Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 39(1): 56-66, 2022 Feb 25.
Artículo en Zh | MEDLINE | ID: mdl-35231966

RESUMEN

There are two modes to display panoramic movies in virtual reality (VR) environment: non-stereoscopic mode (2D) and stereoscopic mode (3D). It has not been fully studied whether there are differences in the activation effect between these two continuous display modes on emotional arousal and what characteristics of the related neural activity are. In this paper, we designed a cognitive psychology experiment in order to compare the effects of VR-2D and VR-3D on emotional arousal by analyzing synchronously collected scalp electroencephalogram signals. We used support vector machine (SVM) to verify the neurophysiological differences between the two modes in VR environment. The results showed that compared with VR-2D films, VR-3D films evoked significantly higher electroencephalogram (EEG) power (mainly reflected in α and ß activities). The significantly improved ß wave power in VR-3D mode showed that 3D vision brought more intense cortical activity, which might lead to higher arousal. At the same time, the more intense α activity in the occipital region of the brain also suggested that VR-3D films might cause higher visual fatigue. By the means of neurocinematics, this paper demonstrates that EEG activity can well reflect the effects of different vision modes on the characteristics of the viewers' neural activities. The current study provides theoretical support not only for the future exploration of the image language under the VR perspective, but for future VR film shooting methods and human emotion research.


Asunto(s)
Películas Cinematográficas , Realidad Virtual , Nivel de Alerta , Electroencefalografía , Emociones/fisiología , Humanos
2.
Neuroimage ; 172: 313-325, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29409793

RESUMEN

How does the human brain recall and connect relevant memories with unfolding events? To study this, we presented 25 healthy subjects, during functional magnetic resonance imaging, the movie 'Memento' (director C. Nolan). In this movie, scenes are presented in chronologically reverse order with certain scenes briefly overlapping previously presented scenes. Such overlapping "key-frames" serve as effective memory cues for the viewers, prompting recall of relevant memories of the previously seen scene and connecting them with the concurrent scene. We hypothesized that these repeating key-frames serve as immediate recall cues and would facilitate reconstruction of the story piece-by-piece. The chronological version of Memento, shown in a separate experiment for another group of subjects, served as a control condition. Using multivariate event-related pattern analysis method and representational similarity analysis, focal fingerprint patterns of hemodynamic activity were found to emerge during presentation of key-frame scenes. This effect was present in higher-order cortical network with regions including precuneus, angular gyrus, cingulate gyrus, as well as lateral, superior, and middle frontal gyri within frontal poles. This network was right hemispheric dominant. These distributed patterns of brain activity appear to underlie ability to recall relevant memories and connect them with ongoing events, i.e., "what goes with what" in a complex story. Given the real-life likeness of cinematic experience, these results provide new insight into how the human brain recalls, given proper cues, relevant memories to facilitate understanding and prediction of everyday life events.


Asunto(s)
Encéfalo/fisiología , Señales (Psicología) , Recuerdo Mental/fisiología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Películas Cinematográficas , Neuroimagen/métodos , Adulto Joven
3.
Hum Brain Mapp ; 39(5): 2156-2176, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29411461

RESUMEN

Real-world objects approaching or passing by an observer often generate visual, auditory, and tactile signals with different onsets and durations. Prompt detection and avoidance of an impending threat depend on precise binding of looming signals across modalities. Here we constructed a multisensory apparatus to study the spatiotemporal integration of looming visual and tactile stimuli near the face. In a psychophysical experiment, subjects assessed the subjective synchrony between a looming ball and an air puff delivered to the same side of the face with a varying temporal offset. Multisensory stimuli with similar onset times were perceived as completely out of sync and assessed with the lowest subjective synchrony index (SSI). Across subjects, the SSI peaked at an offset between 800 and 1,000 ms, where the multisensory stimuli were perceived as optimally in sync. In an fMRI experiment, tactile, visual, tactile-visual out-of-sync (TVoS), and tactile-visual in-sync (TViS) stimuli were delivered to either side of the face in randomized events. Group-average statistical responses to different stimuli were compared within each surface-based region of interest (sROI) outlined on the cortical surface. Most sROIs showed a preference for contralateral stimuli and higher responses to multisensory than unisensory stimuli. In several bilateral sROIs, particularly the human MT+ complex and V6A, responses to spatially aligned multisensory stimuli (TVoS) were further enhanced when the stimuli were in-sync (TViS), as expressed by TVoS < TViS. This study demonstrates the perceptual and neural mechanisms of multisensory integration near the face, which has potential applications in the development of multisensory entertainment systems and media.


Asunto(s)
Mapeo Encefálico , Corteza Cerebral/fisiología , Cara/inervación , Tacto , Percepción Visual/fisiología , Estimulación Acústica , Corteza Cerebral/diagnóstico por imagen , Femenino , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética , Masculino , Oxígeno/sangre , Estimulación Luminosa , Psicofísica , Tiempo de Reacción , Adulto Joven
4.
Neuroimage ; 110: 136-48, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25662868

RESUMEN

One of the challenges of naturalistic neurosciences using movie-viewing experiments is how to interpret observed brain activations in relation to the multiplicity of time-locked stimulus features. As previous studies have shown less inter-subject synchronization across viewers of random video footage than story-driven films, new methods need to be developed for analysis of less story-driven contents. To optimize the linkage between our fMRI data collected during viewing of a deliberately non-narrative silent film 'At Land' by Maya Deren (1944) and its annotated content, we combined the method of elastic-net regularization with the model-driven linear regression and the well-established data-driven independent component analysis (ICA) and inter-subject correlation (ISC) methods. In the linear regression analysis, both IC and region-of-interest (ROI) time-series were fitted with time-series of a total of 36 binary-valued and one real-valued tactile annotation of film features. The elastic-net regularization and cross-validation were applied in the ordinary least-squares linear regression in order to avoid over-fitting due to the multicollinearity of regressors, the results were compared against both the partial least-squares (PLS) regression and the un-regularized full-model regression. Non-parametric permutation testing scheme was applied to evaluate the statistical significance of regression. We found statistically significant correlation between the annotation model and 9 ICs out of 40 ICs. Regression analysis was also repeated for a large set of cubic ROIs covering the grey matter. Both IC- and ROI-based regression analyses revealed activations in parietal and occipital regions, with additional smaller clusters in the frontal lobe. Furthermore, we found elastic-net based regression more sensitive than PLS and un-regularized regression since it detected a larger number of significant ICs and ROIs. Along with the ISC ranking methods, our regression analysis proved a feasible method for ordering the ICs based on their functional relevance to the annotated cinematic features. The novelty of our method is - in comparison to the hypothesis-driven manual pre-selection and observation of some individual regressors biased by choice - in applying data-driven approach to all content features simultaneously. We found especially the combination of regularized regression and ICA useful when analyzing fMRI data obtained using non-narrative movie stimulus with a large set of complex and correlated features.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Películas Cinematográficas , Adulto , Mapeo Encefálico , Interpretación Estadística de Datos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estimulación Luminosa , Análisis de Componente Principal , Adulto Joven
5.
J Undergrad Neurosci Educ ; 13(3): A225-33, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26240533

RESUMEN

We developed and offered a sequence of neuroscience courses geared toward changing the way non-science students interact with the sciences. Although we accepted students from all majors and at all class levels, our target population was first and second year students who were majoring in the fine arts or the humanities, or who had not yet declared a major. Our goal was to engage these students in science in general and neuroscience in particular by teaching science in a way that was accessible and relevant to their intellectual experiences. Our methodology was to teach scientific principles through the humanities by using course material that is at the intersection of the sciences and the humanities and by changing the classroom experience for both faculty and students. Examples of our course materials included the works of Oliver Sacks, V.S. Ramachandran, Martha Nussbaum, Virginia Woolf and Karl Popper, among others. To change the classroom experience we used a model of team-teaching, which required the simultaneous presence of two faculty members in the classroom for all classes. We changed the structure of the classroom experience from the traditional authority model to a model in which inquiry, debate, and intellectual responsibility were central. We wanted the students to have an appreciation of science not only as an endeavor guided by evidence and experimentation, but also a public discourse driven by creativity and controversy. The courses attracted a significant number of humanities and fine arts students, many of whom had already completed their basic science requirement.

6.
Philos Trans R Soc Lond B Biol Sci ; 379(1895): 20220426, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38104604

RESUMEN

During film viewing, humans parse sequences of individual shots into larger narrative structures, often weaving transitions at edit points into an apparently seamless and continuous flow. Editing helps filmmakers manipulate visual transitions to induce feelings of fluency/disfluency, tension/relief, curiosity, expectation and several emotional responses. We propose that the perceptual dynamics induced by film editing can be captured by a predictive processing (PP) framework. We hypothesise that visual discontinuities at edit points produce discrepancies between anticipated and actual sensory input, leading to prediction error. Further, we propose that the magnitude of prediction error depends on the predictability of each shot within the narrative flow, and lay out an account based on conflict monitoring. We test this hypothesis in two empirical studies measuring electroencephalography (EEG) during passive viewing of film excerpts, as well as behavioural responses during an active edit detection task. We report the neural and behavioural modulations at editing boundaries across three levels of narrative depth, showing greater modulations for edits spanning less predictable, deeper narrative transitions. Overall, our contribution lays the groundwork for understanding film editing from a PP perspective. This article is part of the theme issue 'Art, aesthetics and predictive processing: theoretical and empirical perspectivess'.


Asunto(s)
Electroencefalografía , Películas Cinematográficas , Humanos
7.
Front Neurosci ; 17: 1204809, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37434763

RESUMEN

To watch a person doing an activity has an impact on the viewer. In fact, the film industry hinges on viewers looking at characters doing all sorts of narrative activities. From previous works, we know that media and non-media professionals perceive differently audiovisuals with cuts. Media professionals present a lower eye-blink rate, a lower activity in frontal and central cortical areas, and a more organized functional brain connectivity when watching audiovisual cuts. Here, we aimed to determine how audiovisuals with no formal interruptions such as cuts were perceived by media and non-media professionals. Moreover, we wondered how motor actions of characters in films would have an impact on the brain activities of the two groups of observers. We presented a narrative with 24 motor actions in a one-shot movie in wide shot with no cuts to 40 participants. We recorded the electroencephalographic (EEG) activity of the participants and analyzed it for the periods corresponding to the 24 motor actions (24 actions × 40 participants = 960 potential trials). In accordance with collected results, we observed differences in the EEG activity of the left primary motor cortex. A spectral analysis of recorded EEG traces indicated the presence of significant differences in the beta band between the two groups after the onset of the motor activities, while no such differences were found in the alpha band. We concluded that media expertise is related with the beta band identified in the EEG activity of the left primary motor cortex and the observation of motor actions in videos.

8.
Front Neurosci ; 17: 1173704, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37521689

RESUMEN

Film editing has attracted great theoretical and practical interest since the beginnings of cinematography. In recent times, the neural correlates of visual transitions at edit cuts have been at the focus of attention in neurocinematics. Many Event Related Potential (ERP) studies studies have reported the consequences of cuts involving narrative discontinuities, and violations of standard montage rules. However, less is known about edits that are meant to induce continuity. Here, we addressed the neural correlates of continuity editing involving scale, and angle variations across the cut within the same scene, two of the most popular devices used for continuity editing. We recorded the electroencephalographic signal obtained from 20 viewers as they watched four different cinematographic excerpts to extract ERPs at edit points. First, we were able to reproduce the general time and scalp distribution of the typical ERPs to filmic cuts in prior studies. Second, we found significant ERP modulations triggered by scale changes (scale out, scale in, or maintaining the same scale). Edits involving an increase in scale (scale out) led to amplification of the ERP deflection, and scale reduction (scale in) led to decreases, compared to edits that kept scale across the cut. These modulations coincide with the time window of the N300 and N400 components and, according to previous findings, their amplitude has been associated with the likelihood of consciously detecting the edit. Third, we did not detect similar modulations as a function of angle variations across the cut. Based on these findings, we suggest that cuts involving reduction of scale are more likely to go unnoticed, than ones that scale out. This relationship between scale in/out and visibility is documented in film edition manuals. Specifically, in order to achieve fluidity in a scene, the edition is designed from the most opened shots to the most closed ones.

9.
Neuropsychologia ; 180: 108485, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36680933

RESUMEN

This article about possible neural underpinning of repeated attraction to watching movies is dedicated to the memory of Prof. Eran Zaidel, who made outstanding contributions to neuroscience (and loved watching movies). The film is an art form crafted by multiple artists from diverse fields, contributing specialized skills, talents, and creativity to the final product. Attention-attraction to all artworks has deep biological roots. Movies have been attracting audiences repeatedly ever since they were introduced over 100 years ago. Although countless studies analyzed the nature of the art, the neural underpinning of repeated attraction to viewing movies has been understudied. Here, clues gleaned from non-film findings are proposed. The perspective suggests that functions of the mesolimbic "reward pathway" associated with pleasure and joy, the brain regions responding to facial beauty, to pictorial art aesthetics, and to music listening with increased dopamine levels are all recruited in the repeated attraction.


Asunto(s)
Arte , Música , Humanos , Películas Cinematográficas , Encéfalo , Creatividad
10.
Front Psychol ; 14: 1183660, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37469900

RESUMEN

As in real life, cinema viewers rely on spontaneous theory of mind (SToM) to interpret characters' mental states. Thus, analyzing cinematic structures offers a unique opportunity to examine ecologically valid sociocognitive processes. We conducted a proof-of-concept study (N = 42) to explore how SToM inferences impact film event comprehension in dramatic irony scenes, where knowledge divergence exists between the audience and characters. We hypothesized that spectators would focus more on characters' mental states in such false-belief inducing scenarios compared to scenarios without such disparity. We used six Harold Lloyd silent comedy clips in a narrative comprehension and spontaneous mental state attribution study with a between-subject (Knowledge Manipulation: Installation vs. Control) and within-subject (Phase: Context vs. Exploitation) comparisons. We provided critical information unknown to the characters only to the Installation group and withheld it from the Control group. By comparing differences in participants' descriptions of the clips during the Context phase (varying across groups) and Exploitation phase (same across groups), we evaluated viewers' processing of the same scenes based on their false- or true-belief representations. Our findings indicate that the Installation group used more cognitive mental state words during the Exploitation phase relative to the Context phase, suggesting that exposure to undisclosed critical information enhances the frequency of spontaneous epistemic state inferences and integration into event models of the exploitation. This research advances neurocinematics by highlighting spontaneous sociocognitive processes in event perception and comprehension and provides a novel dramatic irony film corpus and measures for future moment-to-moment SToM processing studies across cognitive-behavioral, physiological, and neural levels.

11.
Neuropsychologia ; 188: 108654, 2023 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-37507066

RESUMEN

Narratives may be regarded as simulations of everyday social situations. They are key to studying the human mind in socio-culturally determined contexts as they allow anchoring to the common ground of embodied and environmentally-engaged cognition. Here we review recent findings from naturalistic neuroscience on neural functions in conditions that mimic lifelike situations. We will focus particularly on neurocinematics, a research field that applies mediated narratives as stimuli for neuroimaging experiments. During the last two decades, this paradigm has contributed to an accumulation of insights about the neural underpinnings of behavior and sense-making in various narratively contextualized situations particularly pertaining to socio-emotional encounters. One of the key questions in neurocinematics is, how do intersubjectively synchronized brain activations relate to subjective experiences? Another question we address is how to bring natural contexts into experimental studies. Seeking to respond to both questions, we suggest neurocinematic studies to examine three manifestations of the same phenomenon side-by-side: subjective experiences of narrative situations, unfolding of narrative stimulus structure, and neural processes that co-constitute the experience. This approach facilitates identifying experientially meaningful activity patterns in the brain and points out what they may mean in relation to shared and communicable contents. Via rich-featured and temporally contextualized narrative stimuli, neurocinematics attempts to contribute to emerging holistic theories of neural dynamics and connectomics explaining typical and atypical interindividual variability.


Asunto(s)
Cognición , Neurociencias , Humanos , Encéfalo/diagnóstico por imagen , Neuroimagen
12.
Brain Sci ; 11(4)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810422

RESUMEN

Eye blinks provoke a loss of visual information. However, we are not constantly making conscious decisions about the appropriate moment to blink. The presence or absence of eye blinks also denotes levels of attention. We presented three movies with the exact same narrative but different styles of editing and recorded participants' eye blinks. We found that moments of increased or decreased eye blinks by viewers coincided with the same content in the different movie styles. The moments of increased eye blinks corresponded to those when the actor leaves the scene and when the movie repeats the same action for a while. The moments of decreased eye blinks corresponded to actions where visual information was crucial to proper understanding of the scene presented. According to these results, viewers' attention is more related to narrative content than to the style of editing when watching movies.

13.
Front Syst Neurosci ; 15: 598383, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33584210

RESUMEN

Experts apply their experience to the proper development of their routine activities. Their acquired expertise or professionalization is expected to help in the development of those recurring tasks. Media professionals spend their daily work watching narrative contents on screens, so learning how they manage visual perception of those contents could be of interest in an increasingly audiovisual society. Media works require not only the understanding of the storytelling, but also the decoding of the formal rules and presentations. We recorded electroencephalographic (EEG) signals from 36 participants (18 media professionals and 18 non-media professionals) while they were watching audiovisual contents, and compared their eyeblink rate and their brain activity and connectivity. We found that media professionals decreased their blink rate after the cuts, suggesting that they can better manage the loss of visual information that blinks entail by sparing them when new visual information is being presented. Cuts triggered similar activation of basic brain processing in the visual cortex of the two groups, but different processing in medial and frontal cortical areas, where media professionals showed a lower activity. Effective brain connectivity occurred in a more organized way in media professionals-possibly due to a better communication between cortical areas that are coordinated for decoding new visual content after cuts.

14.
Front Neuroinform ; 15: 731236, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34566617

RESUMEN

Neurocinematics is an emerging discipline in neuroscience, which aims to provide new filmmaking techniques by analyzing the brain activities of a group of audiences. Several neurocinematics studies attempted to track temporal changes in mental states during movie screening; however, it is still needed to develop efficient and robust electroencephalography (EEG) features for tracking brain states precisely over a long period. This study proposes a novel method for estimating emotional arousal changes in a group of individuals during movie screening by employing steady-state visual evoked potential (SSVEP), which is a widely used EEG response elicited by the presentation of periodic visual stimuli. Previous studies have reported that the emotional arousal of each individual modulates the strength of SSVEP responses. Based on this phenomenon, movie clips were superimposed on a background, eliciting an SSVEP response with a specific frequency. Two emotionally arousing movie clips were presented to six healthy male participants, while EEG signals were recorded from the occipital channels. We then investigated whether the movie scenes that elicited higher SSVEP responses coincided well with those rated as the most impressive scenes by 37 viewers in a separate experimental session. Our results showed that the SSVEP response averaged across six participants could accurately predict the overall impressiveness of each movie, evaluated with a much larger group of individuals.

15.
Front Hum Neurosci ; 13: 73, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30936825

RESUMEN

Liking is one of the most important psychological processes associated with the reward system, being involved in affective processing and pleasure/displeasure encoding. Currently, there is no consensus regarding the combination of physiological indicators which best predict liking, especially when applied to dynamic stimuli such as videos. There is a lack of a standard methodology to assess likeability over time and therefore in assessing narrative and semantic aspects of the stimulus. We developed a time-dependent method to evaluate the physiological correlates of likeability for three different thematic categories, namely: adventure (AV), comedy (CM), and nature landscape (LS). Twenty-eight healthy adults with ages ranging from 18 to 35 years (average: 23.85 years) were enrolled in the study. The participants were asked to provide likeability ratings for videos as they watched them, using a response box. Three 60-s videos were presented, one for each category, in randomized order while the participant's physiological data [electroencephalogram (EEG), electrocardiogram (ECG) and eye tracking (ET)] was recorded. The comedy video (CM) presented the smallest minimum accumulated normalized rating (ANR; p = 0.013) and the LS video presented the highest maximum ANR (p = 0.039). The LS video presented the longest time for first response (p < 0.001) and the AV video presented the shortest time for maximum response (p = 0.016). The LS video had the highest mean likeability rating with 1.43 ± 2.31 points; and the CM video had the lowest with 0.57 ± 1.77. Multiple linear regression models were created to predict the likeability of each video using the following physiological indicators; AV: power in beta band at C4 and P4 (p = 0.004, adj. R 2 = 0.301); CM: alpha power in Fp2 (p = 0.001, adj. R 2 = 0.326) and LS: alpha power in P4, F8, and Fp2; beta power in C4 and P4 and pupil size, (p = 0.002, adj. R 2 = 0.489). Despite its limitations (e.g., using one 1-min video per category) our findings suggest that there is a considerable difference in the psychophysiological correlates of stimuli with different contextual properties and that the use of time-dependent methods to assess videos should be considered as best practices.

16.
Neuroscience ; 394: 83-97, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30367947

RESUMEN

Audiovisual cuts involve spatial, temporal, and action narrative leaps. They can even change the meaning of the narrative through film editing. Many cuts are not consciously perceived, others are, just as we perceive or not the changes in real events. In this paper, we analyze the effects of cuts and different editing styles on 36 subjects, using electroencephalographic (EEG) techniques and the projection of stimuli with different audiovisual style of edition but the same narrative. Eyeblinks, event-related potentials (ERPs), EEG spectral power and disturbances, and the functional and effective connectivity before and after the cuts were analyzed. Cuts decreased blink frequency in the first second following them. Cuts also caused an increase of the alpha rhythm, with a cortical evolution from visual toward rostral areas. There were marked differences between a video-clip editing style, with greater activities evoked in visual areas, and the classic continuous style of editing, which presented greater activities in the frontal zones. This was reflected by differences in the theta rhythm between 200 and 400 ms, in visual and frontal zones, and can be connected to the different demands that each style of edition makes on working memory and conscious processing after cutting. Also, at the time of cuts, the causality between visual, somatosensory, and frontal networks is altered in any editing style. Our findings suggest that cuts affect media perception and chaotic and fast audiovisuals increase attentional scope but decrease conscious processing.


Asunto(s)
Atención/fisiología , Percepción Auditiva/fisiología , Encéfalo/fisiología , Estado de Conciencia/fisiología , Percepción Visual/fisiología , Estimulación Acústica , Adulto , Parpadeo , Ondas Encefálicas , Potenciales Evocados , Humanos , Persona de Mediana Edad , Películas Cinematográficas , Estimulación Luminosa
18.
Front Neuroinform ; 11: 72, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29311885

RESUMEN

The ability to anticipate the population-wide response of a target audience to a new movie or TV series, before its release, is critical to the film industry. Equally important is the ability to understand the underlying factors that drive or characterize viewer's decision to watch a movie. Traditional approaches (which involve pilot test-screenings, questionnaires, and focus groups) have reached a plateau in their ability to predict the population-wide responses to new movies. In this study, we develop a novel computational approach for extracting neurophysiological electroencephalography (EEG) and eye-gaze based metrics to predict the population-wide behavior of movie goers. We further, explore the connection of the derived metrics to the underlying cognitive processes that might drive moviegoers' decision to watch a movie. Towards that, we recorded neural activity-through the use of EEG-and eye-gaze activity from a group of naive individuals while watching movie trailers of pre-selected movies for which the population-wide preference is captured by the movie's market performance (i.e., box-office ticket sales in the US). Our findings show that the neural based metrics, derived using the proposed methodology, carry predictive information about the broader audience decisions to watch a movie, above and beyond traditional methods. In particular, neural metrics are shown to predict up to 72% of the variance of the films' performance at their premiere and up to 67% of the variance at following weekends; which corresponds to a 23-fold increase in prediction accuracy compared to current neurophysiological or traditional methods. We discuss our findings in the context of existing literature and hypothesize on the possible connection of the derived neurophysiological metrics to cognitive states of focused attention, the encoding of long-term memory, and the synchronization of different components of the brain's rewards network. Beyond the practical implication in predicting and understanding the behavior of moviegoers, the proposed approach can facilitate the use of video stimuli in neuroscience research; such as the study of individual differences in attention-deficit disorders, and the study of desensitization to media violence.

19.
Front Hum Neurosci ; 11: 577, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29249947

RESUMEN

In the present study, we investigated whether global electroencephalography (EEG) synchronization can be a new promising index for tracking emotional arousal changes of a group of individuals during video watching. Global field synchronization (GFS), an index known to correlate with human cognitive processes, was evaluated; this index quantified the global temporal synchronization among multichannel EEG data recorded from a group of participants (n = 25) during the plays of two short video clips. The two video clips were each about 5 min long and were designed to evoke negative (fearful) or positive (happy) emotion, respectively. Another group of participants (n = 37) was asked to select the two most emotionally arousing (most touching or most fearful) scenes in each clip. The results of these questionnaire surveys were used as the ground-truth to evaluate whether the GFS could detect emotional highlights of both video clips. The emotional highlights estimated using the grand-averaged GFS waveforms of the first group were also compared with those evaluated from galvanic skin response, photoplethysmography, and multimedia content analysis, which are conventional methods used to estimate temporal changes in emotional arousal during video plays. From our results, we found that beta-band GFS values decreased during high emotional arousal, regardless of the type of emotional stimulus. Moreover, the emotional highlights estimated using the GFS waveforms coincided best with those found by the questionnaire surveys. These findings suggest that GFS might be applicable as a new index for tracking emotional arousal changes of a group of individuals during video watching, and is likely to be used to evaluate or edit movies, TV commercials, and other broadcast products.

20.
Artículo en Zh | WPRIM | ID: wpr-928199

RESUMEN

There are two modes to display panoramic movies in virtual reality (VR) environment: non-stereoscopic mode (2D) and stereoscopic mode (3D). It has not been fully studied whether there are differences in the activation effect between these two continuous display modes on emotional arousal and what characteristics of the related neural activity are. In this paper, we designed a cognitive psychology experiment in order to compare the effects of VR-2D and VR-3D on emotional arousal by analyzing synchronously collected scalp electroencephalogram signals. We used support vector machine (SVM) to verify the neurophysiological differences between the two modes in VR environment. The results showed that compared with VR-2D films, VR-3D films evoked significantly higher electroencephalogram (EEG) power (mainly reflected in α and β activities). The significantly improved β wave power in VR-3D mode showed that 3D vision brought more intense cortical activity, which might lead to higher arousal. At the same time, the more intense α activity in the occipital region of the brain also suggested that VR-3D films might cause higher visual fatigue. By the means of neurocinematics, this paper demonstrates that EEG activity can well reflect the effects of different vision modes on the characteristics of the viewers' neural activities. The current study provides theoretical support not only for the future exploration of the image language under the VR perspective, but for future VR film shooting methods and human emotion research.


Asunto(s)
Humanos , Nivel de Alerta , Electroencefalografía , Emociones/fisiología , Películas Cinematográficas , Realidad Virtual
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda