless of their size, and the biochemical responses were more profound at Day 7 compared with Day 1, indicating a delayed biological response to MWCNTs.


Asunto(s)
Nanotubos de Carbono/efectos adversos , Orina/química , Administración Intravenosa , Animales , Femenino , Nanotubos de Carbono/química , Ratas , Distribución Tisular
19.
Sensors (Basel) ; 22(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36560101

RESUMEN

The development of electronic gadgets has become of great relevance for the detection of fraud in beverages such as wine, due to the addition of adulterants that bring risks to human health as well as economic impacts. Thus, the present study aims to apply a buckypaper (BP) based on functionalized multiwalled carbon nanotubes (MWCNTs)/cellulose fibers as a sensor for the analysis of Port wine intentionally adulterated with 5 vol.% and 10 vol.% distilled water and ethyl alcohol. The morphology of BP characterized by scanning electron microscopy indicates the formation of agglomerates of random MWCNTs dispersed on the surface and between the fibers of the cellulosic paper. The analysis of the response of the film through the normalized relative resistance change showed a higher response of 0.75 ± 0.16 for adulteration with 10 vol.% of water and a mean response time of 10.0 ± 3.60 s and recovery of approximately 17.2 min for adulteration with 5 vol.% alcohol. Principal component analysis (PCA) was used in data processing to evaluate the ability of BP to recognize and discriminate analytes and adulterating agents, allowing the investigation of its potential application as a low-cost and easy-to-handle multisensor.


Asunto(s)
Nanotubos de Carbono , Vino , Humanos , Celulosa , Microscopía Electrónica de Rastreo
20.
Sensors (Basel) ; 22(17)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36080989

RESUMEN

One of the main challenges during the integration of a carbon/polymer-based nanocomposite sensor on textile substrates is the fabrication of a homogeneous surface of the nanocomposite-based thin films, which play a major role in the reproducibility of the sensor. Characterizations are therefore required in every fabrication step to control the quality of the material preparation, deposition, and curing. As a result, microcharacterization methods are more suitable for laboratory investigations, and electrical methods can be easily implemented for in situ characterization within the manufacturing process. In this paper, several textile-based pressure sensors are fabricated at an optimized concentration of 0.3 wt.% of multiwalledcarbon nanotubes (MWCNTs) composite material in PDMS. We propose to use impedance spectroscopy for the characterization of both of the resistive behavior and capacitive behavior of the sensor at several frequencies and under different loads from 50 g to 500 g. The impedance spectra are fitted to a model composed of a resistance in series with a parallel combination of resistance and a constant phase element (CPE). The results show that the printing parameters strongly influence the impedance behavior under different loads. The deviation of the model parameter α of the CPE from the value 1 is strongly dependent on the nonhomogeneity of the sensor. Based on an impedance spectrum measurement followed by parameter extraction, the parameter α can be determined to realize a novel method for homogeneity characterization and in-line quality control of textile-integrated wearable sensors during the manufacturing process.


Asunto(s)
Nanocompuestos , Dispositivos Electrónicos Vestibles , Espectroscopía Dieléctrica , Reproducibilidad de los Resultados , Textiles
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda