RESUMEN
We examined the rate and nature of mitochondrial DNA (mtDNA) mutations in humans using sequence data from 64,806 contemporary Icelanders from 2,548 matrilines. Based on 116,663 mother-child transmissions, 8,199 mutations were detected, providing robust rate estimates by nucleotide type, functional impact, position, and different alleles at the same position. We thoroughly document the true extent of hypermutability in mtDNA, mainly affecting the control region but also some coding-region variants. The results reveal the impact of negative selection on viable deleterious mutations, including rapidly mutating disease-associated 3243A>G and 1555A>G and pre-natal selection that most likely occurs during the development of oocytes. Finally, we show that the fate of new mutations is determined by a drastic germline bottleneck, amounting to an average of 3 mtDNA units effectively transmitted from mother to child.
Asunto(s)
ADN Mitocondrial , Linaje , Humanos , ADN Mitocondrial/genética , Femenino , Islandia , Masculino , Mutación , Tasa de MutaciónRESUMEN
Inflammatory bowel disease (IBD) is a chronic inflammatory disease associated with increased risk of gastrointestinal cancers. We whole-genome sequenced 446 colonic crypts from 46 IBD patients and compared these to 412 crypts from 41 non-IBD controls from our previous publication on the mutation landscape of the normal colon. The average mutation rate of affected colonic epithelial cells is 2.4-fold that of healthy colon, and this increase is mostly driven by acceleration of mutational processes ubiquitously observed in normal colon. In contrast to the normal colon, where clonal expansions outside the confines of the crypt are rare, we observed widespread millimeter-scale clonal expansions. We discovered non-synonymous mutations in ARID1A, FBXW7, PIGR, ZC3H12A, and genes in the interleukin 17 and Toll-like receptor pathways, under positive selection in IBD. These results suggest distinct selection mechanisms in the colitis-affected colon and that somatic mutations potentially play a causal role in IBD pathogenesis.
Asunto(s)
Evolución Clonal/genética , Colitis/genética , Enfermedades Inflamatorias del Intestino/genética , Tasa de Mutación , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/genética , Evolución Clonal/inmunología , Colitis/metabolismo , Colitis Ulcerosa/genética , Colitis Ulcerosa/metabolismo , Enfermedad de Crohn/genética , Enfermedad de Crohn/metabolismo , Proteínas de Unión al ADN/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Femenino , Humanos , Mutación INDEL , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Interleucina-17/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Masculino , Persona de Mediana Edad , Filogenia , Mutación Puntual , Receptores de Superficie Celular/genética , Ribonucleasas/genética , Receptores Toll-Like/genética , Factores de Transcripción/genética , Secuenciación Completa del GenomaRESUMEN
To uncover the selective forces shaping life-history trait evolution across species, we investigate the genomic basis underlying adaptations to seasonal habitat desiccation in African killifishes, identifying the genetic variants associated with positive and relaxed purifying selection in 45 killifish species and 231 wild individuals distributed throughout sub-Saharan Africa. In annual species, genetic drift led to the expansion of nuclear and mitochondrial genomes and caused the accumulation of deleterious genetic variants in key life-history modulating genes such as mtor, insr, ampk, foxo3, and polg. Relaxation of purifying selection is also significantly associated with mitochondrial function and aging in human populations. We find that relaxation of purifying selection prominently shapes genomes and is a prime candidate force molding the evolution of lifespan and the distribution of genetic variants associated with late-onset diseases in different species. VIDEO ABSTRACT.
Asunto(s)
Longevidad , Selección Genética , Envejecimiento , Animales , Replicación del ADN , Evolución Molecular , Frecuencia de los Genes , Genoma Mitocondrial , Peces Killi/clasificación , Peces Killi/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , Filogenia , FilogeografíaRESUMEN
During the essential processes of DNA replication and transcription, RNA-DNA hybrid intermediates are formed that pose significant risks to genome integrity when left unresolved. To manage RNA-DNA hybrids, all cells rely on RNase H family enzymes that specifically cleave the RNA portion of the many different types of hybrids that form in vivo. Recent experimental advances have provided new insight into how RNA-DNA hybrids form and the consequences to genome integrity that ensue when persistent hybrids remain unresolved. Here we review the types of RNA-DNA hybrids, including R-loops, RNA primers, and ribonucleotide misincorporations, that form during DNA replication and transcription and discuss how each type of hybrid can contribute to genome instability in bacteria. Further, we discuss how bacterial RNase HI, HII, and HIII and bacterial FEN enzymes contribute to genome maintenance through the resolution of hybrids.
Asunto(s)
Proteínas Bacterianas , Ribonucleasas , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , ADN , Replicación del ADN , ARN/genética , Ribonucleasas/genética , Ribonucleasas/metabolismoRESUMEN
The chronology and phylogeny of bacterial evolution are difficult to reconstruct due to a scarce fossil record. The analysis of bacterial genomes remains challenging because of large sequence divergence, the plasticity of bacterial genomes due to frequent gene loss, horizontal gene transfer, and differences in selective pressure from one locus to another. Therefore, taking advantage of the rich and rapidly accumulating genomic data requires accurate modeling of genome evolution. An important technical consideration is that loci with high effective mutation rates may diverge beyond the detection limit of the alignment algorithms used, biasing the genome-wide divergence estimates toward smaller divergences. In this article, we propose a novel method to gain insight into bacterial evolution based on statistical properties of genome comparisons. We find that the length distribution of sequence matches is shaped by the effective mutation rates of different loci, by the horizontal transfers, and by the aligner sensitivity. Based on these inputs, we build a model and show that it accounts for the empirically observed distributions, taking the Enterobacteriaceae family as an example. Our method allows to distinguish segments of vertical and horizontal origins and to estimate the time divergence and exchange rate between any pair of taxa from genome-wide alignments. Based on the estimated time divergences, we construct a time-calibrated phylogenetic tree to demonstrate the accuracy of the method.
Asunto(s)
Genoma Bacteriano , Modelos Genéticos , Filogenia , Genoma Bacteriano/genética , Genómica/métodos , Bacterias/genética , Evolución MolecularRESUMEN
Mitochondrial function relies on the coordinated expression of mitochondrial and nuclear genes, exhibiting remarkable resilience despite high mitochondrial mutation rates. The nuclear compensation mechanism suggests deleterious mitochondrial alleles drive compensatory nuclear mutations to preserve mito-nuclear compatibility. However, prevalence and factors conditioning this phenomenon remain debated due to its conflicting evidence. Here, we investigate how mito-nuclear incompatibilities impact substitutions in a model for species radiation. Mating success depends on genetic compatibility (nuclear DNA) and spatial proximity. Populations evolve from partially compatible mito-nuclear states, simulating mitochondrial DNA (mtDNA) introgression. Mutations do not confer advantages nor disadvantages, but individual fecundity declines with increasing incompatibilities, selecting for mito-nuclear coordination. We find that selection for mito-nuclear compatibility affects each genome differently based on their initial state. In compatible gene pairs, selection reduces substitutions in both genomes, while in incompatible nuclear genes, it consistently promotes compensation, facilitated by more mismatches. Interestingly, high mitochondrial mutation rates can reduce nuclear compensation by increasing mtDNA rectification, while substitutions in initially compatible nuclear gene are boosted. Finally, the presence of incompatibilities accelerates species radiation, but equilibrium richness is not directly correlated to substitution rates, revealing the complex dynamics triggered by mitochondrial introgression and mito-nuclear coevolution. Our study provides a perspective on nuclear compensation and the role of mito-nuclear incompatibilities in speciation by exploring extreme scenarios and identifying trends that empirical data alone cannot reveal. We emphasize the challenges in detecting these dynamics and propose analyzing specific genomic signatures could shed light on this evolutionary process.
Asunto(s)
Núcleo Celular , ADN Mitocondrial , Núcleo Celular/genética , Núcleo Celular/metabolismo , ADN Mitocondrial/genética , Mutación , Modelos Genéticos , Evolución Molecular , Mitocondrias/genética , Mitocondrias/metabolismo , Animales , Selección Genética , Evolución Biológica , Tasa de MutaciónRESUMEN
The first step of viral evolution takes place during genome replication via the error-prone viral polymerase. Among the mutants that arise through this process, only a few well-adapted variants will be selected by natural selection, renewing the viral genome population. Viral polymerase-mediated errors are thought to occur stochastically. However, accumulating evidence suggests that viral polymerase-mediated mutations are heterogeneously distributed throughout the viral genome. Here, we review work that supports this concept and provides mechanistic insights into how specific features of the viral genome could modulate viral polymerase-mediated errors. A predisposition to accumulate viral polymerase-mediated errors at specific loci in the viral genome may guide evolution to specific pathways, thus opening new directions of research to better understand viral evolutionary dynamics.
Asunto(s)
Genoma Viral , Mutación , Genoma Viral/genética , GenotipoRESUMEN
N 1-methyl adenosine (m1A) is a widespread RNA modification present in tRNA, rRNA, and mRNA. m1A modification sites in tRNAs are evolutionarily conserved and its formation on tRNA is catalyzed by methyltransferase TRMT61A and TRMT6 complex. m1A promotes translation initiation and elongation. Due to its positive charge under physiological conditions, m1A can notably modulate RNA structure. It also blocks Watson-Crick-Franklin base-pairing and causes mutation and truncation during reverse transcription. Several misincorporation-based high-throughput sequencing methods have been developed to sequence m1A. In this study, we introduce a reduction-based m1A sequencing (red-m1A-seq). We report that NaBH4 reduction of m1A can improve the mutation and readthrough rates using commercially available RT enzymes to give a better positive signature, while alkaline-catalyzed Dimroth rearrangement can efficiently convert m1A to m6A to provide good controls, allowing the detection of m1A with higher sensitivity and accuracy. We applied red-m1A-seq to sequence human small RNA, and we not only detected all the previously reported tRNA m1A sites, but also new m1A sites in mt-tRNAAsn-GTT and 5.8S rRNA.
Asunto(s)
ARN de Transferencia , ARN , Humanos , Metilación , ARN de Transferencia/química , ARN/genética , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo , Metiltransferasas/metabolismo , ARN Mensajero/genéticaRESUMEN
Direct reciprocity is a powerful mechanism for the evolution of cooperation based on repeated interactions between the same individuals. But high levels of cooperation evolve only if the benefit-to-cost ratio exceeds a certain threshold that depends on memory length. For the best-explored case of one-round memory, that threshold is two. Here, we report that intermediate mutation rates lead to high levels of cooperation, even if the benefit-to-cost ratio is only marginally above one, and even if individuals only use a minimum of past information. This surprising observation is caused by two effects. First, mutation generates diversity which undermines the evolutionary stability of defectors. Second, mutation leads to diverse communities of cooperators that are more resilient than homogeneous ones. This finding is relevant because many real-world opportunities for cooperation have small benefit-to-cost ratios, which are between one and two, and we describe how direct reciprocity can attain cooperation in such settings. Our result can be interpreted as showing that diversity, rather than uniformity, promotes evolution of cooperation.
Asunto(s)
Conducta Cooperativa , Teoría del Juego , Humanos , Evolución Biológica , Mutación , Tasa de MutaciónRESUMEN
Antigenic variation is the main immune escape mechanism for RNA viruses like influenza or SARS-CoV-2. While high mutation rates promote antigenic escape, they also induce large mutational loads and reduced fitness. It remains unclear how this cost-benefit trade-off selects the mutation rate of viruses. Using a traveling wave model for the coevolution of viruses and host immune systems in a finite population, we investigate how immunity affects the evolution of the mutation rate and other nonantigenic traits, such as virulence. We first show that the nature of the wave depends on how cross-reactive immune systems are, reconciling previous approaches. The immune-virus system behaves like a Fisher wave at low cross-reactivities, and like a fitness wave at high cross-reactivities. These regimes predict different outcomes for the evolution of nonantigenic traits. At low cross-reactivities, the evolutionarily stable strategy is to maximize the speed of the wave, implying a higher mutation rate and increased virulence. At large cross-reactivities, where our estimates place H3N2 influenza, the stable strategy is to increase the basic reproductive number, keeping the mutation rate to a minimum and virulence low.
Asunto(s)
Gripe Humana , Virus ARN , Humanos , Subtipo H3N2 del Virus de la Influenza A/genética , Variación Antigénica/genética , Virus ARN/genética , Glicoproteínas Hemaglutininas del Virus de la InfluenzaRESUMEN
The mouse serves as a mammalian model for understanding the nature of variation from new mutations, a question that has both evolutionary and medical significance. Previous studies suggest that the rate of single-nucleotide mutations (SNMs) in mice is â¼50% of that in humans. However, information largely comes from studies involving the C57BL/6 strain, and there is little information from other mouse strains. Here, we study the mutations that accumulated in 59 mouse lines derived from four inbred strains that are commonly used in genetics and clinical research (BALB/cAnNRj, C57BL/6JRj, C3H/HeNRj, and FVB/NRj), maintained for eight to nine generations by brother-sister mating. By analyzing Illumina whole-genome sequencing data, we estimate that the average rate of new SNMs in mice is â¼µ = 6.7 × 10-9. However, there is substantial variation in the spectrum of SNMs among strains, so the burden from new mutations also varies among strains. For example, the FVB strain has a spectrum that is markedly skewed toward CâA transversions and is likely to experience a higher deleterious load than other strains, due to an increased frequency of nonsense mutations in glutamic acid codons. Finally, we observe substantial variation in the rate of new SNMs among DNA sequence contexts, CpG sites, and their adjacent nucleotides playing an important role.
Asunto(s)
Ratones Endogámicos , Animales , Ratones , Ratones Endogámicos/genética , Mutación , Ratones Endogámicos C57BLRESUMEN
We provide a method for estimating the genome-wide mutation rate from sequence data on unrelated individuals by using segments of identity by descent (IBD). The length of an IBD segment indicates the time to shared ancestor of the segment, and mutations that have occurred since the shared ancestor result in discordances between the two IBD haplotypes. Previous methods for IBD-based estimation of mutation rate have required the use of family data for accurate phasing of the genotypes. This has limited the scope of application of IBD-based mutation rate estimation. Here, we develop an IBD-based method for mutation rate estimation from population data, and we apply it to whole-genome sequence data on 4,166 European American individuals from the TOPMed Framingham Heart Study, 2,996 European American individuals from the TOPMed My Life, Our Future study, and 1,586 African American individuals from the TOPMed Hypertension Genetic Epidemiology Network study. Although mutation rates may differ between populations as a result of genetic factors, demographic factors such as average parental age, and environmental exposures, our results are consistent with equal genome-wide average mutation rates across these three populations. Our overall estimate of the average genome-wide mutation rate per 108 base pairs per generation for single-nucleotide variants is 1.24 (95% CI 1.18-1.33).
Asunto(s)
Genoma Humano , Tasa de Mutación , Humanos , Genoma Humano/genética , Polimorfismo de Nucleótido Simple/genética , Haplotipos , GenotipoRESUMEN
The sparsity of mutations observed across tumours hinders our ability to study mutation rate variability at nucleotide resolution. To circumvent this, here we investigated the propensity of mutational processes to form mutational hotspots as a readout of their mutation rate variability at single base resolution. Mutational signatures 1 and 17 have the highest hotspot propensity (5-78 times higher than other processes). After accounting for trinucleotide mutational probabilities, sequence composition and mutational heterogeneity at 10 Kbp, most (94-95%) signature 17 hotspots remain unexplained, suggesting a significant role of local genomic features. For signature 1, the inclusion of genome-wide distribution of methylated CpG sites into models can explain most (80-100%) of the hotspot propensity. There is an increased hotspot propensity of signature 1 in normal tissues and de novo germline mutations. We demonstrate that hotspot propensity is a useful readout to assess the accuracy of mutation rate models at nucleotide resolution. This new approach and the findings derived from it open up new avenues for a range of somatic and germline studies investigating and modelling mutagenesis.
Asunto(s)
Tasa de Mutación , Neoplasias , Humanos , Mutación , Neoplasias/genética , Secuencia de Bases , NucleótidosRESUMEN
Owing to advances in genome sequencing, genome stability has become one of the most scrutinized cellular traits across the Tree of Life. Despite its centrality to all things biological, the mutation rate (per nucleotide site per generation) ranges over three orders of magnitude among species and several-fold within individual phylogenetic lineages. Within all major organismal groups, mutation rates scale negatively with the effective population size of a species and with the amount of functional DNA in the genome. This relationship is most parsimoniously explained by the drift-barrier hypothesis, which postulates that natural selection typically operates to reduce mutation rates until further improvement is thwarted by the power of random genetic drift. Despite this constraint, the molecular mechanisms underlying DNA replication fidelity and repair are free to wander, provided the performance of the entire system is maintained at the prevailing level. The evolutionary flexibility of the mutation rate bears on the resolution of several prior conundrums in phylogenetic and population-genetic analysis and raises challenges for future applications in these areas.
Asunto(s)
Flujo Genético , Tasa de Mutación , Filogenia , Evolución Biológica , Selección Genética , Mutación , Evolución MolecularRESUMEN
Rapidly evolving bacterial pathogens pose a unique challenge for long-term plant disease management. In this study, we investigated the types and rate of mutations in bacterial populations during seasonal disease epidemics. Two phylogenetically distinct strains of the bacterial spot pathogen, Xanthomonas perforans, were marked, released in tomato fields, and recaptured at several time points during the growing season. Genomic variations in recaptured isolates were identified by comparative analysis of their whole-genome sequences. In total, 180 unique variations (116 substitutions, 57 insertions/deletions, and 7 structural variations) were identified from 300 genomes, resulting in the overall host-associated mutation rate of â¼0.3 to 0.9/genome/week. This result serves as a benchmark for bacterial mutation during epidemics in similar pathosystems. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Asunto(s)
Enfermedades de las Plantas , Xanthomonas , Estaciones del Año , Enfermedades de las Plantas/microbiología , Bacterias/genética , Genoma Bacteriano/genética , Mutación , Xanthomonas/genéticaRESUMEN
Mutation rate is a fundamental parameter in population genetics. Apart from being an important scaling parameter for demographic and phylogenetic inference, it allows one to understand at what rate new genetic diversity is generated and what the expected level of genetic diversity is in a population at equilibrium. However, except for well-established model organisms, accurate estimates of de novo mutation rates are available for a very limited number of organisms from the wild. We estimated mutation rates (µ) in two marine populations of the nine-spined stickleback (Pungitius pungitius) with the aid of several 2- and 3-generational family pedigrees, deep (>50×) whole-genome resequences and a high-quality reference genome. After stringent filtering, we discovered 308 germline mutations in 106 offspring translating to µ = 4.83 × 10-9 and µ = 4.29 × 10-9 per base per generation in the two populations, respectively. Up to 20% of the mutations were shared by full-sibs showing that the level of parental mosaicism was relatively high. Since the estimated µ was 3.1 times smaller than the commonly used substitution rate, recalibration with µ led to substantial increase in estimated divergence times between different stickleback species. Our estimates of the de novo mutation rate should provide a useful resource for research focused on fish population genetics and that of sticklebacks in particular.
Asunto(s)
Smegmamorpha , Animales , Smegmamorpha/genética , Tasa de Mutación , Filogenia , Mutación , Mutación de Línea GerminalRESUMEN
SARS-CoV-2 evolves rapidly in part because of its high mutation rate. Here, we examine whether this mutational process itself has changed during viral evolution. To do this, we quantify the relative rates of different types of single-nucleotide mutations at 4-fold degenerate sites in the viral genome across millions of human SARS-CoV-2 sequences. We find clear shifts in the relative rates of several types of mutations during SARS-CoV-2 evolution. The most striking trend is a roughly 2-fold decrease in the relative rate of GâT mutations in Omicron versus early clades, as was recently noted by Ruis et al. (2022. Mutational spectra distinguish SARS-CoV-2 replication niches. bioRxiv, doi:10.1101/2022.09.27.509649). There is also a decrease in the relative rate of CâT mutations in Delta, and other subtle changes in the mutation spectrum along the phylogeny. We speculate that these changes in the mutation spectrum could arise from viral mutations that affect genome replication, packaging, and antagonization of host innate-immune factors, although environmental factors could also play a role. Interestingly, the mutation spectrum of Omicron is more similar than that of earlier SARS-CoV-2 clades to the spectrum that shaped the long-term evolution of sarbecoviruses. Overall, our work shows that the mutation process is itself a dynamic variable during SARS-CoV-2 evolution and suggests that human SARS-CoV-2 may be trending toward a mutation spectrum more similar to that of other animal sarbecoviruses.
Asunto(s)
COVID-19 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Animales , Humanos , SARS-CoV-2 , Mutación , Tasa de Mutación , Genoma ViralRESUMEN
The spontaneous mutation rate µ is a crucial parameter to understand evolution and biodiversity. Mutation rates are highly variable across species, suggesting that µ is susceptible to selection and drift and that species life cycle and life history may impact its evolution. In particular, asexual reproduction and haploid selection are expected to affect the mutation rate, but very little empirical data are available to test this expectation. Here, we sequence 30 genomes of a parent-offspring pedigree in the model brown alga Ectocarpus sp.7, and 137 genomes of an interspecific cross of the closely related brown alga Scytosiphon to have access to the spontaneous mutation rate of representative organisms of a complex multicellular eukaryotic lineage outside animals and plants, and to evaluate the potential impact of life cycle on the mutation rate. Brown algae alternate between a haploid and a diploid stage, both multicellular and free living, and utilize both sexual and asexual reproduction. They are, therefore, excellent models to empirically test expectations of the effect of asexual reproduction and haploid selection on mutation rate evolution. We estimate that Ectocarpus has a base substitution rate of µbs = 4.07 × 10-10 per site per generation, whereas the Scytosiphon interspecific cross had µbs = 1.22 × 10-9. Overall, our estimations suggest that these brown algae, despite being multicellular complex eukaryotes, have unusually low mutation rates. In Ectocarpus, effective population size (Ne) could not entirely explain the low µbs. We propose that the haploid-diploid life cycle, combined with extensive asexual reproduction, may be additional key drivers of the mutation rate in these organisms.
Asunto(s)
Diploidia , Phaeophyceae , Animales , Haploidia , Tasa de Mutación , Eucariontes , Estadios del Ciclo de Vida/genética , Plantas , Phaeophyceae/genéticaRESUMEN
Cancer originates from a single ancestral cell that acquires a driver mutation, which confers a growth or survival advantage, followed by the acquisition of additional driver mutations by descendant cells. Recently, it has become evident that somatic cell mutations accumulate in normal tissues with aging and exposure to environmental factors, such as alcohol, smoking, and UV rays, increases the mutation rate. Clones harboring driver mutations expand with age, leading to tissue remodeling. Lineage analysis of myeloproliferative neoplasms and der(1;16)-positive breast cancer revealed that driver mutations were acquired early in our lives and that the development of cancer takes decades, unveiling the previously unknown early process of cancer development. Evidence that clonal hematopoiesis affects various diseases, including nonneoplastic diseases, highlights the potential role of the identification and functional analysis of mutated clones in unraveling unknown pathologies. In this review, we summarize the recent updates on clonal expansion in normal tissues and the natural history of cancer revealed through lineage analysis of noncancerous and cancerous tissues.
Asunto(s)
Mutación , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/patología , Animales , Hematopoyesis Clonal/genética , Evolución ClonalRESUMEN
AbstractMutation rates vary widely along genomes and across inheritance systems. This suggests that complex traits-resulting from the contributions of multiple determinants-might be composite in terms of the underlying mutation rates. Here we investigate through mathematical modeling whether such a heterogeneity may drive changes in a trait's architecture, especially in fluctuating environments, where phenotypic instability can be beneficial. We first identify a convexity principle related to the shape of the trait's fitness function, setting conditions under which composite architectures should be adaptive or, conversely and more commonly, should be selected against. Simulations reveal, however, that applying this principle to realistic evolving populations requires taking into account pervasive epistatic interactions that take place in the system. Indeed, the fate of a mutation affecting the architecture depends on the (epi)genetic background, which itself depends on the current architecture in the population. We tackle this problem by borrowing the adaptive dynamics framework from evolutionary ecology-where it is routinely used to deal with such resident/mutant dependencies-and find that the principle excluding composite architectures generally prevails. Yet the predicted evolutionary trajectories will typically depend on the initial architecture, possibly resulting in historical contingencies. Finally, by relaxing the large population size assumption, we unexpectedly find that not only the strength of selection on a trait's architecture but also its direction depend on population size, revealing a new occurrence of the recently identified phenomenon coined "sign inversion."