Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Small ; 20(24): e2310725, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38155498

RESUMEN

Structural regulation is of primary importance in structure-property/application studies of dealloyed nanoporous metals. Three aspects are mainly considered to affect the microstructure of nanoporous metals: design of precursor alloy, choosing of dealloying parameter, and annealing treatment. Herein, through the combination of the above three strategies, the regulation of structure, composition and phase in nanoporous metals are simultaneously achieved. With a dilute Cu99Ag0.75Au0.25 as the precursor, three kinds of nanoporous films are fabricated, including bi-phase nanoporous Cu-Ag-Au (B-NP-CuAgAu), hierarchically nanoporous Au (H-NPG) and single-phase homogeneously nanoporous Au (S-NPG). In situ X-ray diffraction and ex situ characterizations are utilized to reveal the structure/composition/phase evolutions during dealloying of Cu99Ag0.75Au0.25, as well as the macroscopic changes of the dealloyed samples. Notably, the ultrafine ligaments/channels of B-NP-CuAgAu and the two-level nanoporous structure of H-NPG endow them with good broadband light absorption and excellent hydrophilicity, which contribute to their outstanding solar steam generation (SSG) performances. Specially, the B-NP-CuAgAu film shows a more efficient SSG performance with water evaporation rate of 1.49 kg m-2 h-1 and photothermal efficiency of 93.6% at 1 kW m-2, and good seawater desalination ability.

2.
Nano Lett ; 22(16): 6787-6793, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35952308

RESUMEN

Experiment shows thin films of dealloyed nanoporous gold (NPG) spontaneously detaching from massive gold base layers. NPG can also densify near its external surface. This is naturally reproduced by kinetic Monte Carlo (KMC) simulation of dealloying and coarsening and so appears generic for nanoscale network materials evolving by surface diffusion. Near the porous layer's external surface and near its interface with the base layer, gradients in the depth-profile of a laterally averaged mean surface curvature provide driving forces for diffusion and cause divergences of the net fluxes of matter, leading to accretion/densification or to erosion/disconnection. As a toy model, the morphology evolution of substrate-supported nanopillars by surface diffusion illustrates and confirms our considerations. Contrary to cylindrical nanowires, the ligaments in nanoporous materials exhibit pre-existing gradients in the mean curvature. The Plateau-Rayleigh long-wavelength stability criterion is then not applicable and the disconnection accelerated.

3.
Small ; 17(35): e2100683, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34310042

RESUMEN

Designing highly selective and cost-effective electrocatalysts toward electrochemical carbon dioxide (CO2 ) reduction is crucial for desirable transformation of greenhouse gas into fuels or high-value chemical products. Here, the authors report intermetallic Cu3 Sn that is in situ formed and seamlessly integrated on self-supported bimodal nanoporous Cu skeleton (Cu3 Sn/Cu) via a spontaneous alloying of Sn and Cu as robust electrocatalyst for selective electroreduction of CO2 to CO. By virtue of Sn atoms strengthening CO adsorption on Cu atoms, the intermetallic Cu3 Sn has an intrinsic activity of ≈10.58 µA cm-2 , more than 80-fold higher than that of monometallic Cu. By virtue of hierarchical bicontinuous nanoporous Cu architecture facilitating electron transfer and CO2 and proton mass transport and offering high specific surface areas for full use of electroactive Cu3 Sn sites, the nanoporous Cu3 Sn/Cu hybrid electrodes produce CO at a low overpotential of 0.09 V, and exhibit high partial current density of ≈15 mA cm-2 geo at overpotential of 0.59 V, along with excellent stability and selectivity of 91.5% Faradaic efficiency. The outstanding electrochemical performance make them attractive alternatives to precious Au- and Ag-based electrocatalysts for building low-cost CO2 electrolyzers to selectively produce CO.

4.
Nano Lett ; 20(11): 8205-8211, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33054237

RESUMEN

Nanoporous metallic networks are endowed with the distinctive optical properties of strong field enhancement and spatial localization, raising the necessity to map the optical eigenmodes with high spatial resolution. In this work, we used cathodoluminescence (CL) to map the local electric fields of a three-dimensional (3D) silver network made of nanosized ligaments and holes over a broad spectral range. A multitude of neighboring hotspots at different frequencies and intensities are observed at subwavelength distances over the network. In contrast to well-defined plasmonic structures, the hotspots do not necessarily correlate with the network morphology, emphasizing the complexity and energy dissipation through the network. In addition, we show that the inherent connectivity of the networked structure plays a key optical role because a ligament with a single connected linker shows localized modes whereas an octopus-like ligament with multiple connections permits energy propagation through the network.

5.
Sensors (Basel) ; 20(12)2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32586032

RESUMEN

Electrochemical biosensors benefit from the simplicity, sensitivity, and rapid response of electroanalytical devices coupled with the selectivity of biorecognition molecules. The implementation of electrochemical biosensors in a clinical analysis can provide a sensitive and rapid response for the analysis of biomarkers, with the most successful being glucose sensors for diabetes patients. This review summarizes recent work on the use of structured materials such as nanoporous metals, graphene, carbon nanotubes, and ordered mesoporous carbon for biosensing applications. We also describe the use of additive manufacturing (AM) and review recent progress and challenges for the use of AM in biosensing applications.


Asunto(s)
Técnicas Biosensibles , Electrodos , Grafito , Nanotubos de Carbono , Técnicas Electroquímicas , Humanos , Metales
6.
Small ; 15(46): e1904523, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31573141

RESUMEN

Electrochemical reactions represent a promising approach to control magnetization via electric fields. Favorable reaction kinetics have made nanoporous materials particularly interesting for magnetic tuning experiments. A fully reversible ON and OFF switching of magnetism in nanoporous Pd(Co) at room temperature is demonstrated, triggered by electrochemical hydrogen sorption. Comprehensive magnetic characterization in combination with high-resolution scanning transmission electron microscopy reveals the presence of Co-rich, nanometer-sized clusters in the nanoporous Pd matrix with distinct superparamagnetic behavior. The strong magneto-ionic effect arises from coupling of the magnetic clusters via a Ruderman-Kittel-Kasuya-Yoshida-type interaction in the Pd matrix which is strengthened upon hydrogen sorption. This approach offers a new pathway for the voltage control of magnetism, for application in spintronic or microelectromagnetic devices.

7.
Small ; 15(22): e1805432, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31026109

RESUMEN

Nanoporous metals represent a class of functional materials with unique bicontinuous open porous structural properties, making them ideal candidates for various catalyst applications. However, the pursuit of nanoporous properties, extremely small pores, and high surface area, results in the restriction of mass transport. Herein, a free-standing hierarchical nanoporous Cu material, prepared by a selective laser melting 3D printing technique and a one-step dealloying process, is presented as a highly efficient electrocatalyst for methanol oxidation. It is demonstrated that the digitally controlled hierarchical structure with macro- and nano-scaled pores can be utilized for promoting and directing mass transport as well as for the enhancement of catalytic properties. This work highlights a facile, low-cost, and alternative strategy for hierarchical nanoporous structure design that can be applied to binary, ternary, and quaternary metal alloys for various functional applications.

8.
Chem Rec ; 15(5): 964-78, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26419511

RESUMEN

Two types of nanomaterials with different morphologies are described in this article: nanoporous metals and titanate nanowires. Both materials are fabricated by a dealloying method. In the former case, the catalytic properties of nanoporous gold and palladium are exemplified by many chemical transformations. The reactions proceed without any support, stabilizer, or ligands. The catalyst can be easily recovered by a simple separation process and reused many times without significant loss of catalytic activity. In the latter case, the dealloying of Ti-Al alloy is described as a new fabrication method for producing ultrafine titanate nanowires. This method does not require high-temperature conditions, which is advantageous for the construction of fine structures. The key to this process is achieving a fine dispersion of intermetallic TiAl3 nanocrystals in the Al matrix in the mother alloy. The resulting nanowires exhibit remarkable Sr(2+) ion-exchange properties.

9.
Angew Chem Int Ed Engl ; 54(28): 8100-4, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-26014715

RESUMEN

We report a novel multicomponent mixed-valence oxyhydroxide-based electrode synthesized by electrochemical polarization of a de-alloyed nanoporous NiCuMn alloy. The multicomponent oxyhydroxide has a high specific capacitance larger than 627 F cm(-3) (1097±95 F g(-1) ) at a current density of 0.25 A cm(-3) , originating from multiple redox reactions. More importantly, the oxyhydroxide electrode possesses an extraordinarily wide working-potential window of 1.8 V in an aqueous electrolyte, which far exceeds the theoretically stable window of water. The realization of both high specific capacitance and high working-potential windows gives rise to a high energy density, 51 mWh cm(-3) , of the multicomponent oxyhydroxide-based supercapacitor for high-energy and high-power applications.

10.
Materials (Basel) ; 17(2)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38276438

RESUMEN

A new approach to produce nanoporous metals has been investigated, which is based on the dealloying of bi- or multi-component alloys. Depletion and pore formation of the alloy substrate are obtained by the transport of certain alloy components at high temperatures via volatile halogen compounds. These halogen compounds are transferred to materials acting as sinks based on their higher affinity to the respective components, and chemically bound there. Transfer via volatile halogen compounds is known from the pack cementation coating process and from high-temperature corrosion in certain industrial atmospheres. The approach was tested on different precursor alloys: Ti-43.5Al-4Nb-1Mo-0.1B (TNM-B1), TiNb42, and AlCu. Both dealloying effects and micro-scale pore formation were observed. The detailed size of the porous structures is in the range of 50 nm for both TNM-B1 and TiNB42 and 500 nm for AlCu.

11.
ACS Nano ; 17(17): 17070-17081, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37590207

RESUMEN

Metallic nanoarchitectures hold immense value as functional materials across diverse applications. However, major challenges lie in effectively engineering their hierarchical porosity while achieving scalable fabrication at low processing temperatures. Here we present a liquid-metal solvent-based method for the nanoarchitecting and transformation of solid metals. This was achieved by reacting liquid gallium with solid metals to form crystalline entities. Nanoporous features were then created by selectively removing the less noble and comparatively softer gallium from the intermetallic crystals. By controlling the crystal growth and dealloying conditions, we realized the effective tuning of the micro-/nanoscale porosities. Proof-of-concept examples were shown by applying liquid gallium to solid copper, silver, gold, palladium, and platinum, while the strategy can be extended to a wider range of metals. This metallic-solvent-based route enables low-temperature fabrication of metallic nanoarchitectures with tailored porosity. By demonstrating large-surface-area and scalable hierarchical nanoporous metals, our work addresses the pressing demand for these materials in various sectors.

12.
Adv Sci (Weinh) ; 9(27): e2106117, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35900062

RESUMEN

Hierarchically porous metals possess intriguing high accessibility of matter molecules and unique continuous metallic frameworks, as well as a high level of exposed active atoms. High rates of diffusion and fast energy transfer have been important and challenging goals of hierarchical design and porosity control with nanostructured metals. This review aims to summarize recent important progress toward the development of hierarchically porous metals, with special emphasis on synthetic strategies, hierarchical design in structure-function and corresponding applications. The current challenges and future prospects in this field are also discussed.

13.
Materials (Basel) ; 15(10)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35629670

RESUMEN

Nanoporous Au has been subjected to serial block face-scanning electron microscopy (SBF-SEM) 3D-characterisation. Corresponding sections have been digitalized and used to evaluate the associated mechanical properties. Our investigation demonstrates that the sample is homogeneous and isotropic. The effective Young's modulus estimated by an analytical multiscale approach agrees remarkably well with the values stated in the literature.

14.
Materials (Basel) ; 15(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36233960

RESUMEN

Nanoporous (NP) metals represent a unique class of materials with promising properties for a wide set of applications in advanced technology, from catalysis and sensing to lightweight structural materials. However, they typically suffer from low thermal stability, which results in a coarsening behavior not yet fully understood. In this work, we focused precisely on the coarsening process undergone by NP Au, starting from the analysis of data available in the literature and addressing specific issues with suitably designed experiments. We observe that annealing more easily induces densification in systems with short characteristic lengths. The NP Au structures obtained by dealloying of mechanically alloyed AuAg precursors exhibit lower thermal stability than several NP Au samples discussed in the literature. Similarly, NP Au samples prepared by annealing the precursor alloy before dealloying display enhanced resistance to coarsening. We suggest that the microstructure of the precursor alloy, and, in particular, the grain size of the metal phases, can significantly affect the thermal stability of the NP metal. Specifically, the smaller the grain size of the parent alloy, the lower the thermal stability.

15.
ACS Appl Mater Interfaces ; 13(38): 45385-45393, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34519490

RESUMEN

Electrochemical CO2 reduction reaction (CO2RR) coupled with hydrogen evolution reaction (HER) is a renewable route to produce syngas (CO + H2), an essential feedstock for liquid fuel production. However, the development of high-performance electrocatalyst with tunable H2/CO ratio, high-rate syngas production, and long-term electrochemical stability remains challenging. Here, a metal three-dimensional (3D) printing technique followed by dealloying was utilized to develop three-dimensional hierarchical porous (termed as 3D hp) CuAg catalysts for the concurrent generation of CO and H2. By purposely designing the precursor compositions, the resultant 3D hp CuAg catalysts with a high density of phase-segregated Ag and Cu nanodomains exhibit a tunable H2/CO ratio from 3:1 to 1:2. Through further porosity engineering, the 3D hp CuAg catalysts show significantly enhanced syngas production rate of 140 µmol/h/cm2 and electrochemical stability up to 140 h (which is the highest value reported so far). The remarkable electrochemical stability of the 3D hp CuAg arises from three-level hierarchical porous configurations, wherein the macroporous structure benefits gas bubble growth and detachment, the microporous structure stabilizes the active nanoporous layer, while the nanoporous structure provides a large active surface area and enables efficient mass transfer. The results of this study offer a new vision for the development of hierarchically porous catalysts for CO2 reduction.

16.
ACS Nano ; 15(4): 6038-6060, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33797880

RESUMEN

The field of plasmonics is capable of enabling interesting applications in different wavelength ranges, spanning from the ultraviolet up to the infrared. The choice of plasmonic material and how the material is nanostructured has significant implications for ultimate performance of any plasmonic device. Artificially designed nanoporous metals (NPMs) have interesting material properties including large specific surface area, distinctive optical properties, high electrical conductivity, and reduced stiffness, implying their potentials for many applications. This paper reviews the wide range of available nanoporous metals (such as Au, Ag, Cu, Al, Mg, and Pt), mainly focusing on their properties as plasmonic materials. While extensive reports on the use and characterization of NPMs exist, a detailed discussion on their connection with surface plasmons and enhanced spectroscopies as well as photocatalysis is missing. Here, we report on different metals investigated, from the most used nanoporous gold to mixed metal compounds, and discuss each of these plasmonic materials' suitability for a range of structural design and applications. Finally, we discuss the potentials and limitations of the traditional and alternative plasmonic materials for applications in enhanced spectroscopy and photocatalysis.

17.
Materials (Basel) ; 14(8)2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33917132

RESUMEN

Nanoporous metals, with their complex microstructure, represent an ideal candidate for the development of methods that combine physics, data, and machine learning. The preparation of nanporous metals via dealloying allows for tuning of the microstructure and macroscopic mechanical properties within a large design space, dependent on the chosen dealloying conditions. Specifically, it is possible to define the solid fraction, ligament size, and connectivity density within a large range. These microstructural parameters have a large impact on the macroscopic mechanical behavior. This makes this class of materials an ideal science case for the development of strategies for dimensionality reduction, supporting the analysis and visualization of the underlying structure-property relationships. Efficient finite element beam modeling techniques were used to generate ~200 data sets for macroscopic compression and nanoindentation of open pore nanofoams. A strategy consisting of dimensional analysis, principal component analysis, and machine learning allowed for data mining of the microstructure-property relationships. It turned out that the scaling law of the work hardening rate has the same exponent as the Young's modulus. Simple linear relationships are derived for the normalized work hardening rate and hardness. The hardness to yield stress ratio is not limited to 1, as commonly assumed for foams, but spreads over a large range of values from 0.5 to 3.

18.
Materials (Basel) ; 13(17)2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32825732

RESUMEN

The physical architecture of materials plays an integral role in determining material properties and functionality. While many processing techniques now exist for fabricating parts of any shape or size, a couple of techniques have emerged as facile and effective methods for creating unique structures: dealloying and additive manufacturing. This review discusses progress and challenges in the integration of dealloying techniques with the additive manufacturing (AM) platform to take advantage of the material processing capabilities established by each field. These methods are uniquely complementary: not only can we use AM to make nanoporous metals of complex, customized shapes-for instance, with applications in biomedical implants and microfluidics-but dealloying can occur simultaneously during AM to produce unique composite materials with nanoscale features of two interpenetrating phases. We discuss the experimental challenges of implementing these processing methods and how future efforts could be directed to address these difficulties. Our premise is that combining these synergistic techniques offers both new avenues for creating 3D functional materials and new functional materials that cannot be synthesized any other way. Dealloying and AM will continue to grow both independently and together as the materials community realizes the potential of this compelling combination.

19.
Adv Mater ; 32(10): e1907214, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31999014

RESUMEN

Designing highly active and robust electrocatalysts for oxygen evolution reaction (OER) is crucial for many renewable energy storage and conversion devices. Here, self-supported monolithic hybrid electrodes that are composed of bimetallic cobalt-molybdenum nitride nanosheets vertically aligned on 3D and bicontinuous nanoporous gold (NP Au/CoMoNx ) are reported as highly efficient electrocatalysts to boost the sluggish reaction kinetics of water oxidation in alkaline media. By virtue of the constituent CoMoNx nanosheets having large accessible CoMoOx surface with remarkably enhanced electrocatalytic activity and the nanoporous Au skeleton facilitating electron transfer and mass transport, the NP Au/CoMoNx electrode exhibits superior OER electrocatalysis in 1 m KOH, with low onset overpotential (166 mV) and Tafel slope (46 mV dec-1 ). It only takes a low overpotential of 370 mV to reach ultrahigh current density of 1156 mA cm-2 , ≈140-fold higher than free CoMoNx nanosheets. The electrocatalytic performance makes it an attractive candidate as the OER catalyst in the water electrolysis.

20.
Nanomaterials (Basel) ; 9(3)2019 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-30832366

RESUMEN

In this paper, nanoporous copper (NPC) was prepared by dealloying ZrCuAl metallic glass ribbons with HF acid solutions. The effect of dealloying time on the porous structures and thickness of the obtained NPC films was investigated. It was found that the ligament sizes of the NPC could be tuned in a range from 20 to 300 nm, and the thicknesses of the NPC films from 3.1 to 14.4 µm, with properly selected dealloying times. Furthermore, nanoporous composites made of NPC and nanoporous Cu2O were prepared by oxidizing the NPC with ethanol. The nanoporous composite electrodes exhibited superior charge-discharge performance and would have broad potential applications in flexible high-performance energy storage devices.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda