Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Más filtros

Publication year range
1.
Proc Natl Acad Sci U S A ; 119(33): e2201616119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35895717

RESUMEN

With the rapid increase in SARS-CoV-2 cases in children, a safe and effective vaccine for this population is urgently needed. The MMR (measles/mumps/rubella) vaccine has been one of the safest and most effective human vaccines used in infants and children since the 1960s. Here, we developed live attenuated recombinant mumps virus (rMuV)-based SARS-CoV-2 vaccine candidates using the MuV Jeryl Lynn (JL2) vaccine strain backbone. The soluble prefusion SARS-CoV-2 spike protein (preS) gene, stablized by two prolines (preS-2P) or six prolines (preS-6P), was inserted into the MuV genome at the P-M or F-SH gene junctions in the MuV genome. preS-6P was more efficiently expressed than preS-2P, and preS-6P expression from the P-M gene junction was more efficient than from the F-SH gene junction. In mice, the rMuV-preS-6P vaccine was more immunogenic than the rMuV-preS-2P vaccine, eliciting stronger neutralizing antibodies and mucosal immunity. Sera raised in response to the rMuV-preS-6P vaccine neutralized SARS-CoV-2 variants of concern, including the Delta variant equivalently. Intranasal and/or subcutaneous immunization of IFNAR1-/- mice and golden Syrian hamsters with the rMuV-preS-6P vaccine induced high levels of neutralizing antibodies, mucosal immunoglobulin A antibody, and T cell immune responses, and were completely protected from challenge by both SARS-CoV-2 USA-WA1/2020 and Delta variants. Therefore, rMuV-preS-6P is a highly promising COVID-19 vaccine candidate, warranting further development as a tetravalent MMR vaccine, which may include protection against SARS-CoV-2.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Vacuna contra el Sarampión-Parotiditis-Rubéola , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Eficacia de las Vacunas , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/prevención & control , Vacunas contra la COVID-19/genética , Vacunas contra la COVID-19/inmunología , Inmunogenicidad Vacunal , Vacuna contra el Sarampión-Parotiditis-Rubéola/genética , Vacuna contra el Sarampión-Parotiditis-Rubéola/inmunología , Mesocricetus , Ratones , Virus de la Parotiditis/genética , Virus de la Parotiditis/inmunología , Prolina/genética , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología
2.
Glycobiology ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088577

RESUMEN

The prevalent human pathogen, mumps virus (MuV; orthorubulavirus parotitidis) causes various complications and serious sequelae, such as meningitis, encephalitis, deafness, and impaired fertility. Direct-acting antivirals (DAAs) targeting MuV which can prevent mumps and mumps-associated complications and sequelae are yet to be developed. Paramyxoviridae family members, such as MuV, possess viral surface hemagglutinin-neuraminidase (HN) protein with sialidase activity which facilitates efficient viral replication. Therefore, to develop DAAs targeting MuV we synthesized MuV sialidase inhibitors. It is proposed that the viral HN has a single functional site for N-acetylneuraminic acid (Neu5Ac) binding and sialidase activity. Further, the known MuV sialidase inhibitor is an analog of Neu5Ac-2,3-didehydro-2-deoxy-N-acetylneuraminic acid (DANA)-which lacks potency. DANA derivatives with higher MuV sialidase inhibitory potency are lacking. The MuV-HN-Neu5Ac binding site has a hydrophobic cavity adjacent to the C4 position of Neu5Ac. Exploiting this, here, we synthesized DANA derivatives with increasing hydrophobicity at its C4 position and created 3 novel sialidase inhibitors (Compounds 1, 2 and 3) with higher specificity for MuV-HN than DANA; they inhibited MuV replication step to greater extent than DANA. Furthermore, they also inhibited hemagglutination and the MuV infection step. The insight-that these 3 novel DANA derivatives possess linear hydrocarbon groups at the C4-hydroxyl group of DANA-could help develop highly potent sialidase inhibitors with high specificity for MuV sialidase, which may function as direct-acting MuV-specific antivirals.

3.
J Virol ; 97(4): e0035923, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37017528

RESUMEN

Mumps is a highly contagious viral disease that can be prevented by vaccination. In the last decade, we have encountered repeated outbreaks of mumps in highly vaccinated populations, which call into question the effectiveness of available vaccines. Animal models are crucial for understanding virus-host interactions, and viruses such as mumps virus (MuV), whose only natural host is the human, pose a particular challenge. In our study, we examined the interaction between MuV and the guinea pig. Our results present the first evidence that guinea pigs of the Hartley strain can be infected in vivo after intranasal and intratesticular inoculation. We observed a significant viral replication in infected tissues up to 5 days following infection and induction of cellular and humoral immune responses as well as histopathological changes in infected lungs and testicles, without clinical signs of disease. Transmission of the infection through direct contact between animals was not possible. Our results demonstrate that guinea pigs and guinea pig primary cell cultures represent a promising model for immunological and pathogenetic studies of the complex MuV infection. IMPORTANCE Understanding of mumps virus (MuV) pathogenesis and the immune responses against MuV infection is limited. One of the reasons is the lack of relevant animal models. This study explores the interaction between MuV and the guinea pig. We demonstrated that all tested guinea pig tissue homogenates and primary cell cultures are highly susceptible to MuV infection and that α2,3-sialylated glycans (MuV cellular receptors) are being abundantly expressed at their surface. The virus remains in the guinea pig lungs and trachea for up to 4 days following intranasal infection. Although asymptomatic, MuV infection strongly activates both humoral and cellular immune response in infected animals and provides protection against virus challenge. Infection of the lungs and testicles after intranasal and intratesticular inoculation, respectively, is also supported by histopathological changes in these organs. Our findings give perspective for application of guinea pigs in research on MuV pathogenesis, antiviral response, and vaccine development and testing.


Asunto(s)
Virus de la Parotiditis , Paperas , Animales , Cobayas , Humanos , Paperas/inmunología , Paperas/fisiopatología , Paperas/virología , Virus de la Parotiditis/metabolismo , Replicación Viral , Células Cultivadas , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Pulmón/virología , Testículo/virología
4.
J Med Virol ; 96(6): e29733, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38874268

RESUMEN

Viruses in human semen may be sexually transmitted via free and cell-mediated viral infection. The potential effects of semen on the infection and sexual transmission of most viruses in semen remain largely unclear. The present study elucidated the inhibitory effects of human seminal plasma (SP) on Jurkat cell (JC)-mediated mumps virus (MuV) infection. We demonstrated that MuV efficiently infected JCs and that the JCs infected by MuV (JC-MuV) mediated MuV infection of HeLa cells. Remarkably, SP was highly cytotoxic to JCs and inhibited JC-MuV infection of HeLa cells. The cytotoxic factor possessed a molecular weight of less than 3 kDa, whereas that of the viricidal factor was over 100 kDa. The cooperation of cytotoxic and viricidal factors was required for the SP inhibition of JC-MuV infection, and prostatic fluid (PF) was responsible for both the cytotoxic and viricidal effects of SP. The cytotoxic effects we observed were resistant to the treatment of PF with boiling water, proteinase K, RNase A, and DNase I. Our results provide novel insights into the antiviral properties of SP, which may limit cell-mediated sexual viral transmission.


Asunto(s)
Virus de la Parotiditis , Semen , Humanos , Virus de la Parotiditis/fisiología , Semen/virología , Masculino , Células HeLa , Linfocitos/virología , Células Jurkat , Supervivencia Celular , Peso Molecular
5.
BMC Infect Dis ; 24(1): 718, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039455

RESUMEN

Mumps is a vaccine-preventable disease with high contagious capability. Its incidence declined rapidly since one dose of mumps vaccine was introduced into Expanded Program of Immunization (EPI) in 2008 in China. Nonetheless, the outbreaks of mumps remain frequent in China. Here we aim to assess herd immunity level followed by one-dose mumps ingredient vaccine and to elucidate the genetic characteristics of mumps viruses circulating in the post vaccine era in Jiangsu province of China. The complete sequences of mumps virus small hydrophobic(SH) gene were amplified and sequenced; coalescent-based Bayesian method was used to perform phylogenetic analysis with BEAST 1.84 software. Commercially available indirect enzyme-linked immune-sorbent IgG assay was used for the quantitative detection of IgG antibody against mumps virus. Our results show that genotype F was the predominant mumps viruses and belonged to indigenous spread, and most of Jiangsu sequences clustered together and formed a monophyly. The prevalence of mumps reached a peak in 2012 and subsequently declined, which presented an obvious different trajectory with virus circulating in other regions of China. The gene diversity of viruses circulating in Jiangsu province was far less than those in China. The antibody prevalence reached 70.42% in the general population during 2018 to 2020. The rising trend of antibody level was also observed. Although mumps antibody prevalence does not reach expected level, mumps virus faces higher pressure in Jiangsu province than the whole of China. To reduce further the prevalence of mumps viruses, two doses of mumps vaccine should be involved into EPI.


Asunto(s)
Anticuerpos Antivirales , Vacuna contra la Parotiditis , Virus de la Parotiditis , Paperas , Filogenia , Virus de la Parotiditis/genética , Virus de la Parotiditis/inmunología , Virus de la Parotiditis/clasificación , Humanos , China/epidemiología , Paperas/epidemiología , Paperas/virología , Paperas/inmunología , Paperas/prevención & control , Anticuerpos Antivirales/sangre , Vacuna contra la Parotiditis/administración & dosificación , Vacuna contra la Parotiditis/inmunología , Adulto , Adulto Joven , Femenino , Masculino , Genotipo , Adolescente , Niño , Inmunoglobulina G/sangre , Persona de Mediana Edad , Preescolar , Inmunidad Colectiva , Variación Genética , Proteínas Virales
6.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34740971

RESUMEN

Inflammation in the epididymis and testis contributes significantly to male infertility. Alternative therapeutic avenues treating epididymitis and orchitis are expected since current therapies using antibiotics have limitations associated to side effects and are commonly ineffective for inflammation due to nonbacterial causes. Here, we demonstrated that type 1 parathyroid hormone receptor (PTH1R) and its endogenous agonists, parathyroid hormone (PTH) and PTH-related protein (PTHrP), were mainly expressed in the Leydig cells of testis as well as epididymal epithelial cells. Screening the secretin family G protein-coupled receptor identified that PTH1R in the epididymis and testis was down-regulated in mumps virus (MuV)- or lipopolysaccharide (LPS)-induced inflammation. Remarkably, activation of PTH1R by abaloparatide (ABL), a Food and Drug Administration-approved treatment for postmenopausal osteoporosis, alleviated MuV- or LPS-induced inflammatory responses in both testis and epididymis and significantly improved sperm functions in both mouse model and human samples. The anti-inflammatory effects of ABL were shown to be regulated mainly through the Gq and ß-arrestin-1 pathway downstream of PTH1R as supported by the application of ABL in Gnaq± and Arrb1-/- mouse models. Taken together, our results identified an important immunoregulatory role for PTH1R signaling in the epididymis and testis. Targeting to PTH1R might have a therapeutic effect for the treatment of epididymitis and orchitis or other inflammatory disease in the male reproductive system.


Asunto(s)
Epididimitis/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Orquitis/metabolismo , Receptor de Hormona Paratiroídea Tipo 1/metabolismo , beta-Arrestina 1/metabolismo , Animales , Infertilidad Masculina/metabolismo , Infertilidad Masculina/virología , Lipopolisacáridos , Masculino , Ratones Endogámicos C57BL , Virus de la Parotiditis
7.
J Virol ; 96(19): e0072222, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36135364

RESUMEN

The nucleolus is the largest structure in the nucleus, and it plays roles in mediating cellular stress responses and regulating cell proliferation, as well as in ribosome biosynthesis. The nucleolus is composed of a variety of nucleolar factors that interact with each other in a complex manner to enable its function. Many viral proteins interact with nucleolar factors as well, affecting cellular morphology and function. Here, to investigate the association between mumps virus (MuV) infection and the nucleolus, we evaluated the necessity of nucleolar factors for MuV proliferation by performing a knockdown of these factors with small interfering (si)RNAs. Our results reveal that suppressing the expression of Treacle, which is required for ribosome biosynthesis, reduced the proliferative potential of MuV. Additionally, the one-step growth kinetics results indicate that Treacle knockdown did not affect the viral RNA and protein synthesis of MuV, but it did impair the production of infectious virus particles. Viral matrix protein (M) was considered a candidate Treacle interaction partner because it functions in the process of particle formation in the viral life cycle and is partially localized in the nucleolus. Our data confirm that MuV M can interact with Treacle and colocalize with it in the nucleolus. Furthermore, we found that viral infection induces relocalization of Treacle in the nucleus. Together, these findings suggest that interaction with Treacle in the nucleolus is important for the M protein to exert its functions late in the MuV life cycle. IMPORTANCE The nucleolus, which is the site of ribosome biosynthesis, is a target organelle for many viruses. It is increasingly evident that viruses can favor their own replication and multiplication by interacting with various nucleolar factors. In this study, we found that the nucleolar protein Treacle, known to function in the transcription and processing of pre-rRNA, is required for the efficient propagation of mumps virus (MuV). Specifically, our data indicate that Treacle is not involved in viral RNA or protein synthesis but is important in the processes leading to viral particle production in MuV infection. Additionally, we determined that MuV matrix protein (M), which functions mainly in viral particle assembly and budding, colocalized and interacted with Treacle. Furthermore, we found that Treacle is distributed throughout the nucleus in MuV-infected cells. Our research shows that the interaction between M and Treacle supports efficient viral growth in the late stage of MuV infection.


Asunto(s)
Virus de la Parotiditis , Proteínas Nucleares , Proteínas de la Matriz Viral , Nucléolo Celular/metabolismo , Humanos , Paperas , Virus de la Parotiditis/fisiología , Proteínas Nucleares/metabolismo , Fosfoproteínas , Precursores del ARN/metabolismo , ARN Viral/metabolismo , Proteínas de la Matriz Viral/metabolismo
8.
Microbiol Immunol ; 67(1): 44-47, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36259144

RESUMEN

The reverse genetics system is a very powerful tool for analyzing the molecular mechanisms of viral propagation and pathogenesis. However, full-length genome plasmid construction is highly time-consuming and laborious, and undesired mutations may be introduced by Escherichia coli. This study shows a very rapid E. coli-free method of full-genome construction using the mumps virus as an example. This method was able to reduce dramatically the time for full-genome construction, which was used very efficiently for virus rescue, from several days or more to ~2 days, with a similar accuracy and yield to the conventional method using E. coli/plasmid.


Asunto(s)
Virus de la Parotiditis , Genética Inversa , Virus de la Parotiditis/genética , Genética Inversa/métodos , Plásmidos/genética , Genoma Viral , Genes Virales , Escherichia coli/genética , Clonación Molecular
9.
Virus Genes ; 59(4): 515-523, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37133580

RESUMEN

Mumps is a vaccine-preventable disease, and research on the vaccine's efficacy has recently indicated declining efficacy that has failed to protect against primary infections or reinfections, leading to a global resurgence in nations that use mumps vaccine in their national immunization programmes (NIPs). Lack of reports on its infection, documentation and published studies prevents it from being recognized as a public health issue in India. The waning of immunity is ascribed to the changes between the circulating and vaccine strains. The goal of the current study was to describe the circulating MuV strains in the Dibrugarh district of Assam, India, from 2016 to 2019. Blood samples were examined for IgM antibodies, and throat swab samples were put through Taqman assay for molecular detection. The small hydrophobic (SH) gene was targeted for genotyping through sequencing, and its genetic variations and phylogenetic analysis were carried out. Mumps RNA was found in 42 cases, and Mumps IgM in 14, of which 60% (25/42) of the cases were male and 40% (17/42) were female mostly affecting children between the ages of 6 and 12. Sequence and phylogeny analyses of SH gene revealed Genotypes C (83%) and G (17%) were simultaneously circulating during the study period. The study offers crucial genetic baseline information for the creation of Mumps prevention and control measures. Therefore, based on the research, it is clear that developing an effective vaccination strategy should take into account all currently prevalent genotypes in order to provide better protection against the disease's comeback.


Asunto(s)
Paperas , Vacunas , Niño , Masculino , Humanos , Femenino , Virus de la Parotiditis/genética , Paperas/epidemiología , Paperas/prevención & control , Filogenia , ARN Viral/genética , Genotipo , India/epidemiología , Inmunoglobulina M
10.
J Infect Dis ; 227(1): 151-160, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-35524966

RESUMEN

MuV caused three epidemic waves in Spain since genotype G emerged in 2005, despite high vaccination coverage. SH gene sequencing according to WHO protocols allowed the identification of seven relevant variants and 88 haplotypes. While the originally imported MuVi/Sheffield.GBR/1.05/-variant prevailed during the first two waves, it was subsequently replaced by other variants originated by either local evolution or importation, according to the additional analysis of hypervariable NCRs. The time of emergence of the MRCA of each MuV variant clade was concordant with the data of the earliest sequence. The analysis of Shannon entropy showed an accumulation of variability on six particular positions as the cause of the increase on the number of circulating SH variants. Consequently, SH gene sequencing needs to be complemented with other more variable markers for mumps surveillance immediately after the emergence of a new genotype, but the subsequent emergence of new SH variants turns it unnecessary.


Asunto(s)
Virus de la Parotiditis , Paperas , Humanos , Virus de la Parotiditis/genética , España/epidemiología , Filogenia , Paperas/epidemiología , Paperas/prevención & control , Genotipo
11.
J Virol ; 94(22)2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-32907974

RESUMEN

The mumps virus (MuV) fusion protein (F) plays a crucial role for the entry process and spread of infection by mediating fusion between viral and cellular membranes as well as between infected and neighboring cells, respectively. The fusogenicity of MuV differs depending on the strain and might correlate with the virulence; however, it is unclear which mechanisms contribute to the differentiated fusogenicity. The cleavage motif of MuV F is highly conserved among all strains, except the amino acid residue at position 8 (P8) that shows a certain variability with a total of four amino acid variants (leucine [L], proline [P], serine [S], and threonine [T]). We demonstrate that P8 affects the proteolytic processing and the fusogenicity of MuV F. The presence of L or S at P8 resulted in a slower proteolysis of MuV F by furin and a reduced ability to mediate cell-cell fusion. However, virus-cell fusion was more efficient for F proteins harboring L or S at P8, suggesting that P8 contributes to the mechanism of viral spread: P and T enable a rapid spread of infection by cell-to-cell fusion, whereas viruses harboring L or S at P8 spread preferentially by the release of infectious viral particles. Our study provides novel insights into the fusogenicity of MuV and its influence on the mechanisms of virus spread within infected tissues. Assuming a correlation between MuV fusogenicity and virulence, sequence information on the amino acid residue at P8 might be helpful to estimate the virulence of circulating and emerging strains.IMPORTANCE Mumps virus (MuV) is the causative agent of the highly infectious disease mumps. Mumps is mainly associated with mild symptoms, but severe complications such as encephalitis, meningitis, or orchitis can also occur. There is evidence that the virulence of different MuV strains and variants might correlate with the ability of the fusion protein (F) to mediate cell-to-cell fusion. However, the relation between virulence and fusogenicity or the mechanisms responsible for the varied fusogenicity of different MuV strains are incompletely understood. Here, we focused on the amino acid residue at position 8 (P8) of the proteolytic cleavage site of MuV F, because this amino acid residue shows a striking variability depending on the genotype of MuV. The P8 residue has a significant effect on the proteolytic processing and fusogenicity of MuV F and might thereby determine the route of viral spread within infected tissues.


Asunto(s)
Aminoácidos/química , Virus de la Parotiditis/metabolismo , Proteolisis , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/metabolismo , Animales , Fusión Celular , Chlorocebus aethiops , Furina/metabolismo , Genotipo , Células HEK293 , Humanos , Cinética , Paperas/virología , Virus de la Parotiditis/genética , Homología de Secuencia de Aminoácido , Células Vero , Proteínas Virales de Fusión/genética , Internalización del Virus
12.
J Virol ; 94(12)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32295904

RESUMEN

Mumps virus (MuV), an enveloped RNA virus of the Paramyxoviridae family and the causative agent of mumps, affects the salivary glands and other glandular tissues as well as the central nervous system. The virus enters the cell by inducing the fusion of its envelope with the plasma membrane of the target cell. Membrane fusion is mediated by MuV envelope proteins: the hemagglutinin-neuraminidase and fusion (F) protein. Cleavage of the MuV F protein (MuV-F) into two subunits by the cellular protease furin is a prerequisite for fusion and virus infectivity. Here, we show that 293T (a derivative of HEK293) cells do not produce syncytia upon expression of MuV envelope proteins or MuV infection. This failure is caused by the inefficient MuV-F cleavage despite the presence of functional furin in 293T cells. An expression cloning strategy revealed that overexpression of lysosome-associated membrane proteins (LAMPs) confers on 293T cells the ability to produce syncytia upon expression of MuV envelope proteins. The LAMP family comprises the ubiquitously expressed LAMP1 and LAMP2, the interferon-stimulated gene product LAMP3, and the cell type-specific proteins. The expression level of the LAMP3 gene, but not of LAMP1 and LAMP2 genes, differed markedly between 293T and HEK293 cells. Overexpression of LAMP1, LAMP2, or LAMP3 allowed 293T cells to process MuV-F efficiently. Furthermore, these LAMPs were found to interact with both MuV-F and furin. Our results indicate that LAMPs support the furin-mediated cleavage of MuV-F and that, among them, LAMP3 may be critical for the process, at least in certain cells.IMPORTANCE The cellular protease furin mediates proteolytic cleavage of many host and pathogen proteins and plays an important role in viral envelope glycoprotein maturation. MuV, an enveloped RNA virus of the Paramyxoviridae family and an important human pathogen, enters the cell through the fusion of its envelope with the plasma membrane of the target cell. Membrane fusion is mediated by the viral attachment protein and the F protein. Cleavage of MuV-F into two subunits by furin is a prerequisite for fusion and virus infectivity. Here, we show that LAMPs support the furin-mediated cleavage of MuV-F. Expression levels of LAMPs affect the processing of MuV-F and MuV-mediated membrane fusion. Among LAMPs, the interferon-stimulated gene product LAMP3 is most critical in certain cells. Our study provides potential targets for anti-MuV therapeutics.


Asunto(s)
Furina/genética , Interacciones Huésped-Patógeno/genética , Proteínas de Membrana de los Lisosomas/genética , Lisosomas/virología , Virus de la Parotiditis/genética , Proteínas de Neoplasias/genética , Proteínas Virales de Fusión/genética , Células A549 , Animales , Membrana Celular/metabolismo , Membrana Celular/virología , Chlorocebus aethiops , Furina/metabolismo , Regulación de la Expresión Génica , Células Gigantes/química , Células Gigantes/metabolismo , Células HEK293 , Proteína HN/genética , Proteína HN/metabolismo , Células HeLa , Humanos , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/metabolismo , Virus de la Parotiditis/metabolismo , Proteínas de Neoplasias/metabolismo , Unión Proteica , Proteolisis , Transducción de Señal , Células Vero , Proteínas Virales de Fusión/metabolismo , Internalización del Virus
13.
J Virol ; 94(12)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32295907

RESUMEN

Mumps virus (MuV) caused the most viral meningitis before mass immunization. Unfortunately, MuV has reemerged in the United States in the past several years. MuV is a member of the genus Rubulavirus, in the family Paramyxoviridae, and has a nonsegmented negative-strand RNA genome. The viral RNA-dependent RNA polymerase (vRdRp) of MuV consists of the large protein (L) and the phosphoprotein (P), while the nucleocapsid protein (NP) encapsulates the viral RNA genome. These proteins make up the replication and transcription machinery of MuV. The P protein is phosphorylated by host kinases, and its phosphorylation is important for its function. In this study, we performed a large-scale small interfering RNA (siRNA) screen targeting host kinases that regulated MuV replication. The human kinase ribosomal protein S6 kinase beta-1 (RPS6KB1) was shown to play a role in MuV replication and transcription. We have validated the role of RPS6KB1 in regulating MuV using siRNA knockdown, an inhibitor, and RPS6KB1 knockout cells. We found that MuV grows better in cells lacking RPS6KB1, indicating that it downregulates viral growth. Furthermore, we detected an interaction between the MuV P protein and RPS6KB1, suggesting that RPS6KB1 directly regulates MuV replication and transcription.IMPORTANCE Mumps virus is an important human pathogen. In recent years, MuV has reemerged in the United State, with outbreaks occurring in young adults who have been vaccinated. Our work provides insight into a previously unknown mumps virus-host interaction. RPS6KB1 negatively regulates MuV replication, likely through its interaction with the P protein. Understanding virus-host interactions can lead to novel antiviral drugs and enhanced vaccine production.


Asunto(s)
Genoma Viral , Virus de la Parotiditis/genética , Proteínas de la Nucleocápside/genética , Fosfoproteínas/genética , ARN Polimerasa Dependiente del ARN/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Proteínas Virales/genética , Animales , Chlorocebus aethiops , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Interacciones Huésped-Patógeno/genética , Humanos , Virus de la Parotiditis/metabolismo , Proteínas de la Nucleocápside/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Unión Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/antagonistas & inhibidores , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal , Células Vero , Proteínas Virales/metabolismo , Replicación Viral
14.
Bull Tokyo Dent Coll ; 61(3): 195-200, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32801260

RESUMEN

We report a case of suspected reinfection with the mumps virus in an elderly patient which resulted in temporary closure of an inpatient ward. A 65-year-old man with colorectal cancer was admitted to the digestive surgery ward at our hospital to undergo a stoma closure operation. He was subsequently referred to our department with right swelling in the preauricular region on postoperative day 4. The swelling subsided within a few days, and the patient was discharged. A serum titer test revealed a high level of antibodies to the mumps virus, however. Therefore, staff who had come into close contact with the patient were examined and the decision taken to stop admitting new patients to the ward. When symptoms are detected in a patient has already had mumps, it is important to consider the possibility of reinfection. Furthermore, it is necessary for medical workers to undergo a serum antibody test to the mumps virus and receive a further vaccination if antibody levels are too low to confer immunity.


Asunto(s)
Virus de la Parotiditis/inmunología , Paperas , Anciano , Anticuerpos Antivirales , Humanos , Pacientes Internos , Masculino
15.
J Virol ; 92(20)2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30068647

RESUMEN

J paramyxovirus (JPV) was first isolated from moribund mice with hemorrhagic lung lesions in Australia in 1972. It is a paramyxovirus classified under the newly proposed genus Jeilongvirus JPV has a genome of 18,954 nucleotides, consisting of eight genes in the order 3'-N-P/V/C-M-F-SH-TM-G-L-5'. JPV causes little cytopathic effect (CPE) in tissue culture cells but severe disease in mice. The small hydrophobic (SH) protein is an integral membrane protein encoded by many paramyxoviruses, such as mumps virus (MuV) and respiratory syncytial virus (RSV). However, the function of SH has not been defined in a suitable animal model. In this work, the functions of SH of JPV, MuV, and RSV have been examined by generating recombinant JPV lacking the SH protein (rJPV-ΔSH) or replacing SH of JPV with MuV SH (rJPV-MuVSH) or RSV SH (rJPV-RSVSH). rJPV-ΔSH, rJPV-MuVSH, and rJPV-RSVSH were viable and had no growth defect in tissue culture cells. However, more tumor necrosis factor alpha (TNF-α) was produced during rJPV-ΔSH infection, confirming the role of SH in inhibiting TNF-α production. rJPV-ΔSH induced more apoptosis in tissue culture cells than rJPV, rJPV-MuVSH, and rJPV-RSVSH, suggesting that SH plays a role in blocking apoptosis. Furthermore, rJPV-ΔSH was attenuated in mice compared to rJPV, rJPV-MuVSH, and rJPV-RSVSH, indicating that the SH protein plays an essential role in virulence. The results indicate that the functions of MuV SH and RSV SH are similar to that of JPV SH even though they have no sequence homology.IMPORTANCE Paramyxoviruses are associated with many devastating diseases in animals and humans. J paramyxovirus (JPV) was isolated from moribund mice in Australia in 1972. Newly isolated viruses, such as Beilong virus (BeiPV) and Tailam virus (TlmPV), have genome structures similar to that of JPV. A new paramyxovirus genus, Jeilongvirus, which contains JPV, BeiPV, and TlmPV, has been proposed. Small hydrophobic (SH) protein is present in many paramyxoviruses. Our present study investigates the role of SH protein of JPV in pathogenesis in its natural host. Understanding the pathogenic mechanism of Jeilongvirus is important to control and prevent potential diseases that may emerge from this group of viruses.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Infecciones por Paramyxoviridae/patología , Paramyxoviridae/crecimiento & desarrollo , Proteínas Oncogénicas de Retroviridae/metabolismo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factores de Virulencia/metabolismo , Animales , Línea Celular , Chlorocebus aethiops , Modelos Animales de Enfermedad , Eliminación de Gen , Prueba de Complementación Genética , Humanos , Ratones , Viabilidad Microbiana , Virus de la Parotiditis/genética , Virus de la Parotiditis/fisiología , Infecciones por Paramyxoviridae/virología , Virus Sincitiales Respiratorios/genética , Virus Sincitiales Respiratorios/fisiología , Proteínas Oncogénicas de Retroviridae/genética , Virulencia , Factores de Virulencia/genética
16.
BMC Infect Dis ; 19(1): 954, 2019 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-31706275

RESUMEN

BACKGROUND: Mumps is a vaccine-preventable disease but outbreaks have been reported in persons vaccinated with two doses of MMR vaccine. The objective was to describe the demographic features, vaccination effectiveness and genetic mumps virus diversity among laboratory-confirmed cases between 2007 and 2011 in Catalonia. METHODS: Cases and outbreaks of mumps notified to the notifiable diseases system of Catalonia between 2007 and 2011 retrospectively registered were included. Public health care centres provided written immunization records to regional public health staff to determine the vaccination history. Saliva and serum specimens were collected from suspected cases for laboratory-confirmation using real-time reverse-transcriptase PCR (rtRT-PCR) or serological testing. Phylogenetic analysis of the complete SH gene (316 nucleotides) and complete coding HN protein (1749 nucleotides) sequences was made. Categorical variables were compared using the Chi-square or Fisher's tests and continuous variables using the Student test. Vaccination effectiveness by number of MMR doses was estimated using the screening method. RESULTS: During the study period, 581 confirmed cases of mumps were notified (incidence rate 1.6 cases/100,000 persons-year), of which 60% were male. Three hundred sixty-four laboratory-confirmed cases were reported, of which 44% were confirmed by rtRT-PCR. Of the 289 laboratory-confirmed cases belonging to vaccination cohorts, 33.5% (97) had received one dose of MMR vaccine and 50% (145) two doses. Based on phylogenetic analyses of 316-nucleotide and 174-nucleotide SH sequences, the viruses belonging to viral genotypes were: genotype G (126), genotype D (23), genotype H (2), genotype F (2), genotype J (1), while one remained uncharacterized. Amino acid differences were detected between circulating strains and the Jeryl Lynn vaccine strains, although the majority of amino acid substitutions were genotype-specific. Fifty-one outbreaks were notified that included 324 confirmed mumps cases. Genotype G was the most frequent genotype detected. The family (35%), secondary schools (25%) and community outbreaks (18%) were the most frequent settings. CONCLUSIONS: Our study shows that genotype G viruses are the most prevalent in Catalonia. Most cases occurred in people who had received two doses of MMR, suggesting inadequate effectiveness of the Jeryl Lynn vaccine strain. The possible factors related are discussed.


Asunto(s)
Variación Genética , Vacuna contra el Sarampión-Parotiditis-Rubéola/inmunología , Virus de la Parotiditis/genética , Vacunación/estadística & datos numéricos , Adolescente , Adulto , Niño , Preescolar , Femenino , Genotipo , Humanos , Lactante , Masculino , Paperas/epidemiología , Paperas/inmunología , Paperas/virología , Virus de la Parotiditis/clasificación , Virus de la Parotiditis/aislamiento & purificación , Filogenia , Estudios Retrospectivos , Saliva/virología , España/epidemiología , Proteínas Virales/clasificación , Proteínas Virales/genética , Proteínas Virales/metabolismo , Adulto Joven
17.
Emerg Infect Dis ; 24(4): 774-778, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29553320

RESUMEN

During May-August 2016, mumps virus genotype K was detected in 12 Vietnam citizens who entered China at the Shuikou border crossing and 1 girl from China. We provide evidence that mumps genotype K is circulating in Vietnam and was imported to China from Vietnam.


Asunto(s)
Genotipo , Virus de la Parotiditis/genética , Paperas/epidemiología , Paperas/virología , Adolescente , Adulto , Niño , Preescolar , China/epidemiología , Femenino , Humanos , Masculino , Vietnam/epidemiología , Adulto Joven
18.
J Clin Microbiol ; 56(10)2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30021826

RESUMEN

Here, we report how the analysis of viral genetic variation using next-generation sequencing (NGS) can be used as a tool to improve mumps virus diagnostics. Analysis of NGS data from recently circulating mumps virus isolates allowed optimization of the current mumps virus real-time reverse transcription-PCR (RT-PCR) by primer and probe modifications due to nucleotide variations. The modified assay showed a higher efficiency and sensitivity than the previously used CDC protocol for the detection of currently circulating mumps virus strains and could therefore offer better support for outbreak control. The NGS sequence data were also used to make predictions of changes in the hemagglutinin-neuraminidase protein structure that could explain possible immune escape mechanisms.


Asunto(s)
Variación Genética , Técnicas de Diagnóstico Molecular/métodos , Virus de la Parotiditis/genética , Paperas/virología , Genoma Viral/genética , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Modelos Moleculares , Paperas/diagnóstico , Virus de la Parotiditis/aislamiento & purificación , Filogenia , ARN Viral/genética , Análisis de Secuencia de ARN , Proteínas Virales/química , Proteínas Virales/genética
19.
J Virol ; 91(6)2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28053100

RESUMEN

Paramyxoviral RNAs are synthesized by a viral RNA-dependent RNA polymerase (RdRp) consisting of the large (L) protein and its cofactor phosphoprotein (P protein). The L protein is a multifunctional protein that catalyzes RNA synthesis, mRNA capping, and mRNA polyadenylation. Growing evidence shows that the stability of several paramyxovirus L proteins is regulated by heat shock protein 90 (Hsp90). In this study, we demonstrated that Hsp90 activity was important for mumps virus (MuV) replication. The Hsp90 activity was required for L-protein stability and activity because an Hsp90-specific inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), destabilized the MuV L protein and suppressed viral RNA synthesis. However, once the L protein formed a mature polymerase complex with the P protein, Hsp90 activity was no longer required for the stability and activity of the L protein. When the Hsp90 activity was inhibited, the MuV L protein was degraded through the CHIP (C terminus of Hsp70-interacting protein)-mediated proteasomal pathway. High concentrations of 17-AAG showed strong cytotoxicity to certain cell types, but combined use of an Hsp70 inhibitor, VER155008, potentiated degradation of the L protein, allowing a sufficient reduction of 17-AAG concentration to block MuV replication with minimum cytotoxicity. Regulation of the L protein by Hsp90 and Hsp70 chaperones was also demonstrated for another paramyxovirus, the measles virus. Collectively, our data show that the Hsp90/Hsp70 chaperone machinery assists in the maturation of the paramyxovirus L protein and thereby in the formation of a mature RdRp complex and efficient viral replication.IMPORTANCE Heat shock protein 90 (Hsp90) is nearly universally required for viral protein homeostasis. Here, we report that Hsp90 activity is required for efficient propagation of mumps virus (MuV). Hsp90 functions in the maintenance of the catalytic subunit of viral polymerase, the large (L) protein, prior to formation of a mature polymerase complex with the polymerase cofactor of L, phosphoprotein. Hsp70 collaborates with Hsp90 to regulate biogenesis of the MuV L protein. The functions of these chaperones on the viral polymerase may be common among paramyxoviruses because the L protein of measles virus is also similarly regulated. Our data provide important insights into the molecular mechanisms of paramyxovirus polymerase maturation as well as a basis for the development of novel antiviral drugs.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , Interacciones Huésped-Patógeno , Virus de la Parotiditis/fisiología , ARN Polimerasa Dependiente del ARN/metabolismo , Replicación Viral , Animales , Línea Celular , Chlorocebus aethiops , Células Epiteliales/virología , Humanos , Virus del Sarampión/fisiología , Estabilidad Proteica , Proteolisis
20.
J Med Virol ; 90(1): 61-66, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28876460

RESUMEN

Recent years have seen a high incidence of mumps, which is generally diagnosed based on clinical features, especially parotitis, without laboratory confirmation in Korea. To better understand the epidemiology of mumps in Korean children, we investigated sporadic suspected mumps cases with parotitis. In total, 237 buccal swabs or throat swabs collected from children with parotitis who had been clinically diagnosed with mumps were tested using real-time PCR for the detection of six viruses (Epstein-Barr virus, Human herpesvirus 6, Mumps virus, Human parainfluenza virus-1, -2, -3, Human adenovirus, Human bocavirus). Among 237 parotitis cases, 87 (36.7%) were positive for at least one virus; a single infection was observed in 73 (83.9%) cases, and co-infections were detected in 14 (16.1%) cases. Epstein-Barr virus was most frequent (20.7%), followed by human herpesvirus 6 (8.0%), mumps virus (5.5%), human parainfluenza virus-3 (4.6%), human adenovirus (4.2%), and human bocavirus (0.4%). These data suggested that the sporadic suspected mumps in the children might be related to other respiratory viruses rather than to the mumps virus. Our findings also indicate the limitation of clinical diagnosis without laboratory confirmation for mumps and thus highlight the importance of laboratory testing in suspected mumps cases.


Asunto(s)
Paperas/epidemiología , Parotiditis/etiología , Parotiditis/virología , Virus/genética , Virus/aislamiento & purificación , Adolescente , Niño , Preescolar , Coinfección/virología , Femenino , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/aislamiento & purificación , Humanos , Lactante , Masculino , Paperas/diagnóstico , Paperas/virología , Virus de la Parotiditis/genética , Virus de la Parotiditis/aislamiento & purificación , Parotiditis/epidemiología , Reacción en Cadena en Tiempo Real de la Polimerasa , República de Corea/epidemiología , Virus/clasificación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda