Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Am J Physiol Cell Physiol ; 325(4): C1017-C1030, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37661921

RESUMEN

The muscle extracellular matrix (ECM) forms a complex network of collagens, proteoglycans, and other proteins that produce a favorable environment for muscle regeneration, protect the sarcolemma from contraction-induced damage, and provide a pathway for the lateral transmission of contractile force. In each of these functions, the structure and organization of the muscle ECM play an important role. Many aspects of collagen architecture, including collagen alignment, cross linking, and packing density affect the regenerative capacity, passive mechanical properties, and contractile force transmission pathways of skeletal muscle. The balance between fortifying the muscle ECM and maintaining ECM turnover and compliance is highly dependent on the integrated organization, or architecture, of the muscle matrix, especially related to collagen. While muscle ECM remodeling patterns in response to exercise and disease are similar, in that collagen synthesis can increase in both cases, one outcome leads to a stronger muscle and the other leads to fibrosis. In this review, we provide a comprehensive analysis of the architectural features of each layer of muscle ECM: epimysium, perimysium, and endomysium. Further, we detail the importance of muscle ECM architecture to biomechanical function in the context of exercise or fibrosis, including disease, injury, and aging. We describe how collagen architecture is linked to active and passive muscle biomechanics and which architectural features are acutely dynamic and adapt over time. Future studies should investigate the significance of collagen architecture in muscle stiffness, ECM turnover, and lateral force transmission in the context of health and fibrosis.


Asunto(s)
Matriz Extracelular , Músculo Esquelético , Humanos , Músculo Esquelético/metabolismo , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Proteoglicanos/metabolismo , Fibrosis
2.
J Biomed Mater Res A ; 110(11): 1761-1773, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36082972

RESUMEN

Hydrogels derived from decellularized extracellular matrices (dECM) can mimic the biochemical composition of the native tissue. They can also act as a template to culture reseeded cells in vitro. However, detergent-based decellularization methods are known to alter the biochemical compositions, thereby compromising the bioactive potential of dECM. This study proposes a facile detergent-free method to achieve dECM from smooth muscle tissue. We have used the muscle layer of caprine esophageal tissue and decellularized using hypo and hyper-molar sodium chloride solutions alternatingly. Then, a hydrogel was prepared from this decellularized smooth muscle matrix (dSMM) and characterized thoroughly. A comparative analysis of the dSMM prepared with our protocol with the existing detergent-based protocol suggests successful and comparable decellularization with minimal residual DNA content. Interestingly, an 8.78-fold increase in sulfated glycosaminoglycans content and 1.62-fold increased collagen content indicated higher retention of ECM constituents with NaCl-based decellularization strategy. Moreover, the dSMM gel induces differentiation of the encapsulated adipose-derived mesenchymal stem cells toward smooth muscle cells (SMCs) as observed by their expression of alpha-smooth muscle actin and smooth muscle myosin heavy chain, the hallmarks of SMCs. Finally, we optimized the process parameter for productive bioprinting with this dSMM bioink and fabricated 3D muscle constructs. Our results suggest that dSMM has the potential to be used as a bioink to engineer personalized esophageal tissues.


Asunto(s)
Células Madre Mesenquimatosas , Ingeniería de Tejidos , Animales , Matriz Extracelular/química , Cabras , Hidrogeles/química , Hidrogeles/farmacología , Músculo Liso , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda