Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Cell ; 187(15): 3904-3918.e8, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38851187

RESUMEN

We examined the rate and nature of mitochondrial DNA (mtDNA) mutations in humans using sequence data from 64,806 contemporary Icelanders from 2,548 matrilines. Based on 116,663 mother-child transmissions, 8,199 mutations were detected, providing robust rate estimates by nucleotide type, functional impact, position, and different alleles at the same position. We thoroughly document the true extent of hypermutability in mtDNA, mainly affecting the control region but also some coding-region variants. The results reveal the impact of negative selection on viable deleterious mutations, including rapidly mutating disease-associated 3243A>G and 1555A>G and pre-natal selection that most likely occurs during the development of oocytes. Finally, we show that the fate of new mutations is determined by a drastic germline bottleneck, amounting to an average of 3 mtDNA units effectively transmitted from mother to child.


Asunto(s)
ADN Mitocondrial , Linaje , Humanos , ADN Mitocondrial/genética , Femenino , Islandia , Masculino , Mutación , Tasa de Mutación
2.
Immunity ; 54(12): 2784-2794.e6, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34626548

RESUMEN

Self-reactive B cell progenitors are eliminated through central tolerance checkpoints, a process thought to be restricted to the bone marrow in mammals. Here, we identified a consecutive trajectory of B cell development in the meninges of mice and non-human primates. The meningeal B cells were located predominantly at the dural sinuses, where endothelial cells expressed essential niche factors to support B cell development. Parabiosis experiments together with lineage tracing showed that meningeal developing B cells were replenished continuously from hematopoietic stem cell (HSC)-derived progenitors via a circulation-independent route. Autoreactive immature B cells that recognized myelin oligodendrocyte glycoprotein (MOG), a central nervous system-specific antigen, were eliminated specifically from the meninges. Furthermore, genetic deletion of the Mog gene restored the self-reactive B cell population in the meninges. These findings identify the meninges as a distinct reservoir for B cell development, allowing in situ negative selection to ensure a locally non-self-reactive immune repertoire.


Asunto(s)
Células Dendríticas/inmunología , Células Madre Hematopoyéticas/fisiología , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Meninges/inmunología , Células Plasmáticas/inmunología , Animales , Anticuerpos Neutralizantes/metabolismo , Antígeno B7-1/metabolismo , Antígenos CD28/metabolismo , Autorrenovación de las Células , Supervivencia Celular , Células Cultivadas , Humanos , Inmunidad Humoral , Memoria Inmunológica , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Ratones , Ratones Endogámicos C57BL
3.
Genes Dev ; 34(17-18): 1227-1238, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32820039

RESUMEN

Identifying miRNA target genes is difficult, and delineating which targets are the most biologically important is even more difficult. We devised a novel strategy to test the phenotypic impact of individual microRNA-target interactions by disrupting each predicted miRNA-binding site by CRISPR-Cas9 genome editing in C. elegans We developed a multiplexed negative selection screening approach in which edited loci are deep sequenced, and candidate sites are prioritized based on apparent selection pressure against mutations that disrupt miRNA binding. Importantly, our screen was conducted in vivo on mutant animals, allowing us to interrogate organism-level phenotypes. We used this approach to screen for phenotypic targets of the essential mir-35-42 family. By generating 1130 novel 3'UTR alleles across all predicted targets, we identified egl-1 as a phenotypic target whose derepression partially phenocopies the mir-35-42 mutant phenotype by inducing embryonic lethality and low fecundity. These phenotypes can be rescued by compensatory CRISPR mutations that retarget mir-35 to the mutant egl-1 3'UTR. This study demonstrates that the application of in vivo whole organismal CRISPR screening has great potential to accelerate the discovery of phenotypic negative regulatory elements in the noncoding genome.


Asunto(s)
Caenorhabditis elegans/genética , MicroARNs/metabolismo , Regiones no Traducidas 3'/genética , Alelos , Animales , Sitios de Unión/genética , Sistemas CRISPR-Cas , Edición Génica , Pruebas Genéticas , MicroARNs/genética , Mutación , Fenotipo
4.
Proc Natl Acad Sci U S A ; 121(5): e2311487121, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38261611

RESUMEN

Roughly one-half of mice with partial defects in two immune tolerance pathways (AireGW/+Lyn-/- mice) spontaneously develop severe damage to their retinas due to T cell reactivity to Aire-regulated interphotoreceptor retinoid-binding protein (IRBP). Single-cell T cell receptor (TCR) sequencing of CD4+ T cells specific for a predominate epitope of IRBP showed a remarkable diversity of autoantigen-specific TCRs with greater clonal expansions in mice with disease. TCR transgenic mice made with an expanded IRBP-specific TCR (P2.U2) of intermediate affinity exhibited strong but incomplete negative selection of thymocytes. This negative selection was absent in IRBP-/- mice and greatly defective in AireGW/+ mice. Most P2.U2+/- mice and all P2.U.2+/-AireGW/+ mice rapidly developed inflammation of the retina and adjacent uvea (uveitis). Aire-dependent IRBP expression in the thymus also promoted Treg differentiation, but the niche for this fate determination was small, suggesting differences in antigen presentation leading to negative selection vs. thymic Treg differentiation and a stronger role for negative selection in preventing autoimmune disease in the retina.


Asunto(s)
Presentación de Antígeno , Receptores de Antígenos de Linfocitos T , Animales , Ratones , Autoantígenos , Modelos Animales de Enfermedad , Ratones Endogámicos , Ratones Transgénicos
5.
Trends Immunol ; 44(7): 512-518, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37263823

RESUMEN

A cornerstone of the classical view of tolerance is the elimination of self-reactive T cells via negative selection in the thymus. However, high-throughput T cell receptor (TCR) sequencing data have so far failed to detect substantial signatures of negative selection in the observed repertoires. In addition, quantitative estimates as well as recent experiments suggest that the elimination of self-reactive T cells is at best incomplete. We discuss several recent theoretical ideas that might explain tolerance while being consistent with these observations, including collective decision-making through quorum sensing, and sensitivity to change through dynamic tuning and adaptation. We propose that a unified quantitative theory of tolerance should combine these elements to help to explain the plasticity of the immune system and its robustness to autoimmunity.


Asunto(s)
Tolerancia Inmunológica , Linfocitos T , Humanos , Timo , Receptores de Antígenos de Linfocitos T/genética , Autoinmunidad , Autotolerancia
6.
Immunol Rev ; 307(1): 116-133, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35174510

RESUMEN

Random VDJ recombination early in T and B cell development enables the adaptive immune system to recognize a vast array of evolving pathogens via antigen receptors. However, the potential of such randomly generated TCRs and BCRs to recognize and respond to self-antigens requires layers of tolerance mechanisms to mitigate the risk of life-threatening autoimmunity. Since they were originally cloned more than three decades ago, the NR4A family of nuclear hormone receptors have been implicated in many critical aspects of immune tolerance, including negative selection of thymocytes, peripheral T cell tolerance, regulatory T cells (Treg), and most recently in peripheral B cell tolerance. In this review, we discuss important insights from many laboratories as well as our own group into the function and mechanisms by which this small class of primary response genes promotes self-tolerance and immune homeostasis to balance the need for host defense against the inherent risks posed by the adaptive immune system.


Asunto(s)
Tolerancia Inmunológica , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Linfocitos B , Humanos , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Autotolerancia , Linfocitos T Reguladores
7.
Am J Hum Genet ; 108(4): 620-631, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33691092

RESUMEN

Phenotype prediction is a key goal for medical genetics. Unfortunately, most genome-wide association studies are done in European populations, which reduces the accuracy of predictions via polygenic scores in non-European populations. Here, we use population genetic models to show that human demographic history and negative selection on complex traits can result in population-specific genetic architectures. For traits where alleles with the largest effect on the trait are under the strongest negative selection, approximately half of the heritability can be accounted for by variants in Europe that are absent from Africa, leading to poor performance in phenotype prediction across these populations. Further, under such a model, individuals in the tails of the genetic risk distribution may not be identified via polygenic scores generated in another population. We empirically test these predictions by building a model to stratify heritability between European-specific and shared variants and applied it to 37 traits and diseases in the UK Biobank. Across these phenotypes, ∼30% of the heritability comes from European-specific variants. We conclude that genetic association studies need to include more diverse populations to enable the utility of phenotype prediction in all populations.


Asunto(s)
Predisposición Genética a la Enfermedad , Genética de Población , Modelos Genéticos , Herencia Multifactorial/genética , Fenotipo , Selección Genética/genética , África/etnología , Simulación por Computador , Conjuntos de Datos como Asunto , Europa (Continente)/etnología , Variación Genética/genética , Humanos , Crecimiento Demográfico , Reino Unido
8.
Immunol Cell Biol ; 102(6): 448-451, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38650472

RESUMEN

In this article for the Highlights of 2023 Series, we discuss four recent articles that investigated thymic B cells, in both mice and humans. These studies provide important novel insights into the biology of this unique B-cell population, from their activation and differentiation to their role in promoting the negative selection of thymocytes and the generation of regulatory T cells.


Asunto(s)
Linfocitos B , Tolerancia Inmunológica , Timo , Animales , Humanos , Ratones , Linfocitos B/inmunología , Diferenciación Celular/inmunología , Activación de Linfocitos/inmunología , Linfocitos T/inmunología , Linfocitos T Reguladores/inmunología , Timocitos/inmunología , Timocitos/metabolismo , Timo/inmunología
9.
Vox Sang ; 119(7): 712-719, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38597364

RESUMEN

BACKGROUND AND OBJECTIVES: The isolation of neutrophils and subsequent detection of anti-human neutrophil antigens (HNA) antibodies are crucial in clinical medicine for the diagnosis of autoimmune neutropenia, neonatal alloimmune neutropenia (NAIN) and transfusion-related acute lung injury (TRALI). This study reports two cases of maternal anti-Fc-gamma-receptor-IIIb (FcγRIIIb) isoimmunization without NAIN symptoms and compares the efficiency of immunomagnetic negative selection (IMNS) with traditional dextran/Ficoll for neutrophil isolation in HNA serological assays. MATERIALS AND METHODS: Investigating two cases of maternal anti-FcγRIIIb isoimmunization, neutrophils from three donors were isolated from 8 mL of whole blood using IMNS and dextran/Ficoll. Serological assays included the granulocyte agglutination and immunofluorescence test, monoclonal antibody immobilization of granulocyte antigens and the LABScreen Multi (One Lambda). IMNS and dextran/Ficoll were compared in terms of cell yield, viability, time, cost and purity. RESULTS: Maternal anti-FcγRIIIb isoantibodies with FCGR3B gene deletion were detected in both cases. Newborns and fathers exhibited specific gene combinations: FCGR3B*02/FCGR3B*02 (Case 1) and FCGR3B*02/FCGR3B*03 (Case 2). IMNS outperformed dextran/Ficoll, yielding four times more neutrophils (average neutrophil counts: 18.5 × 103/µL vs. 4.5 × 103/µL), efficiently removing non-neutrophil cells and reducing processing time (30-40 min vs. 70-90 min), although it incurred a higher cost (2.7 times). CONCLUSION: Two cases of maternal anti-FcγRIIIb isoantibodies, unrelated to NAIN, were identified. Although neutropenia has not been described in these cases, we emphasize the importance of identifying asymptomatic cases with the potential for severe neutropenia. Additionally, IMNS is introduced as a rapid, high-yield, high-purity neutrophil isolation technique, beneficial for serological assays detecting anti-HNA antibodies.


Asunto(s)
Isoanticuerpos , Neutrófilos , Receptores de IgG , Humanos , Neutrófilos/inmunología , Femenino , Receptores de IgG/inmunología , Isoanticuerpos/inmunología , Isoanticuerpos/sangre , Recién Nacido , Proteínas Ligadas a GPI/inmunología , Masculino , Separación Inmunomagnética/métodos , Adulto , Embarazo , Neutropenia/inmunología , Neutropenia/sangre
10.
Fish Shellfish Immunol ; 145: 109319, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38145782

RESUMEN

The thymus is a sophisticated primary lymphoid organ in jawed vertebrates, but knowledge on teleost thymus remains scarce. In this study, for the first time in the European sea bass, laser capture microdissection was leveraged to collect two thymic regions based on histological features, namely the cortex and the medulla. The two regions were then processed by RNAseq and in-depth functional transcriptome analyses with the aim of revealing differential gene expression patterns and gene sets enrichments, ultimately unraveling unique microenvironments imperative for the development of functional T cells. The sea bass cortex emerged as a hub of T cell commitment, somatic recombination, chromatin remodeling, cell cycle regulation, and presentation of self antigens from autophagy-, proteasome- or proteases-processed proteins. The cortex therefore accommodated extensive thymocyte proliferation and differentiation up to the checkpoint of positive selection. The medulla instead appeared as the center stage in autoimmune regulation by negative selection and deletion of autoreactive T cells, central tolerance mechanisms and extracellular matrix organization. Region-specific canonical markers of T and non-T lineage cells as well as signals for migration to/from, and trafficking within, the thymus were identified, shedding light on the highly coordinated and exquisitely complex bi-directional interactions among thymocytes and stromal components. Markers ascribable to thymic nurse cells and poorly characterized post-aire mTEC populations were found in the cortex and medulla, respectively. An in-depth data mining also exposed previously un-annotated genomic resources with differential signatures. Overall, our findings contribute to a broader understanding of the relationship between regional organization and function in the European sea bass thymus, and provide essential insights into the molecular mechanisms underlying T-cell mediated adaptive immune responses in teleosts.


Asunto(s)
Lubina , Glándulas Endocrinas , Animales , Timo , Linfocitos T , Perfilación de la Expresión Génica
11.
Bull Math Biol ; 86(2): 18, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236346

RESUMEN

We consider a time-continuous Markov branching process of proliferating cells with a countable collection of types. Among-type transitions are inspired by the Tug-of-War process introduced by McFarland et al. (Proc Natl Acad Sci 111(42):15138-15143, 2014) as a mathematical model for competition of advantageous driver mutations and deleterious passenger mutations in cancer cells. We introduce a version of the model in which a driver mutation pushes the type of the cell L-units up, while a passenger mutation pulls it 1-unit down. The distribution of time to divisions depends on the type (fitness) of cell, which is an integer. The extinction probability given any initial cell type is strictly less than 1, which allows us to investigate the transition between types (type transition) in an infinitely long cell lineage of cells. The analysis leads to the result that under driver dominance, the type transition process escapes to infinity, while under passenger dominance, it leads to a limit distribution. Implications in cancer cell dynamics and population genetics are discussed.


Asunto(s)
Conceptos Matemáticos , Neoplasias , Modelos Biológicos , Apoptosis , Linaje de la Célula , Cadenas de Markov , Neoplasias/genética
12.
BMC Genomics ; 24(1): 562, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37736706

RESUMEN

BACKGROUND: Selective constraint, the depletion of variation due to negative selection, provides insights into the functional impact of variants and disease mechanisms. However, its characterization in mice, the most commonly used mammalian model, remains limited. This study aims to quantify mouse gene constraint using a new metric called the nonsynonymous observed expected ratio (NOER) and investigate its relationship with gene function. RESULTS: NOER was calculated using whole-genome sequencing data from wild mouse populations (Mus musculus sp and Mus spretus). Positive correlations were observed between mouse gene constraint and the number of associated knockout phenotypes, indicating stronger constraint on pleiotropic genes. Furthermore, mouse gene constraint showed a positive correlation with the number of pathogenic variant sites in their human orthologues, supporting the relevance of mouse models in studying human disease variants. CONCLUSIONS: NOER provides a resource for assessing the fitness consequences of genetic variants in mouse genes and understanding the relationship between gene constraint and function. The study's findings highlight the importance of pleiotropy in selective constraint and support the utility of mouse models in investigating human disease variants. Further research with larger sample sizes can refine constraint estimates in mice and enable more comprehensive comparisons of constraint between mouse and human orthologues.


Asunto(s)
Músculos , Mytilidae , Humanos , Animales , Ratones , Modelos Animales de Enfermedad , Tamaño de la Muestra , Secuenciación Completa del Genoma , Mamíferos
13.
Mol Biol Evol ; 39(4)2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35325204

RESUMEN

Among the 30 nonsynonymous nucleotide substitutions in the Omicron S-gene are 13 that have only rarely been seen in other SARS-CoV-2 sequences. These mutations cluster within three functionally important regions of the S-gene at sites that will likely impact (1) interactions between subunits of the Spike trimer and the predisposition of subunits to shift from down to up configurations, (2) interactions of Spike with ACE2 receptors, and (3) the priming of Spike for membrane fusion. We show here that, based on both the rarity of these 13 mutations in intrapatient sequencing reads and patterns of selection at the codon sites where the mutations occur in SARS-CoV-2 and related sarbecoviruses, prior to the emergence of Omicron the mutations would have been predicted to decrease the fitness of any virus within which they occurred. We further propose that the mutations in each of the three clusters therefore cooperatively interact to both mitigate their individual fitness costs, and, in combination with other mutations, adaptively alter the function of Spike. Given the evident epidemic growth advantages of Omicron overall previously known SARS-CoV-2 lineages, it is crucial to determine both how such complex and highly adaptive mutation constellations were assembled within the Omicron S-gene, and why, despite unprecedented global genomic surveillance efforts, the early stages of this assembly process went completely undetected.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , COVID-19/genética , Humanos , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
14.
Cancer Sci ; 114(4): 1437-1450, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36576236

RESUMEN

Cancer evolution is explained by the accumulation of driver mutations and subsequent positive selection by acquired growth advantages, like Darwin's evolution theory. However, whether the negative selection of cells that have lost malignant properties contributes to cancer progression has not yet been fully investigated. Using intestinal metastatic tumor-derived organoids carrying Apc, Kras, Tgfbr2, and Trp53 quadruple mutations, we demonstrate here that approximately 30% of subclones of the organoids show loss of metastatic ability to the liver while keeping the driver mutations and oncogenic pathways. Notably, highly metastatic subclones also showed a gradual loss of metastatic ability during further passages. Such non-metastatic subclones revealed significantly decreased survival and proliferation ability in Matrigel and collagen gel culture conditions, which may cause elimination from the tumor tissues in vivo. RNA sequencing indicated that stemness-related genes, including Lgr5 and Myb, were significantly downregulated in non-metastatic subclones as well as subclones that lost metastatic ability during additional passages. Furthermore, a CGH analysis showed that non-metastatic subclones were derived from a minor population of parental organoid cells. These results indicate that metastatic ability is continuously lost with decreased stem cell property in certain subpopulations of malignant tumors, and such subpopulations are eliminated by negative selection. Therefore, it is possible that cancer evolution is regulated not only by positive selection but also by negative selection. The mechanism underlying the loss of metastatic ability will be important for the future development of therapeutic strategies against metastasis.


Asunto(s)
Neoplasias Intestinales , Humanos , Neoplasias Intestinales/genética , Neoplasias Intestinales/patología , Intestinos/patología , Mutación , Genes ras , Organoides/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
15.
Mol Ecol ; 32(19): 5288-5304, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37622583

RESUMEN

Detecting natural selection is one of the major goals of evolutionary genomics. Here, we sequenced the whole genome of 25 Picea abies individuals and quantified the amount of selection across the genome. Using an estimate of the distribution of fitness effects, we showed that both negative selection and the rate of positively selected substitutions are very limited in coding regions. We found a positive correlation between the rate of adaptive substitutions and recombination rate and a negative correlation between the rate of adaptive substitutions and gene density, suggesting a widespread influence from Hill-Robertson interference on the efficiency of protein adaptation in P. abies. Finally, the distinct population statistics between genomic regions under either positive or balancing selection with that under neutral regions indicated the impact of natural selection on the genomic architecture of Norway spruce. Further gene ontology enrichment analysis for genes located in regions identified as undergoing either positive or long-term balancing selection also highlighted the specific molecular functions and biological processes that appear to be targets of selection in Norway spruce.


Asunto(s)
Abies , Picea , Humanos , Picea/genética , Selección Genética , Noruega , Genómica
16.
Neuroimmunomodulation ; 30(1): 346-373, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37952531

RESUMEN

INTRODUCTION: Considering significance of mechanisms of central tolerance for development of autoimmune diseases, including experimental autoimmune encephalomyelitis (EAE), and suppressive influence of circulating proinflammatory cytokines and alterations in brain-thymus communication, characteristic for the central nervous system (CNS) autoimmune diseases, on thymopoiesis, the study interogated putative strain-based thymus-related specificities relevant for the opposite effects of ageing on susceptibility of Dark Agouti (DA) and Albino Oxford (AO) rats to EAE. METHODS: Quantitative and qualitative changes in thymopoiesis including underlying mechanisms were examined using flow cytometry and RT-qPCR quantification of mRNAs for molecules relevant for integrity of stroma and T-cell development, respectively. RESULTS: With ageing, differently from DA rats, in AO rats the surface density of CD90, a negative regulator of selection threshold, on thymocytes undergoing lineage commitment was upregulated (consistent with TGF-ß expression downregulation), whereas the generation of natural CD4+CD25+Foxp3+ regulatory T cells (nTregs) was impaired reflecting differences in thymic expression of cytokines supporting their development. Additionally, specifically in old AO rats, in whom EAE development depends on IL-17-producing CD8+ T cells, their thymic differentiation was augmented, reflecting augmented thymic IL-4 expression. In turn, differently from old DA rats developing self-limiting EAE, in age-matched AO rats developing EAE of prolonged duration, EAE development led to impaired generation of nTregs and accumulation of proinflammatory, cytotoxic CD28-CD4+ T cells in the periphery. DISCUSSION: The study indicates that strain differences in age-related changes in the efficacy of central tolerance, in addition to enhanced thymic generation of CD8+ T cells prone to differentiate into IL-17-producing cells, could partly explain the opposite effect of ageing on DA and AO rat susceptibility to EAE induction. Additionally, it suggested that EAE development leading to a less efficient thymic output of CD4+ cells and nTregs in old AO rats than their DA counterparts could contribute to prolonged EAE duration in AO compared with DA rats. CONCLUSION: The study warns to caution when designing therapeutic interventions to enhance thymic activity in genetically diverse populations, e.g., humans, and interpreting their outcomes. Furthermore, it indicates that CNS autoimmune pathology may additionally worsen thymic involution and age-related immune changes.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Humanos , Ratas , Animales , Interleucina-17 , Médula Espinal , Envejecimiento , Citocinas
17.
Cell Mol Life Sci ; 79(2): 81, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35048186

RESUMEN

Circulating tumor cells (CTCs) mediate dissemination of solid tumors and can be an early sign of disease progression. Moreover, they show a great potential in terms of non-invasive, longitudinal monitoring of cancer patients. CTCs have been extensively studied in breast cancer (BC) and were shown to present a significant phenotypic plasticity connected with initiation of epithelial-mesenchymal transition (EMT). Apart from conferring malignant properties, EMT affects CTCs recovery rate, making a significant portion of CTCs from patients' samples undetected. Wider application of methods and markers designed to isolate and identify mesenchymal CTCs is required to expand our knowledge about the clinical impact of mesenchymal CTCs. Therefore, here we provide a comprehensive review of clinical significance of mesenchymal CTCs in BC together with statistical analysis of previously published data, in which we assessed the suitability of a number of methods/markers used for isolation of CTCs with different EMT phenotypes, both in in vitro spike-in tests with BC cell lines, as well as clinical samples. Results of spiked-in cell lines indicate that, in general, methods not based on epithelial enrichment only, capture mesenchymal CTCs much more efficiently that CellSearch® (golden standard in CTCs detection), but at the same time are not much inferior to Cell Search®, though large variation in recovery rates of added cells among the methods is observed. In clinical samples, where additional CTCs detection markers are needed, positive epithelial-based CTCs enrichment was the most efficient in isolating CTCs with mesenchymal features from non-metastatic BC patients. From the marker side, PI3K and VIM were contributing the most to detection of CTCs with mesenchymal features (in comparison to SNAIL) in non-metastatic and metastatic BC patients, respectively. However, additional data are needed for more robust identification of markers for efficient detection of CTCs with mesenchymal features.


Asunto(s)
Neoplasias de la Mama/patología , Transición Epitelial-Mesenquimal , Células Neoplásicas Circulantes/patología , Animales , Biomarcadores de Tumor/análisis , Neoplasias de la Mama/diagnóstico , Femenino , Humanos , Pronóstico
18.
Cell Mol Life Sci ; 79(4): 221, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35377005

RESUMEN

The intestinal microbiota is critical for the development of gut-associated lymphoid tissues, including Peyer's patches and mesenteric lymph nodes, and is instrumental in educating the local as well as systemic immune system. In addition, it also impacts the development and function of peripheral organs, such as liver, lung, and the brain, in health and disease. However, whether and how the intestinal microbiota has an impact on T cell ontogeny in the hymus remains largely unclear. Recently, the impact of molecules and metabolites derived from the intestinal microbiota on T cell ontogeny in the thymus has been investigated in more detail. In this review, we will discuss the recent findings in the emerging field of the gut-thymus axis and we will highlight the current questions and challenges in the field.


Asunto(s)
Microbioma Gastrointestinal , Inmunidad Mucosa , Mucosa Intestinal , Hígado , Linfocitos T
19.
Proc Natl Acad Sci U S A ; 117(24): 13626-13636, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32487729

RESUMEN

Humans homozygous or hemizygous for variants predicted to cause a loss of function (LoF) of the corresponding protein do not necessarily present with overt clinical phenotypes. We report here 190 autosomal genes with 207 predicted LoF variants, for which the frequency of homozygous individuals exceeds 1% in at least one human population from five major ancestry groups. No such genes were identified on the X and Y chromosomes. Manual curation revealed that 28 variants (15%) had been misannotated as LoF. Of the 179 remaining variants in 166 genes, only 11 alleles in 11 genes had previously been confirmed experimentally to be LoF. The set of 166 dispensable genes was enriched in olfactory receptor genes (41 genes). The 41 dispensable olfactory receptor genes displayed a relaxation of selective constraints similar to that observed for other olfactory receptor genes. The 125 dispensable nonolfactory receptor genes also displayed a relaxation of selective constraints consistent with greater redundancy. Sixty-two of these 125 genes were found to be dispensable in at least three human populations, suggesting possible evolution toward pseudogenes. Of the 179 LoF variants, 68 could be tested for two neutrality statistics, and 8 displayed robust signals of positive selection. These latter variants included a known FUT2 variant that confers resistance to intestinal viruses, and an APOL3 variant involved in resistance to parasitic infections. Overall, the identification of 166 genes for which a sizeable proportion of humans are homozygous for predicted LoF alleles reveals both redundancies and advantages of such deficiencies for human survival.


Asunto(s)
Genética Humana , Mutación con Pérdida de Función , Alelos , Apolipoproteínas L/genética , Fucosiltransferasas/genética , Variación Genética , Homocigoto , Humanos , Proteínas/genética , Cromosomas Sexuales/genética , Galactósido 2-alfa-L-Fucosiltransferasa
20.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38139101

RESUMEN

Neutrophils are considered as the main player in innate immunity. In the last few years, it has been shown that they are involved in different physiological conditions and diseases. However, progress in the field of neutrophil biology is relatively slow due to existing difficulties in neutrophil isolation and maintenance in culture. Here we compare four protocols based on density-gradient and immunomagnetic methods for isolation of murine neutrophils from bone marrow and spleen. Neutrophil isolation was performed using Ficoll 1.077/1.119 g/mL density gradient, Ficoll 1.083/1.090/1.110 g/mL density gradient and immunomagnetic method of negative and positive selection. The different protocols were compared with respect to sample purity, cell viability, yield, and cost. The functionality of isolated neutrophils was checked by NETosis analysis and neutrophil oxidative burst test. Obtained data revealed that given purity/yield/viability/cost ratio the protocol based on cell centrifugation on Ficoll 1.077/1.119 g/mL density gradient is recommended for isolation of neutrophils from bone marrow, whereas immunomagnetic method of positive selection using Dynabeads is recommended for isolation of splenic neutrophils.


Asunto(s)
Médula Ósea , Neutrófilos , Animales , Ratones , Bazo , Ficoll , Centrifugación por Gradiente de Densidad/métodos , Separación Celular/métodos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda